research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)nickel(II) dicyanidoaurate(I)

aUniversity of South Alabama, Department of Chemistry, Mobile, AL 36688, USA
*Correspondence e-mail: rsykora@southalabama.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 September 2014; accepted 10 November 2014; online 19 November 2014)

The title compound, [Ni(C15H11N3)2][Au(CN)2]2, is an ionic compound composed of bis­(2,2′:6′,2′′-terpyridine)­nickel(II) dications and dicyanidoaurate(I) anions in a 1:2 ratio. The two tridentate terpyridine ligands define the coordination of the Ni2+ cation, resulting in a nearly octa­hedral coordination sphere, although there is not any imposed crystallographic symmetry about the Ni2+ site. The two nearly linear dicyanidoaurate(I) anions [C—Au—C = 179.0 (2) and 178.2 (2)°] contain a short aurophilic inter­action of 3.1017 (3) Å. The structure does not demonstrate any ππ stacking. Non-classical C—H⋯N inter­actions between the cations and anions build up a three-dimensional network.

1. Chemical context

Derivatives of the compound [M(terpy)2](X) (M = transition metal; terpy = 2,2′:6′,2′′-terpyridine; X = anion) have been known since the 1970′s (Harris & Lockyer, 1970[Harris, C. M. & Lockyer, T. N. (1970). Aust. J. Chem. 23, 1703-1706.]). Transition metal–terpyridine complexes have been known to exhibit inter­esting properties such as their photophysical and spin-state properties (Pal et al., 2014[Pal, A. K., Laramée-Milette, B. & Hanan, G. S. (2014). Inorg. Chim. Acta, 418, 15-22.]). These allow transition metal–terpyridine complexes to have useful applications in mol­ecular electronics and as building blocks for copolymers (Katz et al., 2008[Katz, M. J., Ramnial, T., Yu, H.-Z. & Leznoff, D. B. (2008). J. Am. Chem. Soc. 130, 10662-10673.]; Pal et al., 2014[Pal, A. K., Laramée-Milette, B. & Hanan, G. S. (2014). Inorg. Chim. Acta, 418, 15-22.]; Schubert et al., 2001[Schubert, U. S., Eschbaumer, C., Andres, P., Hofmeier, H., Weidl, C. H., Herdtweck, E., Dulkeith, E., Morteani, A., Hecker, N. E. & Feldmann, J. (2001). Synth. Met. 121, 1249-1252.]). However, it was not until recently that the incorporation of gold cyanidometallates has been introduced into these systems (Ovens et al., 2010[Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609-9616.]). We report here the synthesis and crystal structure of another metal–terpyridine cyanidoaurate, [Ni(C15H11N3)2][Au(CN)2]2, (I)[link].

[Scheme 1]

2. Structural commentary

The structure of compound (I)[link] contains an Ni2+ ion coordin­ated by two tridentate 2,2′:6′,2"-terpyridine ligands. The coordination of the terpyridine ligands around the metal cation gives an approximate octa­hedral coordination sphere. Included in the structure are two dicyanidoaurate(I) anions that are non-coordinating to the Ni2+ cation, as shown in Fig. 1[link]. Recently, the compound [Ni(terpy)][Au(Br)2(CN)2]2 was synthesized and analysed (Ovens et al., 2010[Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609-9616.]). Its crystal structure contains a gold(III) cyanidometallate anion and a complex [Ni(terpy)]2+ cation. The title compound has some similarity, given that it too contains a [Ni(terpy)]2+ cation with dicyanidoaurate(I) anions. However, the important difference between the two compounds is that there are no metal–metal inter­actions in the [Ni(terpy)][Au(Br)2(CN)2]2 structure containing the d8 Au(III) ion, whereas the [Ni(terpy)2][Au(CN)2]2 structure contains a d10 gold(I) dicyanidoaurate(I) anion that has a strong propensity to form aurophilic inter­actions. This makes the title compound of inter­est because it contains short aurophilic inter­actions, contained within dimeric [Au(CN)2]2 moieties, with Au⋯Au distances of 3.1017 (3) Å (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.

3. Supra­molecular features

A packing diagram of the title compound is illustrated in Fig. 2[link]. There are not any classical hydrogen bonds within the structure of the title compound. However, the cation and anion are stabilized by relatively weak non-classical hydrogen-bonding inter­actions from H atoms on the terpyridine rings to terminal N atoms on the cyanidometallates. There are six such inter­actions ranging from 3.235 (7) to 3.421 (7) Å, if using a D⋯A distance of 3.5 Å as the upper defined limit. Details of the inter­actions can be found in Table 1[link]. The other type of non-classical inter­molecular inter­actions that exists in the structure is the one aurophilic inter­action discussed in the Structural commentary above. There are no ππ stacking inter­actions in the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N10i 0.93 2.57 3.235 (7) 129
C7—H7⋯N8ii 0.93 2.51 3.356 (9) 151
C8—H8⋯N9iii 0.93 2.54 3.421 (7) 157
C22—H22⋯N10iv 0.93 2.43 3.364 (8) 179
C23—H23⋯N7 0.93 2.51 3.274 (7) 139
C30—H30⋯N9v 0.93 2.41 3.280 (7) 156
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z.
[Figure 2]
Figure 2
An illustration of the packing of the mol­ecular entities of (I)[link].

4. Synthesis and crystallization

Ethanol solutions of 0.1 M Ni(NO3)2 (1 ml) and 0.1 M 2,2′:6′.2"-terpyridine (1 ml) were mixed together. Following the mixture of these two compounds, 2 ml of 0.05 M KAu(CN)2 (50:50 ethanol/water v/v) was added dropwise. A precipitate formed and the suspension was mixed thoroughly and centrifuged. The brownish-red solution was deca­nted from the solid precipitate and placed in a test tube to allow for slow evaporation. After approximately one week, the formation of brownish-red crystals had begun. The grown single crystals were then gathered and isolated.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and allowed to ride on their parent atoms during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C15H11N3)2][Au(CN)2]2
Mr 1023.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 8.8374 (3), 12.6707 (4), 14.7497 (4)
α, β, γ (°) 83.401 (2), 88.788 (3), 81.078 (3)
V3) 1620.82 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.65
Crystal size (mm) 0.09 × 0.06 × 0.05
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.299, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41260, 5928, 5305
Rint 0.045
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.06
No. of reflections 5928
No. of parameters 424
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.18, −0.51
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Derivatives of the compound [M(terpy)2](X) (M = transition metal; terpy = 2,2':6',2''-terpyridine; X = anion) have been known since the 1970's (Harris & Lockyer, 1970). Transition metal–terpyridine complexes have been known to exhibit inter­esting properties such as their photophysical and spin-state properties (Pal et al., 2014). These allow transition metal–terpyridine complexes to have useful applications in molecular electronics and as building blocks for copolymers (Katz et al., 2008; Pal et al., 2014; Schubert et al., 2001). However, it was not until recently that the incorporation of gold cyanidometallates has been introduced into these systems (Ovens et al., 2010). We report here the synthesis and crystal structure of another metal–terpyridine cyanidoaurate, [Ni(C15H11N3)2][Au(CN)2]2, (I).

Structural commentary top

The structure of compound (I) contains an Ni2+ ion coordinated by two tridentate 2,2':6',2"-terpyridine ligands. The coordination of the terpyridine ligands around the metal cation gives an approximate o­cta­hedral coordination sphere. Included in the structure are two dicyanidoaurate(I) anions that are non-coordinating to the Ni2+ cation, as shown in Fig. 1. Recently, the compound [Ni(terpy)][Au(Br)2(CN)2]2 was synthesized and analysed (Ovens et al., 2010). Its crystal structure contains a gold(III) cyanidometallate anion and a complex [Ni(terpy)]2+ cation (Ovens et al., 2010). The title compound has some similarity, given that it too contains a [Ni(terpy)]2+ cation with dicyanidoaurate(I) anions. However, the important difference between the two compounds is that there are no metal–metal inter­actions in the [Ni(terpy)][Au(Br)2(CN)2]2 structure containing the d8 Au(III) ion, whereas the [Ni(terpy)2][Au(CN)2]2 structure contains a d10 gold(I) dicyanidoaurate(I) anion that has a strong propensity to form aurophilic inter­actions. This makes the title compound of inter­est because it contains short aurophilic inter­actions, contained within dimeric [Au(CN)2]2 moieties, with Au···Au distances of 3.1017 (3) Å (Fig. 1).

Supra­molecular features top

A packing diagram of the title compound is illustrated in Fig. 2. There are not any classical hydrogen bonds within the structure of the title compound. However, the cation and anion are stabilized by relatively weak non-classical hydrogen-bonding inter­actions from H atoms on the terpyridine rings and terminal N atoms on the cyanidometallate. There are six such inter­actions ranging from 3.235 (7) to 3.421 (7) Å, if using a D···A distance of 3.5 Å as the upper defined limit. Details of the inter­actions can be found in Table 1. The other type of non-classical inter­molecular inter­actions that exists in the structure is the one aurophilic inter­action discussed in the Structural commentary above. There are not any ππ stacking inter­actions in the structure.

Synthesis and crystallization top

Ethanol solutions of 0.1 M Ni(NO3)2 (1 ml) and 0.1 M 2,2':6'.2"-terpyridine (1 ml) were mixed together. Following the mixture of these two compounds, 2 ml of 0.05 M KAu(CN)2 (50:50 ethanol/water v/v) was added dropwise. A precipitate formed and the suspension was mixed thoroughly and centrifuged. The brownish-red solution was decanted from the solid precipitate and placed in a test tube to allow for slow evaporation. After approximately one week, the formation of brownish-red crystals had begun. The grown single crystals were then gathered and isolated.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and allowed to ride on their parent atoms during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å.

Related literature top

For related literature, see: Harris & Lockyer (1970); Katz et al. (2008); Ovens et al. (2010); Pal et al. (2014); Schubert et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.

An illustration of the packing of the molecular entities of (I).
Bis(2,2':6',2''-terpyridine-κ3N,N',N'')nickel(II) dicyanidoaurate(I) top
Crystal data top
[Ni(C15H11N3)2][Au(CN)2]2Z = 2
Mr = 1023.26F(000) = 964
Triclinic, P1Dx = 2.097 Mg m3
a = 8.8374 (3) ÅMo Kα radiation, λ = 0.7107 Å
b = 12.6707 (4) ÅCell parameters from 15517 reflections
c = 14.7497 (4) Åθ = 2.6–28.0°
α = 83.401 (2)°µ = 9.65 mm1
β = 88.788 (3)°T = 180 K
γ = 81.078 (3)°Irregular, red
V = 1620.82 (9) Å30.09 × 0.06 × 0.05 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
5928 independent reflections
Radiation source: Enhance (Mo) X-ray Source5305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.0514 pixels mm-1θmax = 25.4°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1515
Tmin = 0.299, Tmax = 1.000l = 1717
41260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.8409P]
where P = (Fo2 + 2Fc2)/3
5928 reflections(Δ/σ)max = 0.001
424 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(C15H11N3)2][Au(CN)2]2γ = 81.078 (3)°
Mr = 1023.26V = 1620.82 (9) Å3
Triclinic, P1Z = 2
a = 8.8374 (3) ÅMo Kα radiation
b = 12.6707 (4) ŵ = 9.65 mm1
c = 14.7497 (4) ÅT = 180 K
α = 83.401 (2)°0.09 × 0.06 × 0.05 mm
β = 88.788 (3)°
Data collection top
Agilent Xcalibur Eos
diffractometer
5928 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
5305 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 1.000Rint = 0.045
41260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.06Δρmax = 1.18 e Å3
5928 reflectionsΔρmin = 0.51 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.39267 (2)0.878031 (15)0.259898 (14)0.05010 (8)
Au20.37167 (2)0.656248 (15)0.195383 (13)0.04589 (7)
Ni10.03978 (6)0.30283 (4)0.27059 (4)0.03278 (13)
N40.1366 (4)0.2245 (3)0.3954 (2)0.0343 (8)
N50.0613 (4)0.4262 (3)0.3394 (2)0.0341 (8)
N60.0595 (4)0.4355 (3)0.1801 (2)0.0367 (8)
N30.2540 (4)0.2959 (3)0.2017 (2)0.0386 (8)
N20.0398 (4)0.1761 (3)0.2020 (2)0.0371 (8)
N10.1736 (4)0.2555 (3)0.3086 (3)0.0407 (9)
C210.1440 (5)0.4070 (4)0.4172 (3)0.0355 (9)
C200.1790 (5)0.2913 (3)0.4515 (3)0.0343 (9)
C260.0609 (5)0.5321 (4)0.2110 (3)0.0385 (10)
C160.1583 (5)0.1185 (4)0.4230 (3)0.0412 (10)
H160.12770.07220.38470.049*
C190.2464 (5)0.2534 (4)0.5352 (3)0.0428 (11)
H190.27490.30080.57310.051*
C220.1874 (6)0.4908 (4)0.4572 (3)0.0430 (11)
H220.24520.47730.51040.052*
C300.1275 (5)0.4324 (4)0.1000 (3)0.0458 (11)
H300.12530.36650.07770.055*
C50.1995 (5)0.1651 (4)0.2730 (3)0.0436 (11)
C110.2842 (5)0.2140 (4)0.1487 (3)0.0405 (10)
C240.0583 (6)0.6150 (4)0.3379 (3)0.0446 (11)
H240.02720.68490.31100.054*
C230.1440 (6)0.5948 (4)0.4175 (3)0.0452 (11)
H230.17230.65170.44420.054*
C150.3549 (5)0.3636 (4)0.2029 (3)0.0437 (11)
H150.33340.42020.23840.052*
C250.0205 (5)0.5273 (3)0.2995 (3)0.0367 (10)
C10.2761 (6)0.3004 (4)0.3657 (3)0.0491 (12)
H10.25870.36250.38920.059*
C100.1623 (6)0.1451 (4)0.1495 (3)0.0407 (11)
C180.2705 (6)0.1439 (4)0.5616 (3)0.0503 (12)
H180.31800.11670.61690.060*
C60.0791 (6)0.1213 (4)0.2111 (3)0.0434 (11)
C170.2241 (6)0.0754 (4)0.5057 (3)0.0480 (12)
H170.23680.00170.52330.058*
C270.1337 (6)0.6270 (4)0.1636 (4)0.0503 (12)
H270.13350.69240.18630.060*
C90.1660 (7)0.0561 (4)0.1017 (4)0.0540 (14)
H90.24830.03540.06400.065*
C140.4912 (6)0.3535 (5)0.1532 (4)0.0527 (13)
H140.55920.40230.15500.063*
C40.3309 (6)0.1213 (4)0.2956 (4)0.0551 (14)
H40.34970.06060.27040.066*
C120.4186 (6)0.1984 (5)0.0993 (3)0.0509 (13)
H120.43940.14070.06490.061*
C130.5218 (6)0.2694 (5)0.1016 (4)0.0576 (15)
H130.61230.26020.06800.069*
C70.0793 (7)0.0300 (4)0.1661 (4)0.0546 (14)
H70.16070.00880.17280.066*
C30.4349 (6)0.1692 (6)0.3568 (4)0.0683 (18)
H30.52290.13970.37340.082*
C320.5489 (7)0.8954 (4)0.1631 (4)0.0557 (14)
C80.0441 (8)0.0008 (4)0.1118 (4)0.0609 (16)
H80.04570.06110.08120.073*
C20.4084 (6)0.2576 (6)0.3916 (4)0.0638 (16)
H20.47730.28990.43240.077*
C310.2372 (8)0.8628 (4)0.3579 (4)0.0621 (15)
N80.6378 (7)0.9036 (5)0.1061 (4)0.0765 (16)
C290.2014 (6)0.5252 (5)0.0493 (4)0.0579 (14)
H290.24690.52130.00620.070*
C280.2056 (7)0.6228 (5)0.0831 (4)0.0615 (15)
H280.25700.68530.05140.074*
N70.1488 (8)0.8529 (4)0.4154 (4)0.0830 (18)
N90.1436 (6)0.7521 (4)0.0368 (3)0.0576 (11)
C330.2250 (6)0.7165 (4)0.0954 (4)0.0477 (12)
N100.6060 (7)0.5566 (4)0.3494 (4)0.0765 (16)
C340.5206 (7)0.5917 (4)0.2936 (4)0.0536 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.05730 (14)0.03953 (12)0.05524 (14)0.00962 (9)0.00594 (10)0.00889 (9)
Au20.05153 (13)0.04074 (12)0.04712 (12)0.00948 (9)0.00261 (9)0.00856 (8)
Ni10.0342 (3)0.0307 (3)0.0338 (3)0.0050 (2)0.0024 (2)0.0048 (2)
N40.0348 (19)0.0319 (19)0.0361 (19)0.0043 (15)0.0009 (15)0.0048 (15)
N50.0363 (19)0.0318 (19)0.0347 (19)0.0057 (15)0.0012 (15)0.0052 (15)
N60.0339 (19)0.040 (2)0.0350 (19)0.0041 (16)0.0002 (15)0.0017 (16)
N30.039 (2)0.040 (2)0.035 (2)0.0022 (17)0.0027 (16)0.0018 (16)
N20.042 (2)0.0314 (19)0.038 (2)0.0051 (16)0.0059 (17)0.0048 (16)
N10.037 (2)0.043 (2)0.041 (2)0.0082 (17)0.0077 (17)0.0007 (17)
C210.033 (2)0.034 (2)0.039 (2)0.0037 (18)0.0030 (18)0.0053 (18)
C200.033 (2)0.035 (2)0.034 (2)0.0026 (18)0.0008 (18)0.0054 (18)
C260.038 (2)0.034 (2)0.042 (2)0.0034 (19)0.0026 (19)0.0027 (19)
C160.046 (3)0.034 (2)0.044 (3)0.007 (2)0.003 (2)0.0037 (19)
C190.046 (3)0.043 (3)0.040 (3)0.007 (2)0.006 (2)0.005 (2)
C220.051 (3)0.043 (3)0.037 (2)0.010 (2)0.000 (2)0.009 (2)
C300.042 (3)0.057 (3)0.038 (3)0.008 (2)0.005 (2)0.001 (2)
C50.043 (3)0.044 (3)0.043 (3)0.012 (2)0.011 (2)0.010 (2)
C110.041 (2)0.044 (3)0.033 (2)0.005 (2)0.0050 (19)0.0035 (19)
C240.055 (3)0.030 (2)0.047 (3)0.003 (2)0.005 (2)0.003 (2)
C230.058 (3)0.037 (3)0.044 (3)0.013 (2)0.001 (2)0.010 (2)
C150.042 (3)0.041 (3)0.047 (3)0.005 (2)0.002 (2)0.001 (2)
C250.035 (2)0.031 (2)0.042 (2)0.0004 (18)0.0039 (19)0.0009 (18)
C10.044 (3)0.057 (3)0.043 (3)0.000 (2)0.003 (2)0.002 (2)
C100.049 (3)0.038 (2)0.033 (2)0.005 (2)0.010 (2)0.0073 (19)
C180.057 (3)0.049 (3)0.042 (3)0.006 (2)0.009 (2)0.004 (2)
C60.051 (3)0.037 (2)0.043 (3)0.011 (2)0.016 (2)0.000 (2)
C170.054 (3)0.036 (2)0.051 (3)0.005 (2)0.007 (2)0.004 (2)
C270.053 (3)0.039 (3)0.054 (3)0.002 (2)0.003 (2)0.008 (2)
C90.066 (3)0.050 (3)0.044 (3)0.010 (3)0.012 (2)0.016 (2)
C140.038 (3)0.061 (3)0.056 (3)0.006 (2)0.002 (2)0.005 (3)
C40.053 (3)0.050 (3)0.062 (3)0.020 (3)0.020 (3)0.017 (3)
C120.049 (3)0.063 (3)0.035 (3)0.007 (3)0.001 (2)0.004 (2)
C130.038 (3)0.082 (4)0.045 (3)0.001 (3)0.004 (2)0.009 (3)
C70.067 (4)0.041 (3)0.059 (3)0.015 (3)0.023 (3)0.006 (2)
C30.040 (3)0.089 (5)0.070 (4)0.022 (3)0.009 (3)0.032 (4)
C320.062 (4)0.049 (3)0.061 (4)0.016 (3)0.008 (3)0.013 (3)
C80.083 (4)0.041 (3)0.059 (3)0.002 (3)0.025 (3)0.015 (3)
C20.039 (3)0.086 (5)0.060 (4)0.004 (3)0.002 (3)0.008 (3)
C310.083 (4)0.032 (3)0.072 (4)0.003 (3)0.005 (3)0.016 (3)
N80.079 (4)0.088 (4)0.074 (4)0.040 (3)0.007 (3)0.024 (3)
C290.053 (3)0.074 (4)0.044 (3)0.009 (3)0.011 (2)0.007 (3)
C280.058 (3)0.061 (4)0.057 (3)0.001 (3)0.012 (3)0.017 (3)
N70.111 (5)0.046 (3)0.095 (4)0.017 (3)0.032 (4)0.019 (3)
N90.059 (3)0.058 (3)0.056 (3)0.000 (2)0.007 (2)0.017 (2)
C330.048 (3)0.048 (3)0.049 (3)0.009 (2)0.003 (2)0.013 (2)
N100.095 (4)0.061 (3)0.073 (4)0.008 (3)0.031 (3)0.006 (3)
C340.063 (3)0.043 (3)0.056 (3)0.010 (3)0.013 (3)0.008 (2)
Geometric parameters (Å, º) top
Au1—Au23.1017 (3)C11—C121.381 (7)
Au1—C321.983 (7)C24—H240.9300
Au1—C311.987 (7)C24—C231.388 (7)
Au2—C331.989 (5)C24—C251.391 (7)
Au2—C341.994 (5)C23—H230.9300
Ni1—N42.119 (4)C15—H150.9300
Ni1—N51.994 (4)C15—C141.393 (7)
Ni1—N62.110 (4)C1—H10.9300
Ni1—N32.124 (4)C1—C21.392 (8)
Ni1—N21.993 (4)C10—C91.393 (7)
Ni1—N12.112 (4)C18—H180.9300
N4—C201.346 (5)C18—C171.375 (7)
N4—C161.344 (6)C6—C71.399 (7)
N5—C211.351 (6)C17—H170.9300
N5—C251.346 (5)C27—H270.9300
N6—C261.353 (6)C27—C281.368 (8)
N6—C301.344 (6)C9—H90.9300
N3—C111.361 (6)C9—C81.382 (8)
N3—C151.331 (6)C14—H140.9300
N2—C101.352 (6)C14—C131.370 (8)
N2—C61.343 (6)C4—H40.9300
N1—C51.365 (6)C4—C31.395 (9)
N1—C11.331 (6)C12—H120.9300
C21—C201.481 (6)C12—C131.381 (8)
C21—C221.379 (6)C13—H130.9300
C20—C191.385 (6)C7—H70.9300
C26—C251.493 (6)C7—C81.373 (9)
C26—C271.391 (6)C3—H30.9300
C16—H160.9300C3—C21.338 (9)
C16—C171.380 (7)C32—N81.146 (8)
C19—H190.9300C8—H80.9300
C19—C181.381 (7)C2—H20.9300
C22—H220.9300C31—N71.150 (8)
C22—C231.380 (7)C29—H290.9300
C30—H300.9300C29—C281.381 (8)
C30—C291.396 (7)C28—H280.9300
C5—C61.472 (7)N9—C331.141 (7)
C5—C41.382 (7)N10—C341.132 (7)
C11—C101.487 (7)
C32—Au1—Au287.27 (15)C23—C24—C25117.8 (4)
C32—Au1—C31179.0 (2)C25—C24—H24121.1
C31—Au1—Au293.69 (15)C22—C23—C24120.5 (4)
C33—Au2—Au194.33 (14)C22—C23—H23119.8
C33—Au2—C34178.2 (2)C24—C23—H23119.8
C34—Au2—Au187.35 (15)N3—C15—H15118.5
N4—Ni1—N393.99 (14)N3—C15—C14122.9 (5)
N5—Ni1—N477.69 (14)C14—C15—H15118.5
N5—Ni1—N678.00 (14)N5—C25—C26112.9 (4)
N5—Ni1—N396.88 (15)N5—C25—C24121.3 (4)
N5—Ni1—N1106.69 (15)C24—C25—C26125.7 (4)
N6—Ni1—N4155.47 (14)N1—C1—H1118.9
N6—Ni1—N392.12 (14)N1—C1—C2122.2 (6)
N6—Ni1—N193.45 (14)C2—C1—H1118.9
N2—Ni1—N499.88 (14)N2—C10—C11114.0 (4)
N2—Ni1—N5174.57 (15)N2—C10—C9120.2 (5)
N2—Ni1—N6104.62 (14)C9—C10—C11125.8 (5)
N2—Ni1—N378.36 (15)C19—C18—H18120.1
N2—Ni1—N178.06 (16)C17—C18—C19119.7 (4)
N1—Ni1—N490.39 (14)C17—C18—H18120.1
N1—Ni1—N3156.42 (15)N2—C6—C5113.6 (4)
C20—N4—Ni1114.3 (3)N2—C6—C7120.6 (5)
C16—N4—Ni1127.2 (3)C7—C6—C5125.8 (5)
C16—N4—C20118.5 (4)C16—C17—H17120.8
C21—N5—Ni1118.6 (3)C18—C17—C16118.5 (4)
C25—N5—Ni1119.4 (3)C18—C17—H17120.8
C25—N5—C21120.6 (4)C26—C27—H27120.4
C26—N6—Ni1114.5 (3)C28—C27—C26119.2 (5)
C30—N6—Ni1126.9 (3)C28—C27—H27120.4
C30—N6—C26118.5 (4)C10—C9—H9120.9
C11—N3—Ni1113.9 (3)C8—C9—C10118.3 (5)
C15—N3—Ni1127.4 (3)C8—C9—H9120.9
C15—N3—C11118.6 (4)C15—C14—H14121.0
C10—N2—Ni1119.1 (3)C13—C14—C15118.0 (5)
C6—N2—Ni1119.5 (3)C13—C14—H14121.0
C6—N2—C10121.4 (4)C5—C4—H4120.4
C5—N1—Ni1113.7 (3)C5—C4—C3119.1 (6)
C1—N1—Ni1127.0 (4)C3—C4—H4120.4
C1—N1—C5119.2 (4)C11—C12—H12120.4
N5—C21—C20113.3 (4)C11—C12—C13119.2 (5)
N5—C21—C22120.5 (4)C13—C12—H12120.4
C22—C21—C20126.2 (4)C14—C13—C12120.1 (5)
N4—C20—C21114.7 (4)C14—C13—H13120.0
N4—C20—C19121.8 (4)C12—C13—H13120.0
C19—C20—C21123.5 (4)C6—C7—H7120.9
N6—C26—C25114.4 (4)C8—C7—C6118.2 (5)
N6—C26—C27121.9 (4)C8—C7—H7120.9
C27—C26—C25123.7 (4)C4—C3—H3119.9
N4—C16—H16118.7C2—C3—C4120.1 (5)
N4—C16—C17122.6 (4)C2—C3—H3119.9
C17—C16—H16118.7N8—C32—Au1178.4 (5)
C20—C19—H19120.6C9—C8—H8119.3
C18—C19—C20118.8 (4)C7—C8—C9121.4 (5)
C18—C19—H19120.6C7—C8—H8119.3
C21—C22—H22120.4C1—C2—H2120.5
C21—C22—C23119.3 (4)C3—C2—C1119.0 (6)
C23—C22—H22120.4C3—C2—H2120.5
N6—C30—H30119.0N7—C31—Au1179.0 (6)
N6—C30—C29122.0 (5)C30—C29—H29120.6
C29—C30—H30119.0C28—C29—C30118.8 (5)
N1—C5—C6115.0 (4)C28—C29—H29120.6
N1—C5—C4120.3 (5)C27—C28—C29119.6 (5)
C4—C5—C6124.7 (5)C27—C28—H28120.2
N3—C11—C10114.6 (4)C29—C28—H28120.2
N3—C11—C12121.2 (5)N9—C33—Au2178.4 (5)
C12—C11—C10124.2 (5)N10—C34—Au2178.9 (5)
C23—C24—H24121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10i0.932.573.235 (7)129
C7—H7···N8ii0.932.513.356 (9)151
C8—H8···N9iii0.932.543.421 (7)157
C22—H22···N10iv0.932.433.364 (8)179
C23—H23···N70.932.513.274 (7)139
C30—H30···N9v0.932.413.280 (7)156
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N10i0.932.573.235 (7)129
C7—H7···N8ii0.932.513.356 (9)151
C8—H8···N9iii0.932.543.421 (7)157
C22—H22···N10iv0.932.433.364 (8)179
C23—H23···N70.932.513.274 (7)139
C30—H30···N9v0.932.413.280 (7)156
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C15H11N3)2][Au(CN)2]2
Mr1023.26
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)8.8374 (3), 12.6707 (4), 14.7497 (4)
α, β, γ (°)83.401 (2), 88.788 (3), 81.078 (3)
V3)1620.82 (9)
Z2
Radiation typeMo Kα
µ (mm1)9.65
Crystal size (mm)0.09 × 0.06 × 0.05
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.299, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41260, 5928, 5305
Rint0.045
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.06
No. of reflections5928
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.51

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors acknowledge the National Science Foundation for their generous support (NSF–CAREER grant to RES, CHE-0846680).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarris, C. M. & Lockyer, T. N. (1970). Aust. J. Chem. 23, 1703–1706.  CrossRef CAS Google Scholar
First citationKatz, M. J., Ramnial, T., Yu, H.-Z. & Leznoff, D. B. (2008). J. Am. Chem. Soc. 130, 10662–10673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOvens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609–9616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPal, A. K., Laramée-Milette, B. & Hanan, G. S. (2014). Inorg. Chim. Acta, 418, 15–22.  Web of Science CrossRef CAS Google Scholar
First citationSchubert, U. S., Eschbaumer, C., Andres, P., Hofmeier, H., Weidl, C. H., Herdtweck, E., Dulkeith, E., Morteani, A., Hecker, N. E. & Feldmann, J. (2001). Synth. Met. 121, 1249–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds