research communications
κ3N,N′,N′′)nickel(II) dicyanidoaurate(I)
of bis(2,2′:6′,2′′-terpyridine-aUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688, USA
*Correspondence e-mail: rsykora@southalabama.edu
The title compound, [Ni(C15H11N3)2][Au(CN)2]2, is an ionic compound composed of bis(2,2′:6′,2′′-terpyridine)nickel(II) dications and dicyanidoaurate(I) anions in a 1:2 ratio. The two tridentate terpyridine ligands define the coordination of the Ni2+ cation, resulting in a nearly octahedral coordination sphere, although there is not any imposed about the Ni2+ site. The two nearly linear dicyanidoaurate(I) anions [C—Au—C = 179.0 (2) and 178.2 (2)°] contain a short aurophilic interaction of 3.1017 (3) Å. The structure does not demonstrate any π–π stacking. Non-classical C—H⋯N interactions between the cations and anions build up a three-dimensional network.
Keywords: crystal structure; terpyridine; aurophilic interaction; dicyanidoaurate.
CCDC reference: 1033527
1. Chemical context
Derivatives of the compound [M(terpy)2](X) (M = transition metal; terpy = 2,2′:6′,2′′-terpyridine; X = anion) have been known since the 1970′s (Harris & Lockyer, 1970). Transition metal–terpyridine complexes have been known to exhibit interesting properties such as their photophysical and spin-state properties (Pal et al., 2014). These allow transition metal–terpyridine complexes to have useful applications in molecular electronics and as building blocks for copolymers (Katz et al., 2008; Pal et al., 2014; Schubert et al., 2001). However, it was not until recently that the incorporation of gold cyanidometallates has been introduced into these systems (Ovens et al., 2010). We report here the synthesis and of another metal–terpyridine cyanidoaurate, [Ni(C15H11N3)2][Au(CN)2]2, (I).
2. Structural commentary
The structure of compound (I) contains an Ni2+ ion coordinated by two tridentate 2,2′:6′,2"-terpyridine ligands. The coordination of the terpyridine ligands around the metal cation gives an approximate octahedral coordination sphere. Included in the structure are two dicyanidoaurate(I) anions that are non-coordinating to the Ni2+ cation, as shown in Fig. 1. Recently, the compound [Ni(terpy)][Au(Br)2(CN)2]2 was synthesized and analysed (Ovens et al., 2010). Its contains a gold(III) cyanidometallate anion and a complex [Ni(terpy)]2+ cation. The title compound has some similarity, given that it too contains a [Ni(terpy)]2+ cation with dicyanidoaurate(I) anions. However, the important difference between the two compounds is that there are no metal–metal interactions in the [Ni(terpy)][Au(Br)2(CN)2]2 structure containing the d8 Au(III) ion, whereas the [Ni(terpy)2][Au(CN)2]2 structure contains a d10 gold(I) dicyanidoaurate(I) anion that has a strong propensity to form aurophilic interactions. This makes the title compound of interest because it contains short aurophilic interactions, contained within dimeric [Au(CN)2]2 moieties, with Au⋯Au distances of 3.1017 (3) Å (Fig. 1).
3. Supramolecular features
A packing diagram of the title compound is illustrated in Fig. 2. There are not any classical hydrogen bonds within the structure of the title compound. However, the cation and anion are stabilized by relatively weak non-classical hydrogen-bonding interactions from H atoms on the terpyridine rings to terminal N atoms on the cyanidometallates. There are six such interactions ranging from 3.235 (7) to 3.421 (7) Å, if using a D⋯A distance of 3.5 Å as the upper defined limit. Details of the interactions can be found in Table 1. The other type of non-classical intermolecular interactions that exists in the structure is the one aurophilic interaction discussed in the Structural commentary above. There are no π–π stacking interactions in the structure.
4. Synthesis and crystallization
Ethanol solutions of 0.1 M Ni(NO3)2 (1 ml) and 0.1 M 2,2′:6′.2"-terpyridine (1 ml) were mixed together. Following the mixture of these two compounds, 2 ml of 0.05 M KAu(CN)2 (50:50 ethanol/water v/v) was added dropwise. A precipitate formed and the suspension was mixed thoroughly and centrifuged. The brownish-red solution was decanted from the solid precipitate and placed in a test tube to allow for slow evaporation. After approximately one week, the formation of brownish-red crystals had begun. The grown single crystals were then gathered and isolated.
5. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions and allowed to ride on their parent atoms during subsequent with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1033527
10.1107/S1600536814024672/wm5063sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024672/wm5063Isup2.hkl
Derivatives of the compound [M(terpy)2](X) (M = transition metal; terpy = 2,2':6',2''-terpyridine; X = anion) have been known since the 1970's (Harris & Lockyer, 1970). Transition metal–terpyridine complexes have been known to exhibit interesting properties such as their photophysical and spin-state properties (Pal et al., 2014). These allow transition metal–terpyridine complexes to have useful applications in molecular electronics and as building blocks for copolymers (Katz et al., 2008; Pal et al., 2014; Schubert et al., 2001). However, it was not until recently that the incorporation of gold cyanidometallates has been introduced into these systems (Ovens et al., 2010). We report here the synthesis and
of another metal–terpyridine cyanidoaurate, [Ni(C15H11N3)2][Au(CN)2]2, (I).The structure of compound (I) contains an Ni2+ ion coordinated by two tridentate 2,2':6',2"-terpyridine ligands. The coordination of the terpyridine ligands around the metal cation gives an approximate octahedral coordination sphere. Included in the structure are two dicyanidoaurate(I) anions that are non-coordinating to the Ni2+ cation, as shown in Fig. 1. Recently, the compound [Ni(terpy)][Au(Br)2(CN)2]2 was synthesized and analysed (Ovens et al., 2010). Its
contains a gold(III) cyanidometallate anion and a complex [Ni(terpy)]2+ cation (Ovens et al., 2010). The title compound has some similarity, given that it too contains a [Ni(terpy)]2+ cation with dicyanidoaurate(I) anions. However, the important difference between the two compounds is that there are no metal–metal interactions in the [Ni(terpy)][Au(Br)2(CN)2]2 structure containing the d8 Au(III) ion, whereas the [Ni(terpy)2][Au(CN)2]2 structure contains a d10 gold(I) dicyanidoaurate(I) anion that has a strong propensity to form aurophilic interactions. This makes the title compound of interest because it contains short aurophilic interactions, contained within dimeric [Au(CN)2]2 moieties, with Au···Au distances of 3.1017 (3) Å (Fig. 1).A packing diagram of the title compound is illustrated in Fig. 2. There are not any classical hydrogen bonds within the structure of the title compound. However, the cation and anion are stabilized by relatively weak non-classical hydrogen-bonding interactions from H atoms on the terpyridine rings and terminal N atoms on the cyanidometallate. There are six such interactions ranging from 3.235 (7) to 3.421 (7) Å, if using a D···A distance of 3.5 Å as the upper defined limit. Details of the interactions can be found in Table 1. The other type of non-classical intermolecular interactions that exists in the structure is the one aurophilic interaction discussed in the Structural commentary above. There are not any π—π stacking interactions in the structure.
Ethanol solutions of 0.1 M Ni(NO3)2 (1 ml) and 0.1 M 2,2':6'.2"-terpyridine (1 ml) were mixed together. Following the mixture of these two compounds, 2 ml of 0.05 M KAu(CN)2 (50:50 ethanol/water v/v) was added dropwise. A precipitate formed and the suspension was mixed thoroughly and centrifuged. The brownish-red solution was decanted from the solid precipitate and placed in a test tube to allow for slow evaporation. After approximately one week, the formation of brownish-red crystals had begun. The grown single crystals were then gathered and isolated.
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level. An illustration of the packing of the molecular entities of (I). |
[Ni(C15H11N3)2][Au(CN)2]2 | Z = 2 |
Mr = 1023.26 | F(000) = 964 |
Triclinic, P1 | Dx = 2.097 Mg m−3 |
a = 8.8374 (3) Å | Mo Kα radiation, λ = 0.7107 Å |
b = 12.6707 (4) Å | Cell parameters from 15517 reflections |
c = 14.7497 (4) Å | θ = 2.6–28.0° |
α = 83.401 (2)° | µ = 9.65 mm−1 |
β = 88.788 (3)° | T = 180 K |
γ = 81.078 (3)° | Irregular, red |
V = 1620.82 (9) Å3 | 0.09 × 0.06 × 0.05 mm |
Agilent Xcalibur Eos diffractometer | 5928 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5305 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 16.0514 pixels mm-1 | θmax = 25.4°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −15→15 |
Tmin = 0.299, Tmax = 1.000 | l = −17→17 |
41260 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0357P)2 + 1.8409P] where P = (Fo2 + 2Fc2)/3 |
5928 reflections | (Δ/σ)max = 0.001 |
424 parameters | Δρmax = 1.18 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Ni(C15H11N3)2][Au(CN)2]2 | γ = 81.078 (3)° |
Mr = 1023.26 | V = 1620.82 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.8374 (3) Å | Mo Kα radiation |
b = 12.6707 (4) Å | µ = 9.65 mm−1 |
c = 14.7497 (4) Å | T = 180 K |
α = 83.401 (2)° | 0.09 × 0.06 × 0.05 mm |
β = 88.788 (3)° |
Agilent Xcalibur Eos diffractometer | 5928 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 5305 reflections with I > 2σ(I) |
Tmin = 0.299, Tmax = 1.000 | Rint = 0.045 |
41260 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.18 e Å−3 |
5928 reflections | Δρmin = −0.51 e Å−3 |
424 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.39267 (2) | 0.878031 (15) | 0.259898 (14) | 0.05010 (8) | |
Au2 | 0.37167 (2) | 0.656248 (15) | 0.195383 (13) | 0.04589 (7) | |
Ni1 | 0.03978 (6) | 0.30283 (4) | 0.27059 (4) | 0.03278 (13) | |
N4 | 0.1366 (4) | 0.2245 (3) | 0.3954 (2) | 0.0343 (8) | |
N5 | 0.0613 (4) | 0.4262 (3) | 0.3394 (2) | 0.0341 (8) | |
N6 | −0.0595 (4) | 0.4355 (3) | 0.1801 (2) | 0.0367 (8) | |
N3 | 0.2540 (4) | 0.2959 (3) | 0.2017 (2) | 0.0386 (8) | |
N2 | 0.0398 (4) | 0.1761 (3) | 0.2020 (2) | 0.0371 (8) | |
N1 | −0.1736 (4) | 0.2555 (3) | 0.3086 (3) | 0.0407 (9) | |
C21 | 0.1440 (5) | 0.4070 (4) | 0.4172 (3) | 0.0355 (9) | |
C20 | 0.1790 (5) | 0.2913 (3) | 0.4515 (3) | 0.0343 (9) | |
C26 | −0.0609 (5) | 0.5321 (4) | 0.2110 (3) | 0.0385 (10) | |
C16 | 0.1583 (5) | 0.1185 (4) | 0.4230 (3) | 0.0412 (10) | |
H16 | 0.1277 | 0.0722 | 0.3847 | 0.049* | |
C19 | 0.2464 (5) | 0.2534 (4) | 0.5352 (3) | 0.0428 (11) | |
H19 | 0.2749 | 0.3008 | 0.5731 | 0.051* | |
C22 | 0.1874 (6) | 0.4908 (4) | 0.4572 (3) | 0.0430 (11) | |
H22 | 0.2452 | 0.4773 | 0.5104 | 0.052* | |
C30 | −0.1275 (5) | 0.4324 (4) | 0.1000 (3) | 0.0458 (11) | |
H30 | −0.1253 | 0.3665 | 0.0777 | 0.055* | |
C5 | −0.1995 (5) | 0.1651 (4) | 0.2730 (3) | 0.0436 (11) | |
C11 | 0.2842 (5) | 0.2140 (4) | 0.1487 (3) | 0.0405 (10) | |
C24 | 0.0583 (6) | 0.6150 (4) | 0.3379 (3) | 0.0446 (11) | |
H24 | 0.0272 | 0.6849 | 0.3110 | 0.054* | |
C23 | 0.1440 (6) | 0.5948 (4) | 0.4175 (3) | 0.0452 (11) | |
H23 | 0.1723 | 0.6517 | 0.4442 | 0.054* | |
C15 | 0.3549 (5) | 0.3636 (4) | 0.2029 (3) | 0.0437 (11) | |
H15 | 0.3334 | 0.4202 | 0.2384 | 0.052* | |
C25 | 0.0205 (5) | 0.5273 (3) | 0.2995 (3) | 0.0367 (10) | |
C1 | −0.2761 (6) | 0.3004 (4) | 0.3657 (3) | 0.0491 (12) | |
H1 | −0.2587 | 0.3625 | 0.3892 | 0.059* | |
C10 | 0.1623 (6) | 0.1451 (4) | 0.1495 (3) | 0.0407 (11) | |
C18 | 0.2705 (6) | 0.1439 (4) | 0.5616 (3) | 0.0503 (12) | |
H18 | 0.3180 | 0.1167 | 0.6169 | 0.060* | |
C6 | −0.0791 (6) | 0.1213 (4) | 0.2111 (3) | 0.0434 (11) | |
C17 | 0.2241 (6) | 0.0754 (4) | 0.5057 (3) | 0.0480 (12) | |
H17 | 0.2368 | 0.0017 | 0.5233 | 0.058* | |
C27 | −0.1337 (6) | 0.6270 (4) | 0.1636 (4) | 0.0503 (12) | |
H27 | −0.1335 | 0.6924 | 0.1863 | 0.060* | |
C9 | 0.1660 (7) | 0.0561 (4) | 0.1017 (4) | 0.0540 (14) | |
H9 | 0.2483 | 0.0354 | 0.0640 | 0.065* | |
C14 | 0.4912 (6) | 0.3535 (5) | 0.1532 (4) | 0.0527 (13) | |
H14 | 0.5592 | 0.4023 | 0.1550 | 0.063* | |
C4 | −0.3309 (6) | 0.1213 (4) | 0.2956 (4) | 0.0551 (14) | |
H4 | −0.3497 | 0.0606 | 0.2704 | 0.066* | |
C12 | 0.4186 (6) | 0.1984 (5) | 0.0993 (3) | 0.0509 (13) | |
H12 | 0.4394 | 0.1407 | 0.0649 | 0.061* | |
C13 | 0.5218 (6) | 0.2694 (5) | 0.1016 (4) | 0.0576 (15) | |
H13 | 0.6123 | 0.2602 | 0.0680 | 0.069* | |
C7 | −0.0793 (7) | 0.0300 (4) | 0.1661 (4) | 0.0546 (14) | |
H7 | −0.1607 | −0.0088 | 0.1728 | 0.066* | |
C3 | −0.4349 (6) | 0.1692 (6) | 0.3568 (4) | 0.0683 (18) | |
H3 | −0.5229 | 0.1397 | 0.3734 | 0.082* | |
C32 | 0.5489 (7) | 0.8954 (4) | 0.1631 (4) | 0.0557 (14) | |
C8 | 0.0441 (8) | −0.0008 (4) | 0.1118 (4) | 0.0609 (16) | |
H8 | 0.0457 | −0.0611 | 0.0812 | 0.073* | |
C2 | −0.4084 (6) | 0.2576 (6) | 0.3916 (4) | 0.0638 (16) | |
H2 | −0.4773 | 0.2899 | 0.4324 | 0.077* | |
C31 | 0.2372 (8) | 0.8628 (4) | 0.3579 (4) | 0.0621 (15) | |
N8 | 0.6378 (7) | 0.9036 (5) | 0.1061 (4) | 0.0765 (16) | |
C29 | −0.2014 (6) | 0.5252 (5) | 0.0493 (4) | 0.0579 (14) | |
H29 | −0.2469 | 0.5213 | −0.0062 | 0.070* | |
C28 | −0.2056 (7) | 0.6228 (5) | 0.0831 (4) | 0.0615 (15) | |
H28 | −0.2570 | 0.6853 | 0.0514 | 0.074* | |
N7 | 0.1488 (8) | 0.8529 (4) | 0.4154 (4) | 0.0830 (18) | |
N9 | 0.1436 (6) | 0.7521 (4) | 0.0368 (3) | 0.0576 (11) | |
C33 | 0.2250 (6) | 0.7165 (4) | 0.0954 (4) | 0.0477 (12) | |
N10 | 0.6060 (7) | 0.5566 (4) | 0.3494 (4) | 0.0765 (16) | |
C34 | 0.5206 (7) | 0.5917 (4) | 0.2936 (4) | 0.0536 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.05730 (14) | 0.03953 (12) | 0.05524 (14) | −0.00962 (9) | −0.00594 (10) | −0.00889 (9) |
Au2 | 0.05153 (13) | 0.04074 (12) | 0.04712 (12) | −0.00948 (9) | −0.00261 (9) | −0.00856 (8) |
Ni1 | 0.0342 (3) | 0.0307 (3) | 0.0338 (3) | −0.0050 (2) | −0.0024 (2) | −0.0048 (2) |
N4 | 0.0348 (19) | 0.0319 (19) | 0.0361 (19) | −0.0043 (15) | −0.0009 (15) | −0.0048 (15) |
N5 | 0.0363 (19) | 0.0318 (19) | 0.0347 (19) | −0.0057 (15) | 0.0012 (15) | −0.0052 (15) |
N6 | 0.0339 (19) | 0.040 (2) | 0.0350 (19) | −0.0041 (16) | −0.0002 (15) | −0.0017 (16) |
N3 | 0.039 (2) | 0.040 (2) | 0.035 (2) | −0.0022 (17) | −0.0027 (16) | −0.0018 (16) |
N2 | 0.042 (2) | 0.0314 (19) | 0.038 (2) | −0.0051 (16) | −0.0059 (17) | −0.0048 (16) |
N1 | 0.037 (2) | 0.043 (2) | 0.041 (2) | −0.0082 (17) | −0.0077 (17) | 0.0007 (17) |
C21 | 0.033 (2) | 0.034 (2) | 0.039 (2) | −0.0037 (18) | 0.0030 (18) | −0.0053 (18) |
C20 | 0.033 (2) | 0.035 (2) | 0.034 (2) | −0.0026 (18) | 0.0008 (18) | −0.0054 (18) |
C26 | 0.038 (2) | 0.034 (2) | 0.042 (2) | −0.0034 (19) | 0.0026 (19) | −0.0027 (19) |
C16 | 0.046 (3) | 0.034 (2) | 0.044 (3) | −0.007 (2) | −0.003 (2) | −0.0037 (19) |
C19 | 0.046 (3) | 0.043 (3) | 0.040 (3) | −0.007 (2) | −0.006 (2) | −0.005 (2) |
C22 | 0.051 (3) | 0.043 (3) | 0.037 (2) | −0.010 (2) | 0.000 (2) | −0.009 (2) |
C30 | 0.042 (3) | 0.057 (3) | 0.038 (3) | −0.008 (2) | −0.005 (2) | −0.001 (2) |
C5 | 0.043 (3) | 0.044 (3) | 0.043 (3) | −0.012 (2) | −0.011 (2) | 0.010 (2) |
C11 | 0.041 (2) | 0.044 (3) | 0.033 (2) | 0.005 (2) | −0.0050 (19) | −0.0035 (19) |
C24 | 0.055 (3) | 0.030 (2) | 0.047 (3) | −0.003 (2) | 0.005 (2) | −0.003 (2) |
C23 | 0.058 (3) | 0.037 (3) | 0.044 (3) | −0.013 (2) | 0.001 (2) | −0.010 (2) |
C15 | 0.042 (3) | 0.041 (3) | 0.047 (3) | −0.005 (2) | −0.002 (2) | 0.001 (2) |
C25 | 0.035 (2) | 0.031 (2) | 0.042 (2) | 0.0004 (18) | 0.0039 (19) | −0.0009 (18) |
C1 | 0.044 (3) | 0.057 (3) | 0.043 (3) | 0.000 (2) | −0.003 (2) | −0.002 (2) |
C10 | 0.049 (3) | 0.038 (2) | 0.033 (2) | 0.005 (2) | −0.010 (2) | −0.0073 (19) |
C18 | 0.057 (3) | 0.049 (3) | 0.042 (3) | −0.006 (2) | −0.009 (2) | 0.004 (2) |
C6 | 0.051 (3) | 0.037 (2) | 0.043 (3) | −0.011 (2) | −0.016 (2) | 0.000 (2) |
C17 | 0.054 (3) | 0.036 (2) | 0.051 (3) | −0.005 (2) | −0.007 (2) | 0.004 (2) |
C27 | 0.053 (3) | 0.039 (3) | 0.054 (3) | −0.002 (2) | −0.003 (2) | 0.008 (2) |
C9 | 0.066 (3) | 0.050 (3) | 0.044 (3) | 0.010 (3) | −0.012 (2) | −0.016 (2) |
C14 | 0.038 (3) | 0.061 (3) | 0.056 (3) | −0.006 (2) | 0.002 (2) | 0.005 (3) |
C4 | 0.053 (3) | 0.050 (3) | 0.062 (3) | −0.020 (3) | −0.020 (3) | 0.017 (3) |
C12 | 0.049 (3) | 0.063 (3) | 0.035 (3) | 0.007 (3) | 0.001 (2) | −0.004 (2) |
C13 | 0.038 (3) | 0.082 (4) | 0.045 (3) | 0.001 (3) | 0.004 (2) | 0.009 (3) |
C7 | 0.067 (4) | 0.041 (3) | 0.059 (3) | −0.015 (3) | −0.023 (3) | −0.006 (2) |
C3 | 0.040 (3) | 0.089 (5) | 0.070 (4) | −0.022 (3) | −0.009 (3) | 0.032 (4) |
C32 | 0.062 (4) | 0.049 (3) | 0.061 (4) | −0.016 (3) | −0.008 (3) | −0.013 (3) |
C8 | 0.083 (4) | 0.041 (3) | 0.059 (3) | −0.002 (3) | −0.025 (3) | −0.015 (3) |
C2 | 0.039 (3) | 0.086 (5) | 0.060 (4) | −0.004 (3) | 0.002 (3) | 0.008 (3) |
C31 | 0.083 (4) | 0.032 (3) | 0.072 (4) | −0.003 (3) | 0.005 (3) | −0.016 (3) |
N8 | 0.079 (4) | 0.088 (4) | 0.074 (4) | −0.040 (3) | 0.007 (3) | −0.024 (3) |
C29 | 0.053 (3) | 0.074 (4) | 0.044 (3) | −0.009 (3) | −0.011 (2) | 0.007 (3) |
C28 | 0.058 (3) | 0.061 (4) | 0.057 (3) | 0.001 (3) | −0.012 (3) | 0.017 (3) |
N7 | 0.111 (5) | 0.046 (3) | 0.095 (4) | −0.017 (3) | 0.032 (4) | −0.019 (3) |
N9 | 0.059 (3) | 0.058 (3) | 0.056 (3) | 0.000 (2) | −0.007 (2) | −0.017 (2) |
C33 | 0.048 (3) | 0.048 (3) | 0.049 (3) | −0.009 (2) | 0.003 (2) | −0.013 (2) |
N10 | 0.095 (4) | 0.061 (3) | 0.073 (4) | −0.008 (3) | −0.031 (3) | −0.006 (3) |
C34 | 0.063 (3) | 0.043 (3) | 0.056 (3) | −0.010 (3) | −0.013 (3) | −0.008 (2) |
Au1—Au2 | 3.1017 (3) | C11—C12 | 1.381 (7) |
Au1—C32 | 1.983 (7) | C24—H24 | 0.9300 |
Au1—C31 | 1.987 (7) | C24—C23 | 1.388 (7) |
Au2—C33 | 1.989 (5) | C24—C25 | 1.391 (7) |
Au2—C34 | 1.994 (5) | C23—H23 | 0.9300 |
Ni1—N4 | 2.119 (4) | C15—H15 | 0.9300 |
Ni1—N5 | 1.994 (4) | C15—C14 | 1.393 (7) |
Ni1—N6 | 2.110 (4) | C1—H1 | 0.9300 |
Ni1—N3 | 2.124 (4) | C1—C2 | 1.392 (8) |
Ni1—N2 | 1.993 (4) | C10—C9 | 1.393 (7) |
Ni1—N1 | 2.112 (4) | C18—H18 | 0.9300 |
N4—C20 | 1.346 (5) | C18—C17 | 1.375 (7) |
N4—C16 | 1.344 (6) | C6—C7 | 1.399 (7) |
N5—C21 | 1.351 (6) | C17—H17 | 0.9300 |
N5—C25 | 1.346 (5) | C27—H27 | 0.9300 |
N6—C26 | 1.353 (6) | C27—C28 | 1.368 (8) |
N6—C30 | 1.344 (6) | C9—H9 | 0.9300 |
N3—C11 | 1.361 (6) | C9—C8 | 1.382 (8) |
N3—C15 | 1.331 (6) | C14—H14 | 0.9300 |
N2—C10 | 1.352 (6) | C14—C13 | 1.370 (8) |
N2—C6 | 1.343 (6) | C4—H4 | 0.9300 |
N1—C5 | 1.365 (6) | C4—C3 | 1.395 (9) |
N1—C1 | 1.331 (6) | C12—H12 | 0.9300 |
C21—C20 | 1.481 (6) | C12—C13 | 1.381 (8) |
C21—C22 | 1.379 (6) | C13—H13 | 0.9300 |
C20—C19 | 1.385 (6) | C7—H7 | 0.9300 |
C26—C25 | 1.493 (6) | C7—C8 | 1.373 (9) |
C26—C27 | 1.391 (6) | C3—H3 | 0.9300 |
C16—H16 | 0.9300 | C3—C2 | 1.338 (9) |
C16—C17 | 1.380 (7) | C32—N8 | 1.146 (8) |
C19—H19 | 0.9300 | C8—H8 | 0.9300 |
C19—C18 | 1.381 (7) | C2—H2 | 0.9300 |
C22—H22 | 0.9300 | C31—N7 | 1.150 (8) |
C22—C23 | 1.380 (7) | C29—H29 | 0.9300 |
C30—H30 | 0.9300 | C29—C28 | 1.381 (8) |
C30—C29 | 1.396 (7) | C28—H28 | 0.9300 |
C5—C6 | 1.472 (7) | N9—C33 | 1.141 (7) |
C5—C4 | 1.382 (7) | N10—C34 | 1.132 (7) |
C11—C10 | 1.487 (7) | ||
C32—Au1—Au2 | 87.27 (15) | C23—C24—C25 | 117.8 (4) |
C32—Au1—C31 | 179.0 (2) | C25—C24—H24 | 121.1 |
C31—Au1—Au2 | 93.69 (15) | C22—C23—C24 | 120.5 (4) |
C33—Au2—Au1 | 94.33 (14) | C22—C23—H23 | 119.8 |
C33—Au2—C34 | 178.2 (2) | C24—C23—H23 | 119.8 |
C34—Au2—Au1 | 87.35 (15) | N3—C15—H15 | 118.5 |
N4—Ni1—N3 | 93.99 (14) | N3—C15—C14 | 122.9 (5) |
N5—Ni1—N4 | 77.69 (14) | C14—C15—H15 | 118.5 |
N5—Ni1—N6 | 78.00 (14) | N5—C25—C26 | 112.9 (4) |
N5—Ni1—N3 | 96.88 (15) | N5—C25—C24 | 121.3 (4) |
N5—Ni1—N1 | 106.69 (15) | C24—C25—C26 | 125.7 (4) |
N6—Ni1—N4 | 155.47 (14) | N1—C1—H1 | 118.9 |
N6—Ni1—N3 | 92.12 (14) | N1—C1—C2 | 122.2 (6) |
N6—Ni1—N1 | 93.45 (14) | C2—C1—H1 | 118.9 |
N2—Ni1—N4 | 99.88 (14) | N2—C10—C11 | 114.0 (4) |
N2—Ni1—N5 | 174.57 (15) | N2—C10—C9 | 120.2 (5) |
N2—Ni1—N6 | 104.62 (14) | C9—C10—C11 | 125.8 (5) |
N2—Ni1—N3 | 78.36 (15) | C19—C18—H18 | 120.1 |
N2—Ni1—N1 | 78.06 (16) | C17—C18—C19 | 119.7 (4) |
N1—Ni1—N4 | 90.39 (14) | C17—C18—H18 | 120.1 |
N1—Ni1—N3 | 156.42 (15) | N2—C6—C5 | 113.6 (4) |
C20—N4—Ni1 | 114.3 (3) | N2—C6—C7 | 120.6 (5) |
C16—N4—Ni1 | 127.2 (3) | C7—C6—C5 | 125.8 (5) |
C16—N4—C20 | 118.5 (4) | C16—C17—H17 | 120.8 |
C21—N5—Ni1 | 118.6 (3) | C18—C17—C16 | 118.5 (4) |
C25—N5—Ni1 | 119.4 (3) | C18—C17—H17 | 120.8 |
C25—N5—C21 | 120.6 (4) | C26—C27—H27 | 120.4 |
C26—N6—Ni1 | 114.5 (3) | C28—C27—C26 | 119.2 (5) |
C30—N6—Ni1 | 126.9 (3) | C28—C27—H27 | 120.4 |
C30—N6—C26 | 118.5 (4) | C10—C9—H9 | 120.9 |
C11—N3—Ni1 | 113.9 (3) | C8—C9—C10 | 118.3 (5) |
C15—N3—Ni1 | 127.4 (3) | C8—C9—H9 | 120.9 |
C15—N3—C11 | 118.6 (4) | C15—C14—H14 | 121.0 |
C10—N2—Ni1 | 119.1 (3) | C13—C14—C15 | 118.0 (5) |
C6—N2—Ni1 | 119.5 (3) | C13—C14—H14 | 121.0 |
C6—N2—C10 | 121.4 (4) | C5—C4—H4 | 120.4 |
C5—N1—Ni1 | 113.7 (3) | C5—C4—C3 | 119.1 (6) |
C1—N1—Ni1 | 127.0 (4) | C3—C4—H4 | 120.4 |
C1—N1—C5 | 119.2 (4) | C11—C12—H12 | 120.4 |
N5—C21—C20 | 113.3 (4) | C11—C12—C13 | 119.2 (5) |
N5—C21—C22 | 120.5 (4) | C13—C12—H12 | 120.4 |
C22—C21—C20 | 126.2 (4) | C14—C13—C12 | 120.1 (5) |
N4—C20—C21 | 114.7 (4) | C14—C13—H13 | 120.0 |
N4—C20—C19 | 121.8 (4) | C12—C13—H13 | 120.0 |
C19—C20—C21 | 123.5 (4) | C6—C7—H7 | 120.9 |
N6—C26—C25 | 114.4 (4) | C8—C7—C6 | 118.2 (5) |
N6—C26—C27 | 121.9 (4) | C8—C7—H7 | 120.9 |
C27—C26—C25 | 123.7 (4) | C4—C3—H3 | 119.9 |
N4—C16—H16 | 118.7 | C2—C3—C4 | 120.1 (5) |
N4—C16—C17 | 122.6 (4) | C2—C3—H3 | 119.9 |
C17—C16—H16 | 118.7 | N8—C32—Au1 | 178.4 (5) |
C20—C19—H19 | 120.6 | C9—C8—H8 | 119.3 |
C18—C19—C20 | 118.8 (4) | C7—C8—C9 | 121.4 (5) |
C18—C19—H19 | 120.6 | C7—C8—H8 | 119.3 |
C21—C22—H22 | 120.4 | C1—C2—H2 | 120.5 |
C21—C22—C23 | 119.3 (4) | C3—C2—C1 | 119.0 (6) |
C23—C22—H22 | 120.4 | C3—C2—H2 | 120.5 |
N6—C30—H30 | 119.0 | N7—C31—Au1 | 179.0 (6) |
N6—C30—C29 | 122.0 (5) | C30—C29—H29 | 120.6 |
C29—C30—H30 | 119.0 | C28—C29—C30 | 118.8 (5) |
N1—C5—C6 | 115.0 (4) | C28—C29—H29 | 120.6 |
N1—C5—C4 | 120.3 (5) | C27—C28—C29 | 119.6 (5) |
C4—C5—C6 | 124.7 (5) | C27—C28—H28 | 120.2 |
N3—C11—C10 | 114.6 (4) | C29—C28—H28 | 120.2 |
N3—C11—C12 | 121.2 (5) | N9—C33—Au2 | 178.4 (5) |
C12—C11—C10 | 124.2 (5) | N10—C34—Au2 | 178.9 (5) |
C23—C24—H24 | 121.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N10i | 0.93 | 2.57 | 3.235 (7) | 129 |
C7—H7···N8ii | 0.93 | 2.51 | 3.356 (9) | 151 |
C8—H8···N9iii | 0.93 | 2.54 | 3.421 (7) | 157 |
C22—H22···N10iv | 0.93 | 2.43 | 3.364 (8) | 179 |
C23—H23···N7 | 0.93 | 2.51 | 3.274 (7) | 139 |
C30—H30···N9v | 0.93 | 2.41 | 3.280 (7) | 156 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N10i | 0.93 | 2.57 | 3.235 (7) | 129 |
C7—H7···N8ii | 0.93 | 2.51 | 3.356 (9) | 151 |
C8—H8···N9iii | 0.93 | 2.54 | 3.421 (7) | 157 |
C22—H22···N10iv | 0.93 | 2.43 | 3.364 (8) | 179 |
C23—H23···N7 | 0.93 | 2.51 | 3.274 (7) | 139 |
C30—H30···N9v | 0.93 | 2.41 | 3.280 (7) | 156 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C15H11N3)2][Au(CN)2]2 |
Mr | 1023.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 8.8374 (3), 12.6707 (4), 14.7497 (4) |
α, β, γ (°) | 83.401 (2), 88.788 (3), 81.078 (3) |
V (Å3) | 1620.82 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.65 |
Crystal size (mm) | 0.09 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.299, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 41260, 5928, 5305 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.070, 1.06 |
No. of reflections | 5928 |
No. of parameters | 424 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.18, −0.51 |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
The authors acknowledge the National Science Foundation for their generous support (NSF–CAREER grant to RES, CHE-0846680).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harris, C. M. & Lockyer, T. N. (1970). Aust. J. Chem. 23, 1703–1706. CrossRef CAS Google Scholar
Katz, M. J., Ramnial, T., Yu, H.-Z. & Leznoff, D. B. (2008). J. Am. Chem. Soc. 130, 10662–10673. Web of Science CrossRef PubMed CAS Google Scholar
Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609–9616. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pal, A. K., Laramée-Milette, B. & Hanan, G. S. (2014). Inorg. Chim. Acta, 418, 15–22. Web of Science CrossRef CAS Google Scholar
Schubert, U. S., Eschbaumer, C., Andres, P., Hofmeier, H., Weidl, C. H., Herdtweck, E., Dulkeith, E., Morteani, A., Hecker, N. E. & Feldmann, J. (2001). Synth. Met. 121, 1249–1252. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.