metal-organic compounds
κ2S,S′)nickelate(II)
of bis[1-(4-bromobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato-aHubei Key Laboratory for Processing and Application of, Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: tzf7801@163.com
The 12H11BrN)2[Ni(C4N2S2)2], consists of one 1-(4-bromobenzyl)pyridinium cation and one half of a complex [Ni(mnt)2]2− (mnt2− is the maleonitriledithiolate dianion). The Ni2+ ion is located on an inversion centre and is coordinated by four S atoms from two mnt2− ligands, exhibiting a square-planar coordination environment. In the cation, the planes of the pyridinium and benzene rings make a dihedral angle of 69.86 (19)°. The cations and anions are alternately arranged in layers parallel to (001) and are held together by non-classical C—H⋯N hydrogen bonds.
of the title salt, (CKeywords: crystal structure; 1-(4-bromobenzyl)pyridinium cation; maleonitriledithiolate dianion; square-planar bis-1,2-dithiolate complex; Ni2+ ion; hydrogen bonding.
CCDC reference: 1032163
1. Related literature
For general background to square-planar bis-1,2-dithiolate complexes of transition metals showing potential application as magnetic materials and conductors besides others, see: Duan et al. (2010); Pei et al. (2011); Ren et al. (2002). For the structure of a closely related compound, see: Zhang et al. (2011). For synthetic aspects, see: Davison & Holm (1967).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1032163
10.1107/S1600536814024222/wm5078sup1.cif
contains datablocks I, 111. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024222/wm5078Isup2.hkl
Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) and heated to boiling for about 20 min. The resuting red solution was filtered and to the filtrate was added dropwise to an aqueous solution of 1-(4'-bromobenzyl)pyridinium chloride (711.5 mg, 2.5 mmol). The dark red precipitate was filtered off, washed with water three times and dried in vacuum. The crude product was recrystallized from acetone to give red crystals (yield: 76%) with a block-like form.
The H atoms were placed on idealized positions (C—H = 0.93 Å for aromatic and 0.97 Å for methylene H atoms) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).The molecular components of the title structure. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) = 1 - x, 1 - y, -z).] Packing diagram of the title structure viewed along [100]. The origin is at the upper right corner of the |
(C12H11BrN)2[Ni(C4N2S2)2] | F(000) = 836 |
Mr = 837.29 | Dx = 1.613 Mg m−3 |
Monoclinic, P21/n | Melting point: 473 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.783 (2) Å | Cell parameters from 14683 reflections |
b = 11.962 (3) Å | θ = 2.2–25.0° |
c = 14.858 (3) Å | µ = 3.16 mm−1 |
β = 97.385 (7)° | T = 296 K |
V = 1724.3 (6) Å3 | Block, red |
Z = 2 | 0.20 × 0.15 × 0.15 mm |
Bruker SMART CCD diffractometer | 3040 independent reflections |
Radiation source: fine-focus sealed tube | 2204 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→11 |
Tmin = 0.571, Tmax = 0.649 | k = −14→14 |
14683 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2393P] where P = (Fo2 + 2Fc2)/3 |
3040 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.91 e Å−3 |
(C12H11BrN)2[Ni(C4N2S2)2] | V = 1724.3 (6) Å3 |
Mr = 837.29 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.783 (2) Å | µ = 3.16 mm−1 |
b = 11.962 (3) Å | T = 296 K |
c = 14.858 (3) Å | 0.20 × 0.15 × 0.15 mm |
β = 97.385 (7)° |
Bruker SMART CCD diffractometer | 3040 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2204 reflections with I > 2σ(I) |
Tmin = 0.571, Tmax = 0.649 | Rint = 0.061 |
14683 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
3040 reflections | Δρmin = −0.91 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.0000 | 0.03497 (19) | |
Br1 | −0.05497 (5) | 0.44064 (4) | 0.19128 (4) | 0.0857 (2) | |
S1 | 0.68740 (9) | 0.59888 (8) | 0.02861 (6) | 0.0445 (3) | |
S2 | 0.37034 (9) | 0.64490 (8) | 0.01000 (7) | 0.0479 (3) | |
C3 | 0.4306 (4) | 0.8595 (3) | 0.0544 (3) | 0.0472 (9) | |
N2 | 0.3771 (4) | 0.9425 (3) | 0.0661 (3) | 0.0651 (10) | |
C8 | 0.1115 (3) | 0.8032 (3) | 0.2369 (3) | 0.0438 (9) | |
C1 | 0.6257 (3) | 0.7321 (3) | 0.0478 (2) | 0.0398 (8) | |
N3 | 0.0716 (3) | 1.0079 (2) | 0.2122 (2) | 0.0426 (7) | |
C11 | 0.1688 (4) | 0.9204 (3) | 0.2526 (3) | 0.0532 (10) | |
H11A | 0.1894 | 0.9335 | 0.3173 | 0.064* | |
H11B | 0.2544 | 0.9263 | 0.2264 | 0.064* | |
C9 | 0.0500 (4) | 0.7490 (3) | 0.3036 (3) | 0.0563 (11) | |
H9 | 0.0417 | 0.7855 | 0.3579 | 0.068* | |
C5 | 0.0120 (4) | 0.5898 (3) | 0.2097 (3) | 0.0537 (11) | |
C10 | 0.0009 (4) | 0.6417 (4) | 0.2903 (3) | 0.0620 (11) | |
H10 | −0.0392 | 0.6051 | 0.3355 | 0.074* | |
C2 | 0.4878 (3) | 0.7516 (3) | 0.0400 (2) | 0.0401 (8) | |
C14 | −0.1102 (5) | 1.1646 (3) | 0.1387 (3) | 0.0698 (13) | |
H14 | −0.1726 | 1.2181 | 0.1132 | 0.084* | |
C4 | 0.7257 (4) | 0.8173 (3) | 0.0722 (3) | 0.0501 (9) | |
C15 | 0.0006 (5) | 1.1360 (4) | 0.0964 (3) | 0.0710 (13) | |
H15 | 0.0142 | 1.1702 | 0.0420 | 0.085* | |
C16 | 0.0911 (4) | 1.0574 (3) | 0.1337 (3) | 0.0586 (11) | |
H16 | 0.1666 | 1.0380 | 0.1049 | 0.070* | |
C12 | −0.0375 (4) | 1.0353 (3) | 0.2544 (3) | 0.0546 (10) | |
H12 | −0.0503 | 0.9998 | 0.3084 | 0.066* | |
C6 | 0.0723 (4) | 0.6405 (3) | 0.1425 (3) | 0.0622 (11) | |
H6 | 0.0794 | 0.6036 | 0.0881 | 0.075* | |
N1 | 0.8110 (4) | 0.8818 (3) | 0.0910 (3) | 0.0770 (11) | |
C13 | −0.1290 (4) | 1.1141 (4) | 0.2192 (3) | 0.0632 (12) | |
H13 | −0.2034 | 1.1335 | 0.2491 | 0.076* | |
C7 | 0.1227 (4) | 0.7476 (3) | 0.1569 (3) | 0.0566 (11) | |
H7 | 0.1649 | 0.7828 | 0.1120 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0332 (3) | 0.0344 (4) | 0.0365 (4) | 0.0045 (3) | 0.0013 (3) | −0.0016 (3) |
Br1 | 0.0699 (4) | 0.0431 (3) | 0.1335 (5) | −0.0074 (2) | −0.0270 (3) | −0.0002 (3) |
S1 | 0.0350 (5) | 0.0405 (5) | 0.0563 (6) | 0.0044 (4) | −0.0003 (4) | −0.0029 (5) |
S2 | 0.0349 (5) | 0.0382 (5) | 0.0699 (7) | 0.0047 (4) | 0.0047 (5) | −0.0076 (5) |
C3 | 0.040 (2) | 0.044 (2) | 0.057 (2) | −0.0019 (18) | 0.0059 (18) | −0.004 (2) |
N2 | 0.063 (2) | 0.048 (2) | 0.086 (3) | 0.0080 (18) | 0.013 (2) | −0.010 (2) |
C8 | 0.037 (2) | 0.040 (2) | 0.052 (2) | 0.0020 (16) | −0.0039 (17) | 0.000 (2) |
C1 | 0.041 (2) | 0.038 (2) | 0.039 (2) | −0.0011 (16) | 0.0011 (16) | −0.0029 (16) |
N3 | 0.0439 (18) | 0.0342 (17) | 0.0487 (18) | −0.0015 (14) | 0.0017 (14) | −0.0087 (16) |
C11 | 0.048 (2) | 0.047 (2) | 0.061 (3) | −0.0023 (18) | −0.0080 (19) | −0.002 (2) |
C9 | 0.069 (3) | 0.049 (3) | 0.048 (2) | −0.002 (2) | −0.001 (2) | −0.002 (2) |
C5 | 0.038 (2) | 0.039 (2) | 0.079 (3) | 0.0039 (17) | −0.014 (2) | 0.005 (2) |
C10 | 0.069 (3) | 0.053 (3) | 0.063 (3) | −0.004 (2) | 0.005 (2) | 0.014 (2) |
C2 | 0.043 (2) | 0.038 (2) | 0.0396 (19) | 0.0048 (16) | 0.0044 (15) | −0.0023 (17) |
C14 | 0.071 (3) | 0.039 (2) | 0.092 (4) | 0.010 (2) | −0.020 (3) | −0.003 (3) |
C4 | 0.047 (2) | 0.045 (2) | 0.056 (2) | 0.004 (2) | 0.0011 (19) | −0.005 (2) |
C15 | 0.086 (3) | 0.053 (3) | 0.075 (3) | 0.009 (3) | 0.010 (3) | 0.013 (2) |
C16 | 0.066 (3) | 0.049 (3) | 0.065 (3) | −0.003 (2) | 0.025 (2) | 0.005 (2) |
C12 | 0.054 (3) | 0.061 (3) | 0.048 (2) | −0.003 (2) | 0.005 (2) | −0.009 (2) |
C6 | 0.063 (3) | 0.055 (3) | 0.069 (3) | −0.003 (2) | 0.012 (2) | −0.017 (2) |
N1 | 0.059 (2) | 0.064 (3) | 0.103 (3) | −0.011 (2) | −0.011 (2) | −0.016 (2) |
C13 | 0.052 (3) | 0.062 (3) | 0.074 (3) | 0.009 (2) | 0.002 (2) | −0.020 (3) |
C7 | 0.056 (2) | 0.050 (3) | 0.065 (3) | −0.005 (2) | 0.016 (2) | −0.004 (2) |
Ni1—S2i | 2.1642 (9) | C9—C10 | 1.376 (5) |
Ni1—S2 | 2.1642 (9) | C9—H9 | 0.9300 |
Ni1—S1 | 2.1773 (9) | C5—C10 | 1.366 (6) |
Ni1—S1i | 2.1773 (9) | C5—C6 | 1.366 (6) |
Br1—C5 | 1.908 (4) | C10—H10 | 0.9300 |
S1—C1 | 1.740 (3) | C14—C15 | 1.366 (6) |
S2—C2 | 1.737 (3) | C14—C13 | 1.373 (6) |
C3—N2 | 1.146 (4) | C14—H14 | 0.9300 |
C3—C2 | 1.433 (5) | C4—N1 | 1.144 (5) |
C8—C7 | 1.379 (5) | C15—C16 | 1.360 (6) |
C8—C9 | 1.385 (5) | C15—H15 | 0.9300 |
C8—C11 | 1.517 (5) | C16—H16 | 0.9300 |
C1—C2 | 1.360 (5) | C12—C13 | 1.358 (6) |
C1—C4 | 1.427 (5) | C12—H12 | 0.9300 |
N3—C16 | 1.343 (5) | C6—C7 | 1.379 (5) |
N3—C12 | 1.346 (5) | C6—H6 | 0.9300 |
N3—C11 | 1.487 (4) | C13—H13 | 0.9300 |
C11—H11A | 0.9700 | C7—H7 | 0.9300 |
C11—H11B | 0.9700 | ||
S2i—Ni1—S2 | 180.00 (5) | C6—C5—Br1 | 118.9 (3) |
S2i—Ni1—S1 | 87.84 (4) | C5—C10—C9 | 119.0 (4) |
S2—Ni1—S1 | 92.16 (4) | C5—C10—H10 | 120.5 |
S2i—Ni1—S1i | 92.16 (4) | C9—C10—H10 | 120.5 |
S2—Ni1—S1i | 87.84 (4) | C1—C2—C3 | 123.0 (3) |
S1—Ni1—S1i | 180.0 | C1—C2—S2 | 120.8 (3) |
C1—S1—Ni1 | 103.21 (11) | C3—C2—S2 | 116.2 (3) |
C2—S2—Ni1 | 103.42 (12) | C15—C14—C13 | 119.6 (4) |
N2—C3—C2 | 175.7 (4) | C15—C14—H14 | 120.2 |
C7—C8—C9 | 118.7 (4) | C13—C14—H14 | 120.2 |
C7—C8—C11 | 120.7 (3) | N1—C4—C1 | 176.5 (4) |
C9—C8—C11 | 120.6 (3) | C16—C15—C14 | 119.9 (4) |
C2—C1—C4 | 122.6 (3) | C16—C15—H15 | 120.0 |
C2—C1—S1 | 120.3 (3) | C14—C15—H15 | 120.0 |
C4—C1—S1 | 117.1 (2) | N3—C16—C15 | 120.2 (4) |
C16—N3—C12 | 120.4 (3) | N3—C16—H16 | 119.9 |
C16—N3—C11 | 120.4 (3) | C15—C16—H16 | 119.9 |
C12—N3—C11 | 119.2 (3) | N3—C12—C13 | 120.9 (4) |
N3—C11—C8 | 112.6 (3) | N3—C12—H12 | 119.6 |
N3—C11—H11A | 109.1 | C13—C12—H12 | 119.6 |
C8—C11—H11A | 109.1 | C5—C6—C7 | 118.5 (4) |
N3—C11—H11B | 109.1 | C5—C6—H6 | 120.7 |
C8—C11—H11B | 109.1 | C7—C6—H6 | 120.7 |
H11A—C11—H11B | 107.8 | C12—C13—C14 | 119.0 (4) |
C10—C9—C8 | 120.7 (4) | C12—C13—H13 | 120.5 |
C10—C9—H9 | 119.7 | C14—C13—H13 | 120.5 |
C8—C9—H9 | 119.7 | C8—C7—C6 | 121.1 (4) |
C10—C5—C6 | 122.0 (4) | C8—C7—H7 | 119.4 |
C10—C5—Br1 | 119.1 (3) | C6—C7—H7 | 119.4 |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by the Educational Commission of Hubei Province of China (grant No. Q20082702).
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26. CrossRef CAS Google Scholar
Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522. Web of Science CrossRef CAS Google Scholar
Pei, W. B., Wu, J. S., Tian, Z. F., Ren, X. M. & Song, Y. (2011). Inorg. Chem. 50, 3970–3980. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H., Pei, W.-B., Yu, S.-S. & Ren, X.-M. (2011). Acta Cryst. E67, m943. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.