metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m395-m396

Crystal structure of bis­­[1-(4-bromo­benz­yl)pyridinium] bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)nickelate(II)

aHubei Key Laboratory for Processing and Application of, Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: tzf7801@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 October 2014; accepted 3 November 2014; online 12 November 2014)

The asymmetric unit of the title salt, (C12H11BrN)2[Ni(C4N2S2)2], consists of one 1-(4-bromo­benz­yl)pyridinium cation and one half of a complex [Ni(mnt)2]2− (mnt2− is the maleo­nitrile­dithiol­ate dianion). The Ni2+ ion is located on an inversion centre and is coordinated by four S atoms from two mnt2− ligands, exhibiting a square-planar coordination environment. In the cation, the planes of the pyridinium and benzene rings make a dihedral angle of 69.86 (19)°. The cations and anions are alternately arranged in layers parallel to (001) and are held together by non-classical C—H⋯N hydrogen bonds.

1. Related literature

For general background to square-planar bis-1,2-di­thiol­ate complexes of transition metals showing potential application as magnetic materials and conductors besides others, see: Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]); Pei et al. (2011[Pei, W. B., Wu, J. S., Tian, Z. F., Ren, X. M. & Song, Y. (2011). Inorg. Chem. 50, 3970-3980.]); Ren et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931-5933.]). For the structure of a closely related compound, see: Zhang et al. (2011[Zhang, H., Pei, W.-B., Yu, S.-S. & Ren, X.-M. (2011). Acta Cryst. E67, m943.]). For synthetic aspects, see: Davison & Holm (1967[Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C12H11BrN)2[Ni(C4N2S2)2]

  • Mr = 837.29

  • Monoclinic, P 21 /n

  • a = 9.783 (2) Å

  • b = 11.962 (3) Å

  • c = 14.858 (3) Å

  • β = 97.385 (7)°

  • V = 1724.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.571, Tmax = 0.649

  • 14683 measured reflections

  • 3040 independent reflections

  • 2204 reflections with I > 2σ(I)

  • Rint = 0.061

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.03

  • 3040 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯N2 0.93 2.49 3.384 (6) 162

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For general background to square-planar bis-1,2-dithiolate complexes of transition metals showing potential application as magnetic materials and conductors besides others, see: Duan et al. (2010); Pei et al. (2011); Ren et al. (2002). For the structure of a closely related compound, see: Zhang et al. (2011). For synthetic aspects, see: Davison & Holm (1967).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) and heated to boiling for about 20 min. The resuting red solution was filtered and to the filtrate was added dropwise to an aqueous solution of 1-(4'-bromobenzyl)pyridinium chloride (711.5 mg, 2.5 mmol). The dark red precipitate was filtered off, washed with water three times and dried in vacuum. The crude product was recrystallized from acetone to give red crystals (yield: 76%) with a block-like form.

Refinement top

The H atoms were placed on idealized positions (C—H = 0.93 Å for aromatic and 0.97 Å for methylene H atoms) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular components of the title structure. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) = 1 - x, 1 - y, -z).]

Packing diagram of the title structure viewed along [100]. The origin is at the upper right corner of the unit cell.
Bis[1-(4-bromobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C12H11BrN)2[Ni(C4N2S2)2]F(000) = 836
Mr = 837.29Dx = 1.613 Mg m3
Monoclinic, P21/nMelting point: 473 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.783 (2) ÅCell parameters from 14683 reflections
b = 11.962 (3) Åθ = 2.2–25.0°
c = 14.858 (3) ŵ = 3.16 mm1
β = 97.385 (7)°T = 296 K
V = 1724.3 (6) Å3Block, red
Z = 20.20 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
3040 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.571, Tmax = 0.649k = 1414
14683 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2393P]
where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
(C12H11BrN)2[Ni(C4N2S2)2]V = 1724.3 (6) Å3
Mr = 837.29Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.783 (2) ŵ = 3.16 mm1
b = 11.962 (3) ÅT = 296 K
c = 14.858 (3) Å0.20 × 0.15 × 0.15 mm
β = 97.385 (7)°
Data collection top
Bruker SMART CCD
diffractometer
3040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2204 reflections with I > 2σ(I)
Tmin = 0.571, Tmax = 0.649Rint = 0.061
14683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
3040 reflectionsΔρmin = 0.91 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.03497 (19)
Br10.05497 (5)0.44064 (4)0.19128 (4)0.0857 (2)
S10.68740 (9)0.59888 (8)0.02861 (6)0.0445 (3)
S20.37034 (9)0.64490 (8)0.01000 (7)0.0479 (3)
C30.4306 (4)0.8595 (3)0.0544 (3)0.0472 (9)
N20.3771 (4)0.9425 (3)0.0661 (3)0.0651 (10)
C80.1115 (3)0.8032 (3)0.2369 (3)0.0438 (9)
C10.6257 (3)0.7321 (3)0.0478 (2)0.0398 (8)
N30.0716 (3)1.0079 (2)0.2122 (2)0.0426 (7)
C110.1688 (4)0.9204 (3)0.2526 (3)0.0532 (10)
H11A0.18940.93350.31730.064*
H11B0.25440.92630.22640.064*
C90.0500 (4)0.7490 (3)0.3036 (3)0.0563 (11)
H90.04170.78550.35790.068*
C50.0120 (4)0.5898 (3)0.2097 (3)0.0537 (11)
C100.0009 (4)0.6417 (4)0.2903 (3)0.0620 (11)
H100.03920.60510.33550.074*
C20.4878 (3)0.7516 (3)0.0400 (2)0.0401 (8)
C140.1102 (5)1.1646 (3)0.1387 (3)0.0698 (13)
H140.17261.21810.11320.084*
C40.7257 (4)0.8173 (3)0.0722 (3)0.0501 (9)
C150.0006 (5)1.1360 (4)0.0964 (3)0.0710 (13)
H150.01421.17020.04200.085*
C160.0911 (4)1.0574 (3)0.1337 (3)0.0586 (11)
H160.16661.03800.10490.070*
C120.0375 (4)1.0353 (3)0.2544 (3)0.0546 (10)
H120.05030.99980.30840.066*
C60.0723 (4)0.6405 (3)0.1425 (3)0.0622 (11)
H60.07940.60360.08810.075*
N10.8110 (4)0.8818 (3)0.0910 (3)0.0770 (11)
C130.1290 (4)1.1141 (4)0.2192 (3)0.0632 (12)
H130.20341.13350.24910.076*
C70.1227 (4)0.7476 (3)0.1569 (3)0.0566 (11)
H70.16490.78280.11200.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0332 (3)0.0344 (4)0.0365 (4)0.0045 (3)0.0013 (3)0.0016 (3)
Br10.0699 (4)0.0431 (3)0.1335 (5)0.0074 (2)0.0270 (3)0.0002 (3)
S10.0350 (5)0.0405 (5)0.0563 (6)0.0044 (4)0.0003 (4)0.0029 (5)
S20.0349 (5)0.0382 (5)0.0699 (7)0.0047 (4)0.0047 (5)0.0076 (5)
C30.040 (2)0.044 (2)0.057 (2)0.0019 (18)0.0059 (18)0.004 (2)
N20.063 (2)0.048 (2)0.086 (3)0.0080 (18)0.013 (2)0.010 (2)
C80.037 (2)0.040 (2)0.052 (2)0.0020 (16)0.0039 (17)0.000 (2)
C10.041 (2)0.038 (2)0.039 (2)0.0011 (16)0.0011 (16)0.0029 (16)
N30.0439 (18)0.0342 (17)0.0487 (18)0.0015 (14)0.0017 (14)0.0087 (16)
C110.048 (2)0.047 (2)0.061 (3)0.0023 (18)0.0080 (19)0.002 (2)
C90.069 (3)0.049 (3)0.048 (2)0.002 (2)0.001 (2)0.002 (2)
C50.038 (2)0.039 (2)0.079 (3)0.0039 (17)0.014 (2)0.005 (2)
C100.069 (3)0.053 (3)0.063 (3)0.004 (2)0.005 (2)0.014 (2)
C20.043 (2)0.038 (2)0.0396 (19)0.0048 (16)0.0044 (15)0.0023 (17)
C140.071 (3)0.039 (2)0.092 (4)0.010 (2)0.020 (3)0.003 (3)
C40.047 (2)0.045 (2)0.056 (2)0.004 (2)0.0011 (19)0.005 (2)
C150.086 (3)0.053 (3)0.075 (3)0.009 (3)0.010 (3)0.013 (2)
C160.066 (3)0.049 (3)0.065 (3)0.003 (2)0.025 (2)0.005 (2)
C120.054 (3)0.061 (3)0.048 (2)0.003 (2)0.005 (2)0.009 (2)
C60.063 (3)0.055 (3)0.069 (3)0.003 (2)0.012 (2)0.017 (2)
N10.059 (2)0.064 (3)0.103 (3)0.011 (2)0.011 (2)0.016 (2)
C130.052 (3)0.062 (3)0.074 (3)0.009 (2)0.002 (2)0.020 (3)
C70.056 (2)0.050 (3)0.065 (3)0.005 (2)0.016 (2)0.004 (2)
Geometric parameters (Å, º) top
Ni1—S2i2.1642 (9)C9—C101.376 (5)
Ni1—S22.1642 (9)C9—H90.9300
Ni1—S12.1773 (9)C5—C101.366 (6)
Ni1—S1i2.1773 (9)C5—C61.366 (6)
Br1—C51.908 (4)C10—H100.9300
S1—C11.740 (3)C14—C151.366 (6)
S2—C21.737 (3)C14—C131.373 (6)
C3—N21.146 (4)C14—H140.9300
C3—C21.433 (5)C4—N11.144 (5)
C8—C71.379 (5)C15—C161.360 (6)
C8—C91.385 (5)C15—H150.9300
C8—C111.517 (5)C16—H160.9300
C1—C21.360 (5)C12—C131.358 (6)
C1—C41.427 (5)C12—H120.9300
N3—C161.343 (5)C6—C71.379 (5)
N3—C121.346 (5)C6—H60.9300
N3—C111.487 (4)C13—H130.9300
C11—H11A0.9700C7—H70.9300
C11—H11B0.9700
S2i—Ni1—S2180.00 (5)C6—C5—Br1118.9 (3)
S2i—Ni1—S187.84 (4)C5—C10—C9119.0 (4)
S2—Ni1—S192.16 (4)C5—C10—H10120.5
S2i—Ni1—S1i92.16 (4)C9—C10—H10120.5
S2—Ni1—S1i87.84 (4)C1—C2—C3123.0 (3)
S1—Ni1—S1i180.0C1—C2—S2120.8 (3)
C1—S1—Ni1103.21 (11)C3—C2—S2116.2 (3)
C2—S2—Ni1103.42 (12)C15—C14—C13119.6 (4)
N2—C3—C2175.7 (4)C15—C14—H14120.2
C7—C8—C9118.7 (4)C13—C14—H14120.2
C7—C8—C11120.7 (3)N1—C4—C1176.5 (4)
C9—C8—C11120.6 (3)C16—C15—C14119.9 (4)
C2—C1—C4122.6 (3)C16—C15—H15120.0
C2—C1—S1120.3 (3)C14—C15—H15120.0
C4—C1—S1117.1 (2)N3—C16—C15120.2 (4)
C16—N3—C12120.4 (3)N3—C16—H16119.9
C16—N3—C11120.4 (3)C15—C16—H16119.9
C12—N3—C11119.2 (3)N3—C12—C13120.9 (4)
N3—C11—C8112.6 (3)N3—C12—H12119.6
N3—C11—H11A109.1C13—C12—H12119.6
C8—C11—H11A109.1C5—C6—C7118.5 (4)
N3—C11—H11B109.1C5—C6—H6120.7
C8—C11—H11B109.1C7—C6—H6120.7
H11A—C11—H11B107.8C12—C13—C14119.0 (4)
C10—C9—C8120.7 (4)C12—C13—H13120.5
C10—C9—H9119.7C14—C13—H13120.5
C8—C9—H9119.7C8—C7—C6121.1 (4)
C10—C5—C6122.0 (4)C8—C7—H7119.4
C10—C5—Br1119.1 (3)C6—C7—H7119.4
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N20.932.493.384 (6)162
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N20.932.493.384 (6)162
 

Acknowledgements

This work was supported by the Educational Commission of Hubei Province of China (grant No. Q20082702).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26.  CrossRef CAS Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationPei, W. B., Wu, J. S., Tian, Z. F., Ren, X. M. & Song, Y. (2011). Inorg. Chem. 50, 3970–3980.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Pei, W.-B., Yu, S.-S. & Ren, X.-M. (2011). Acta Cryst. E67, m943.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m395-m396
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds