research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of Ca(ClO4)2·4H2O and Ca(ClO4)2·6H2O

aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 October 2014; accepted 7 November 2014; online 15 November 2014)

The title compounds, calcium perchlorate tetra­hydrate and calcium perchlorate hexa­hydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetra­hydrate consists of one Ca2+ cation eightfold coordinated in a square-anti­prismatic fashion by four water mol­ecules and four O atoms of four perchlorate tetra­hedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetra­hedra. The structure of the hexa­hydrate contains two different Ca2+ cations, each coordinated by six water mol­ecules and two O atoms of two perchlorate tetra­hedra, forming [Ca(H2O)6(ClO4)]2 dimers by sharing two ClO4 tetra­hedra. The dimers are arranged in sheets parallel (001) and alternate with layers of non-coordinating ClO4 tetra­hedra. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1 in each of the two structures.

1. Chemical context

Since the detection of perchlorates on Mars during the Phoenix Mission (Chevrier et al., 2009[Chevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1-6.]), inter­est in these salts, and especially their hydrates, has risen considerably (Kim et al., 2013[Kim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910-4913.]; Quinn et al., 2013[Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515-520.]; Kerr, 2013[Kerr, R. A. (2013). Science, 340, 138.]; Davila et al., 2013[Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321-325.]; Schuttlefield et al., 2011[Schuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521-17523.]; Navarro-González et al., 2010[Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1-11.]; Marion et al., 2010[Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678-685.]). To gain more knowledge about the behavior of salts and salt hydrates, it is essential to determine the corresponding phase diagrams. For calcium perchlorate, this was performed by several authors (Marion et al., 2010[Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678-685.]; Pestova et al., 2005[Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409-413.]; Dobrynina, 1984[Dobrynina, T. A. (1984). Zh. Neorg. Khim. 29, 1818-1822.]; Lilich & Djurinskii, 1956[Lilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549-1553.]; Nicholson & Felsing, 1950[Nicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469-4471.]; Willard & Smith, 1923[Willard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286-297.]) for different concentration areas with different results. The stable salt hydrate phase at room temperature in this system is calcium perchlorate tetra­hydrate. At lower temperatures, a higher hydrated phase, i.e. the hexa­hydrate, occurs as the stable phase.

2. Structural commentary

The Ca2+ cation in Ca(ClO4)·4H2O is coordinated by four water mol­ecules (O1, O2, O7, O8) and four O atoms from two pairs of symmetry-related perchlorate tetra­hedra as shown in Fig. 1[link]a. The resulting coordination polyhedron is a distorted square anti-prism (Fig. 1[link]b). The Ca—O bond lengths involving the water mol­ecules range from 2.3284 (17) to 2.4153 (16) Å and are considerably shorter than the Ca—O bond lengths involving the perchlorate O atoms [2.5417 (16) to 2.5695 (17) Å].

[Figure 1]
Figure 1
(a) The principle building block in the structure of Ca(ClO4)2·4H2O and (b) the square anti-prismatic coordination of Ca2+. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 2 − z.]

The two different Ca2+ cations in Ca(ClO4)·6H2O are each coordinated by six water mol­ecules and two perchlorate tetra­hedra (Fig. 2[link]). Again, the bond lengths between the cations and water mol­ecules [2.319 (6)–2.500 (6) Å] are shorter than those to the perchlorate groups. For the latter, one of the two distances for each of the Ca2+ cations is by 0.5 Å markedly longer than the other (∼3.07 versus ∼2.53 Å). Nevertheless, according to the bond-valence model (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), the longer bond contributes ca. 0.05 valence units to the overall bond-valence sum and hence should not be neglected. If this longer bond is considered to be relevant, again a square anti-prismatic coordination polyhedron is realised for both Ca2+ cations, however with a much greater distortion. Two perchlorate tetra­hedra in the hexa­hydrate are shared between two Ca2+ ions, leading to the formation of [Ca(H2O)6(ClO4)]2 dimers oriented in layers parallel to (001).

[Figure 2]
Figure 2
The principle building blocks in the structure of Ca(ClO4)2·6H2O. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The perchlorate tetra­hedra in the structure of Ca(ClO4)·4H2O are shared between two adjacent Ca2+ ions, forming chains extending parallel to [01[\overline{1}]] (Fig. 3[link]) whereby each Ca2+ ion is connected along the chain on one side with a pair of Cl1 perchlorate tetra­hedra, and on the opposite side with a pair of Cl2 perchlorate tetra­hedra. The chains are arranged in sheets parallel to (0[\overline{1}]1) and are linked by O—H⋯O hydrogen bonds into a three-dimensional network with similar O⋯O distances between the water mol­ecules and the perchlorate tetra­hedra (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for Ca(ClO4)2·4H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O11i 0.82 (1) 2.11 (2) 2.888 (2) 158 (3)
O1—H1A⋯O3ii 0.82 (1) 2.13 (1) 2.947 (2) 174 (3)
O2—H2A⋯O11iii 0.82 (1) 2.17 (2) 2.947 (2) 159 (3)
O2—H2B⋯O4iv 0.82 (1) 2.02 (1) 2.830 (2) 172 (3)
O7—H7B⋯O4 0.81 (1) 2.22 (2) 2.924 (2) 146 (3)
O7—H7A⋯O1iii 0.82 (1) 2.06 (1) 2.870 (2) 172 (3)
O8—H8A⋯O4v 0.82 (1) 2.33 (3) 2.986 (2) 137 (4)
O8—H8B⋯O2vi 0.82 (1) 2.14 (1) 2.950 (2) 169 (5)
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y-1, z; (v) -x+1, -y+1, -z+2; (vi) x-1, y, z.
[Figure 3]
Figure 3
Formation of sheets and inter­connection of chains via hydrogen bonds in Ca(ClO4)2·4H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.

In addition to the two coordinating perchlorate tetra­hedra in Ca(ClO4)·6H2O, two `free' perchlorate tetra­hedra are present in the crystal structure. These `free' ClO4 tetra­hedra are arranged in sheets and alternate with the [Ca(H2O)6(ClO4)]2 sheets along [001] (Fig. 4[link]). The `free' perchlorate tetra­hedra are connected to the dimers via O—H⋯O hydrogen bonds, as shown in Fig. 4[link]. The dimers are additionally connected through further O—H⋯O hydrogen bonds (Table 2[link]) into a three-dimensional network (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for Ca(ClO4)2·6H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O15 0.84 (2) 2.07 (3) 2.887 (10) 164 (8)
O1—H1B⋯O5i 0.84 (2) 2.25 (5) 2.915 (7) 136 (6)
O1—H1B⋯O16i 0.84 (2) 2.44 (5) 3.132 (10) 140 (6)
O2—H2A⋯O23ii 0.84 (2) 2.03 (2) 2.856 (9) 169 (7)
O2—H2B⋯O26iii 0.84 (2) 2.14 (3) 2.932 (8) 155 (6)
O3—H3A⋯O12iv 0.84 (2) 2.07 (2) 2.899 (8) 168 (8)
O3—H3B⋯O19iii 0.84 (2) 2.15 (3) 2.934 (8) 156 (7)
O4—H4A⋯O27 0.84 (2) 2.28 (3) 3.074 (11) 158 (8)
O4—H4B⋯O28iii 0.84 (2) 2.36 (3) 3.177 (10) 163 (8)
O5—H5A⋯O2iv 0.84 (2) 1.98 (3) 2.783 (8) 159 (7)
O5—H5B⋯O19 0.84 (2) 2.20 (5) 2.903 (9) 142 (6)
O6—H6A⋯O8v 0.84 (2) 2.18 (4) 2.925 (7) 149 (7)
O6—H6B⋯O19 0.84 (2) 2.08 (3) 2.891 (10) 162 (8)
O7—H7A⋯O23vi 0.84 (2) 2.29 (4) 3.042 (9) 149 (6)
O7—H7B⋯O24vii 0.84 (2) 2.50 (5) 3.199 (9) 141 (6)
O7—H7B⋯O27viii 0.84 (2) 2.57 (5) 3.242 (11) 138 (6)
O8—H8A⋯O10ix 0.84 (2) 2.08 (4) 2.805 (8) 145 (6)
O8—H8B⋯O15 0.84 (2) 2.07 (3) 2.879 (9) 162 (7)
O9—H9A⋯O27x 0.84 (2) 2.06 (3) 2.865 (10) 161 (7)
O9—H9B⋯O21vi 0.84 (2) 2.23 (5) 2.962 (10) 145 (7)
O10—H10A⋯O21vii 0.84 (2) 2.12 (3) 2.930 (9) 163 (7)
O10—H10B⋯O28x 0.84 (2) 2.10 (3) 2.902 (10) 162 (7)
O11—H11A⋯O9ix 0.84 (2) 2.14 (4) 2.893 (9) 150 (7)
O11—H11B⋯O15xi 0.84 (2) 2.11 (3) 2.915 (9) 161 (7)
O12—H12A⋯O26 0.84 (2) 2.35 (5) 2.995 (9) 135 (6)
O12—H12A⋯O20 0.84 (2) 2.40 (4) 3.102 (9) 142 (6)
O12—H12B⋯O24ii 0.84 (2) 2.03 (2) 2.861 (9) 171 (7)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z]; (ii) x+1, y-1, z; (iii) x, y-1, z; (iv) [x-{\script{1\over 2}}, -y, z]; (v) [x-{\script{1\over 2}}, -y+1, z]; (vi) [-x+1, -y+1, z-{\script{1\over 2}}]; (vii) [-x+1, -y+2, z-{\script{1\over 2}}]; (viii) [-x+2, -y+1, z-{\script{1\over 2}}]; (ix) [x+{\script{1\over 2}}, -y+1, z]; (x) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (xi) x, y+1, z.
[Figure 4]
Figure 4
Formation of perchlorate-bridged dimers in Ca(ClO4)2·6H2O and location of `free' perchlorate tetra­hedra in the gaps between the dimers (highlighted in dark green). Only the strongest hydrogen bonds are shown, represented by dashed lines.
[Figure 5]
Figure 5
Formation of layers parallel to (001) in Ca(ClO4)2·6H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.

4. Database survey

For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010[Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579-584.]; M = Mg); Hennings et al. (2014[Hennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510-514.]; Sr); Solovyov (2012[Solovyov, L. A. (2012). Acta Cryst. B68, 89-90.]; Mg); Johansson (1966[Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553-562.]; Hg). For crystal structures of other M(ClO4)2·6H2O phases, see: Ghosh et al. (1997[Ghosh, S., Mukherjee, M., Seal, A. & Ray, S. (1997). Acta Cryst. B53, 639-644.]; M = Ni, Zn); Ghosh & Ray (1981[Ghosh, M. & Ray, S. (1981). Z. Kristallogr. 155, 129-137.]; Fe); Johansson et al. (1978[Johansson, G. & Sandström, M. (1978). Acta Chem. Scand. 32, 109-113.]; Hg); Mani & Ramaseshan (1961[Mani, N. V. & Ramaseshan, S. (1961). Z. Kristallogr. 115, 97-109.]; Cu); Johansson & Sandström (1987[Johansson, G., Sandström, M., Maartmann-Moe, K., Maberg, O., Scheie, A. & Louër, D. (1987). Acta Chem. Scand. Ser. A, 41, 113-116.]; Cd); Gallucci & Gerkin (1989[Gallucci, J. C. & Gerkin, R. E. (1989). Acta Cryst. C45, 1279-1284.]; Cu); West (1935[West, C. D. (1935). Z. Kristallogr. 91, 480-493.]; Mg).

5. Synthesis and crystallization

Ca(ClO4)2·4H2O was crystallized from an aqueous solution of 62.96 wt% Ca(ClO4)2 at 273 K after one day and Ca(ClO4)2·6H2O from an aqueous solution of 57.55 wt% Ca(ClO4)2 at 238 K after one week. For the preparation of these aqueous solutions, Ca(ClO4)2·4H2O (Acros Organics, p.A.) was used. The Ca2+ content was analysed via complexometric titration with EDTA. The crystals remain stable in the saturated aqueous solution over at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Ca(ClO4)2·4H2O, distance restraints were applied for all water mol­ecules, with O—H and H—H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively. For Ca(ClO4)2·6H2O, Uiso values were set at 1.2Ueq(O) using a riding-model approximation. Distance restraints were applied for that structure for all water mol­ecules, with O—H and H—H distance restraints of 0.84 (2) and 1.4 (2) Å, respectively. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1.

Table 3
Experimental details

  Ca(ClO4)2·4H2O Ca(ClO4)2·6H2O
Crystal data
Mr 311.04 347.08
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pca21
Temperature (K) 200 180
a, b, c (Å) 5.4886 (11), 7.8518 (15), 11.574 (2) 10.9603 (4), 7.9667 (7), 26.7735 (18)
α, β, γ (°) 99.663 (16), 90.366 (16), 90.244 (16) 90, 90, 90
V3) 491.71 (17) 2337.8 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.24 1.06
Crystal size (mm) 0.04 × 0.03 × 0.02 0.38 × 0.31 × 0.08
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Integration Coppens (1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.644, 0.789 0.684, 0.923
No. of measured, independent and observed [I > 2σ(I)] reflections 2659, 2636, 2529 15755, 5326, 4919
Rint 0.074 0.062
(sin θ/λ)max−1) 0.686 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.20 0.042, 0.113, 1.09
No. of reflections 2636 5326
No. of parameters 168 380
No. of restraints 12 37
H-atom treatment All H-atom parameters refined Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.36, −0.75 0.41, −0.67
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.45 (9)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Since the detection of perchlorates on Mars during the Phoenix Mission (Chevrier et al., 2009), inter­est in these salts, and especially their hydrates, has risen considerably (Kim et al., 2013; Quinn et al., 2013; Kerr, 2013; Davila et al., 2013; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010). To gain more knowledge about the behavior of salts and salt hydrates, it is essential to determine the corresponding phase diagrams. For calcium perchlorate, this was performed by several authors (Marion et al., 2010; Pestova et al., 2005; Dobrynina, 1984; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) for different concentration areas with different results. The stable salt hydrate phase at room temperature in this system is calcium perchlorate tetra­hydrate. At lower temperatures, a higher hydrated phase, i.e. the hexahydrate, occurs as the stable phase.

Structural commentary top

The Ca2+ cation in Ca(ClO4)·4H2O is coordinated by four water molecules (O1, O2, O7, O8) and four O atoms from two pairs of symmetry-related perchlorate tetra­hedra as shown in Fig. 1a. The resulting coordination polyhedron is a distorted square anti-prism (Fig. 1b). The Ca—O bond lengths involving the water molecules range from 2.3284 (17) to 2.4153 (16) Å and are considerably shorter than the Ca—O bond lengths involving the perchlorate O atoms [2.5417 (16) to 2.5695 (17) Å].

The two different Ca2+ cations in Ca(ClO4)·6H2O are each coordinated by six water molecules and two perchlorate tetra­hedra (Fig. 2). Again, the bond lengths between the cations and water molecules [2.319 (6)–2.500 (6) Å] are shorter than those to the perchlorate groups. For the latter, one of the two distances for each of the Ca2+ cations is by 0.5 Å markedly longer than the other (~3.07 versus ~2.53 Å). Nevertheless, according to the bond-valence model (Brown, 2002), the longer bond contributes ca. 0.05 valence units to the overall bond-valence sum and hence should not be neglected. If this longer bond is considered to be relevant, again a square anti-prismatic coordination polyhedron is realised for both Ca2+ cations, however with a much greater distortion. Two perchlorate tetra­hedra in the hexahydrate are shared between two Ca2+ ions, leading to the formation of [Ca(H2O)6(ClO4)]2 dimers oriented in layers parallel to (001).

Supra­molecular features top

The perchlorate tetra­hedra in the structure of Ca(ClO4)·4H2O are shared between two adjacent Ca2+ ions, forming chains extending parallel to [011] (Fig. 3) whereby each Ca2+ ion is connected along the chain on one side with a pair of Cl1 perchlorate tetra­hedra, and on the opposite side with a pair of Cl2 perchlorate tetra­hedra. The chains are arranged in sheets parallel to (011) and are linked by O—H···O hydrogen bonds into a three-dimensional network with similar O···O distances between the water molecules and the perchlorate tetra­hedra (Table 1).

In addition to the two coordinating perchlorate tetra­hedra in Ca(ClO4)·6H2O, two `free' perchlorate tetra­hedra are present in the crystal structure. These `free' ClO4 tetra­hedra are arranged in sheets and alternate with the [Ca(H2O)6(ClO4)]2 sheets along [001] (Fig. 4). The `free' perchlorate tetra­hedra are connected to the dimers via O—H···O hydrogen bonds, as shown in Fig. 4. The dimers itself are additionally connected through further O—H···O hydrogen bonds (Table 2) into a three-dimensional network (Fig. 5).

Database survey top

For crystal structures of other MClO4·4H2O phases, see: Robertson et al. (2010; M = Mg); Hennings et al. (2014; Sr); Solovyov (2012; Mg); Johansson (1966; Hg). For crystal structures of other MClO4·6H2O phases, see: Ghosh et al. (1997; M = Ni, Zn); Ghosh et al. (1981; Fe); Johansson et al. (1978; Hg); Mani et al. (1961; Cu); Johansson et al. (1987; Cd); Gallucci et al. (1989; Cu); West (1935; Mg).

Synthesis and crystallization top

Ca(ClO4)2·4H2O was crystallized from an aqueous solution of 62.96 wt% Ca(ClO4)2 at 273 K after one day and Ca(ClO4)2·6H2O from an aqueous solution of 57.55 wt% Ca(ClO4)2 at 238 K after one week. For the preparation of these aqueous solutions, Ca(ClO4)2·4H2O (Acros Organics, p.A.) was used. The Ca2+ content was analysed via complexometric titration with EDTA. The crystals remain stable in the saturated aqueous solution over at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Ca(ClO4)2·4H2O, distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively. For Ca(ClO4)2·6H2O, Uiso values were set at 1.2Ueq(O) using a riding-model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (2) and 1.4 (2) Å, respectively. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1.

Related literature top

For related literature, see: Brown (2002); Chevrier et al. (2009); Davila et al. (2013); Dobrynina (1984); Gallucci & Gerkin (1989); Ghosh & Ray (1981); Ghosh et al. (1997); Hennings et al. (2014); Johansson (1966); Johansson & Sandström (1978, 1987); Kerr (2013); Kim et al. (2013); Lilich & Djurinskii (1956); Mani & Ramaseshan (1961); Marion et al. (2010); Navarro-González, Vargas, de la Rosa, Raga & McKay (2010); Nicholson & Felsing (1950); Pestova et al. (2005); Quinn et al. (2013); Robertson & Bish (2010); Schuttlefield et al. (2011); Solovyov (2012); West (1935); Willard & Smith (1923).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA(Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
(a) The principle building block in the structure of Ca(ClO4)2·4H2O and (b) the square anti-prismatic coordination of Ca2+. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1-x, 1-y, 2-z.]

The principle building blocks in the structure of Ca(ClO4)2·6H2O. Displacement ellipsoids are drawn at the 50% probability level.

Formation of sheets and interconnection of chains via hydrogen bonds in Ca(ClO4)2·4H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.

Formation of perchlorate-bridged dimers in Ca(ClO4)2·6 H2O and location of `free' perchlorate tetrahedra in the gaps between the dimers (highlighted in dark green). Only the strongest hydrogen bonds are shown, represented by dashed lines.

Formation of layers parallel to (001) in Ca(ClO4)2·6H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.
(CaClO4_4H2O_200K) Calcium perchlorate tetrahydrate top
Crystal data top
Ca(ClO4)2·4H2OZ = 2
Mr = 311.04F(000) = 316
Triclinic, P1Dx = 2.101 Mg m3
a = 5.4886 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8518 (15) ÅCell parameters from 26892 reflections
c = 11.574 (2) Åθ = 1.8–29.6°
α = 99.663 (16)°µ = 1.24 mm1
β = 90.366 (16)°T = 200 K
γ = 90.244 (16)°Plate, colourless
V = 491.71 (17) Å30.04 × 0.03 × 0.02 mm
Data collection top
Stoe IPDS-2
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 1.8°
rotation method scansh = 67
Absorption correction: integration
Coppens (1970)
k = 1010
Tmin = 0.644, Tmax = 0.789l = 1515
2659 measured reflections
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.6952P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
2636 reflectionsΔρmax = 0.36 e Å3
168 parametersΔρmin = 0.75 e Å3
Crystal data top
Ca(ClO4)2·4H2Oγ = 90.244 (16)°
Mr = 311.04V = 491.71 (17) Å3
Triclinic, P1Z = 2
a = 5.4886 (11) ÅMo Kα radiation
b = 7.8518 (15) ŵ = 1.24 mm1
c = 11.574 (2) ÅT = 200 K
α = 99.663 (16)°0.04 × 0.03 × 0.02 mm
β = 90.366 (16)°
Data collection top
Stoe IPDS-2
diffractometer
2636 independent reflections
Absorption correction: integration
Coppens (1970)
2529 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.789Rint = 0.074
2659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03112 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.20Δρmax = 0.36 e Å3
2636 reflectionsΔρmin = 0.75 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.51082 (7)0.23667 (5)0.75582 (3)0.01027 (10)
Cl10.24098 (7)0.16433 (5)0.55712 (4)0.00941 (11)
Cl20.32358 (8)0.67561 (5)0.92062 (4)0.01142 (11)
O20.7504 (3)0.01296 (18)0.76729 (13)0.0139 (3)
O10.2602 (3)0.38606 (19)0.63310 (12)0.0138 (3)
O30.4297 (3)0.2742 (2)0.58913 (14)0.0186 (3)
O40.5616 (3)0.7400 (2)0.89554 (15)0.0212 (3)
O100.2625 (3)0.1487 (2)0.43554 (13)0.0178 (3)
O110.0048 (3)0.2367 (2)0.57611 (13)0.0169 (3)
O90.2594 (3)0.00467 (19)0.62752 (14)0.0182 (3)
O50.2746 (3)0.7265 (2)1.04351 (13)0.0205 (3)
O80.2156 (3)0.1319 (2)0.86975 (14)0.0203 (3)
O70.7938 (3)0.4545 (2)0.74134 (15)0.0209 (3)
O60.3224 (3)0.48966 (18)0.89187 (14)0.0177 (3)
O120.1399 (3)0.7434 (2)0.85344 (17)0.0290 (4)
H2B0.683 (6)0.078 (3)0.806 (2)0.033 (9)*
H1A0.317 (6)0.477 (2)0.618 (2)0.025 (8)*
H2A0.788 (6)0.072 (3)0.7045 (15)0.031 (9)*
H7A0.931 (3)0.444 (4)0.714 (3)0.033 (9)*
H7B0.792 (6)0.541 (3)0.791 (2)0.040 (10)*
H8B0.087 (5)0.083 (6)0.848 (3)0.077 (16)*
H1B0.219 (6)0.328 (3)0.5705 (15)0.026 (8)*
H8A0.196 (7)0.179 (5)0.9380 (15)0.058 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.00953 (17)0.00980 (17)0.01102 (17)0.00055 (12)0.00070 (12)0.00046 (12)
Cl10.00864 (19)0.01026 (19)0.00859 (19)0.00147 (14)0.00038 (13)0.00050 (14)
Cl20.0136 (2)0.00949 (19)0.0102 (2)0.00073 (14)0.00324 (15)0.00092 (14)
O20.0161 (7)0.0134 (6)0.0121 (6)0.0015 (5)0.0011 (5)0.0018 (5)
O10.0149 (6)0.0131 (6)0.0129 (6)0.0014 (5)0.0024 (5)0.0006 (5)
O30.0151 (7)0.0190 (7)0.0226 (8)0.0042 (6)0.0026 (6)0.0062 (6)
O40.0218 (8)0.0199 (7)0.0220 (8)0.0058 (6)0.0042 (6)0.0039 (6)
O100.0210 (7)0.0236 (7)0.0094 (6)0.0030 (6)0.0031 (5)0.0040 (5)
O110.0119 (6)0.0209 (7)0.0172 (7)0.0079 (5)0.0007 (5)0.0013 (6)
O90.0177 (7)0.0133 (7)0.0201 (7)0.0032 (5)0.0029 (5)0.0072 (5)
O50.0185 (7)0.0267 (8)0.0128 (7)0.0025 (6)0.0015 (5)0.0071 (6)
O80.0193 (7)0.0199 (7)0.0188 (7)0.0092 (6)0.0044 (6)0.0055 (6)
O70.0168 (7)0.0175 (7)0.0251 (8)0.0064 (6)0.0063 (6)0.0062 (6)
O60.0226 (7)0.0085 (6)0.0203 (7)0.0012 (5)0.0008 (6)0.0029 (5)
O120.0314 (9)0.0213 (8)0.0347 (10)0.0029 (7)0.0216 (8)0.0065 (7)
Geometric parameters (Å, º) top
Ca1—O82.3284 (17)Cl1—O101.4385 (15)
Ca1—O72.3329 (17)Cl1—O91.4387 (15)
Ca1—O22.3866 (15)Cl1—O111.4461 (15)
Ca1—O12.4153 (16)Cl2—O121.4274 (16)
Ca1—O10i2.5417 (16)Cl2—O51.4388 (15)
Ca1—O92.5439 (16)Cl2—O61.4420 (15)
Ca1—O62.5463 (16)Cl2—O41.4473 (17)
Ca1—O5ii2.5695 (17)O10—Ca1i2.5417 (16)
Cl1—O31.4365 (15)O5—Ca1ii2.5695 (17)
O8—Ca1—O7146.78 (6)O7—Ca1—O5ii78.03 (6)
O8—Ca1—O289.06 (6)O2—Ca1—O5ii70.60 (5)
O7—Ca1—O2104.79 (6)O1—Ca1—O5ii142.78 (5)
O8—Ca1—O1100.92 (6)O10i—Ca1—O5ii122.42 (5)
O7—Ca1—O184.26 (6)O9—Ca1—O5ii136.94 (6)
O2—Ca1—O1146.29 (5)O6—Ca1—O5ii70.75 (5)
O8—Ca1—O10i140.33 (6)O3—Cl1—O10110.02 (9)
O7—Ca1—O10i72.75 (6)O3—Cl1—O9110.18 (10)
O2—Ca1—O10i70.60 (5)O10—Cl1—O9109.06 (10)
O1—Ca1—O10i81.78 (5)O3—Cl1—O11109.83 (9)
O8—Ca1—O970.75 (6)O10—Cl1—O11109.13 (9)
O7—Ca1—O9140.80 (6)O9—Cl1—O11108.59 (9)
O2—Ca1—O979.34 (5)O12—Cl2—O5109.54 (11)
O1—Ca1—O973.95 (5)O12—Cl2—O6109.31 (10)
O10i—Ca1—O972.18 (5)O5—Cl2—O6109.33 (10)
O8—Ca1—O671.00 (6)O12—Cl2—O4110.57 (11)
O7—Ca1—O679.25 (6)O5—Cl2—O4108.97 (10)
O2—Ca1—O6139.24 (5)O6—Cl2—O4109.09 (10)
O1—Ca1—O673.94 (5)Cl1—O10—Ca1i147.22 (10)
O10i—Ca1—O6144.46 (5)Cl1—O9—Ca1150.03 (10)
O9—Ca1—O6123.19 (5)Cl2—O5—Ca1ii140.90 (10)
O8—Ca1—O5ii78.49 (6)Cl2—O6—Ca1142.92 (10)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O11iii0.82 (1)2.11 (2)2.888 (2)158 (3)
O1—H1A···O3iv0.82 (1)2.13 (1)2.947 (2)174 (3)
O2—H2A···O11v0.82 (1)2.17 (2)2.947 (2)159 (3)
O2—H2B···O4vi0.82 (1)2.02 (1)2.830 (2)172 (3)
O7—H7B···O40.81 (1)2.22 (2)2.924 (2)146 (3)
O7—H7A···O1v0.82 (1)2.06 (1)2.870 (2)172 (3)
O8—H8A···O4ii0.82 (1)2.33 (3)2.986 (2)137 (4)
O8—H8B···O2vii0.82 (1)2.14 (1)2.950 (2)169 (5)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y1, z; (vii) x1, y, z.
(CaClO4_6H2O_180K) Calcium perchlorate hexahydrate top
Crystal data top
Ca(ClO4)2·6H2ODx = 1.972 Mg m3
Mr = 347.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 17254 reflections
a = 10.9603 (4) Åθ = 2.9–29.6°
b = 7.9667 (7) ŵ = 1.06 mm1
c = 26.7735 (18) ÅT = 180 K
V = 2337.8 (3) Å3Plate, colourless
Z = 80.38 × 0.31 × 0.08 mm
F(000) = 1424
Data collection top
Stoe IPDS-2
diffractometer
5326 independent reflections
Radiation source: fine-focus sealed tube4919 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 1.5°
rotation method scansh = 1515
Absorption correction: integration
(Coppens, 1970)
k = 119
Tmin = 0.684, Tmax = 0.923l = 3737
15755 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0687P)2 + 2.3411P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.41 e Å3
5326 reflectionsΔρmin = 0.67 e Å3
380 parametersAbsolute structure: Refined as an inversion twin
37 restraintsAbsolute structure parameter: 0.45 (9)
Crystal data top
Ca(ClO4)2·6H2OV = 2337.8 (3) Å3
Mr = 347.08Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 10.9603 (4) ŵ = 1.06 mm1
b = 7.9667 (7) ÅT = 180 K
c = 26.7735 (18) Å0.38 × 0.31 × 0.08 mm
Data collection top
Stoe IPDS-2
diffractometer
5326 independent reflections
Absorption correction: integration
(Coppens, 1970)
4919 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.923Rint = 0.062
15755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042Only H-atom coordinates refined
wR(F2) = 0.113Δρmax = 0.41 e Å3
S = 1.09Δρmin = 0.67 e Å3
5326 reflectionsAbsolute structure: Refined as an inversion twin
380 parametersAbsolute structure parameter: 0.45 (9)
37 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.87471 (15)0.02736 (19)0.29261 (6)0.0110 (3)
Ca20.87640 (16)0.47462 (18)0.07672 (6)0.0112 (3)
Cl30.7770 (2)0.50239 (14)0.39582 (8)0.0102 (5)
Cl40.79753 (11)0.06649 (15)0.13985 (8)0.0110 (2)
Cl10.95348 (11)0.43473 (15)0.22917 (8)0.0109 (2)
Cl20.0260 (2)0.99991 (14)0.47324 (8)0.0128 (5)
O50.7128 (5)0.2189 (8)0.2859 (2)0.0169 (11)
H5B0.714 (6)0.295 (6)0.264 (2)0.020*
H5A0.660 (5)0.209 (10)0.3081 (19)0.020*
O30.7416 (5)0.1972 (7)0.2841 (2)0.0185 (12)
H3A0.672 (3)0.190 (10)0.296 (3)0.022*
H3B0.752 (7)0.274 (6)0.263 (2)0.022*
O70.9726 (7)0.4844 (6)0.0075 (3)0.0162 (14)
H7B0.995 (7)0.557 (7)0.028 (2)0.019*
H7A0.989 (6)0.406 (6)0.027 (2)0.019*
O81.0380 (5)0.2796 (7)0.0823 (2)0.0132 (10)
H8A1.094 (4)0.245 (8)0.064 (2)0.016*
H8B1.013 (6)0.186 (4)0.093 (2)0.016*
O60.7539 (4)0.6064 (6)0.13676 (16)0.0190 (8)
H6B0.761 (7)0.565 (10)0.1655 (14)0.023*
H6A0.684 (3)0.648 (9)0.133 (3)0.023*
O10.9967 (4)0.1049 (6)0.23219 (17)0.0186 (8)
H1A0.987 (7)0.060 (10)0.2041 (15)0.022*
H1B1.0726 (17)0.118 (9)0.232 (3)0.022*
O20.9964 (5)0.1849 (7)0.3393 (2)0.0119 (11)
H2A1.007 (7)0.184 (9)0.3702 (7)0.014*
H2B0.967 (6)0.281 (4)0.335 (2)0.014*
O40.7803 (9)0.0171 (8)0.3739 (3)0.0262 (18)
H4B0.793 (8)0.068 (6)0.392 (3)0.031*
H4A0.795 (7)0.093 (7)0.395 (2)0.031*
O150.9234 (8)0.0045 (5)0.1339 (4)0.0152 (16)
O140.7230 (8)0.0046 (5)0.1019 (3)0.0194 (18)
O190.8302 (8)0.4971 (5)0.2349 (3)0.0142 (15)
O201.0316 (9)0.5052 (6)0.2678 (4)0.027 (2)
O260.8567 (9)0.5044 (5)0.3525 (3)0.0215 (19)
O121.0148 (5)0.2008 (7)0.3398 (2)0.0129 (11)
H12B1.034 (7)0.189 (9)0.3699 (10)0.016*
H12A1.006 (6)0.303 (3)0.334 (2)0.016*
O160.7540 (9)0.0215 (7)0.1877 (3)0.0234 (15)
O210.1020 (10)0.9989 (6)0.5168 (3)0.026 (2)
O280.7947 (7)0.6558 (9)0.4237 (3)0.0231 (15)
O270.8080 (7)0.3589 (9)0.4260 (3)0.0260 (16)
O230.0566 (6)0.8560 (8)0.4423 (3)0.0183 (13)
O240.0519 (7)1.1496 (9)0.4444 (3)0.0212 (14)
O180.9975 (9)0.4783 (7)0.1797 (3)0.0223 (14)
O130.7991 (3)0.2473 (5)0.13424 (18)0.0150 (8)
O170.9520 (4)0.2544 (5)0.23441 (19)0.0158 (8)
O90.7381 (6)0.2976 (8)0.0297 (2)0.0171 (12)
H9A0.721 (7)0.338 (8)0.0016 (13)0.021*
H9B0.753 (7)0.195 (3)0.025 (3)0.021*
O220.0976 (9)0.9933 (7)0.4886 (5)0.034 (2)
O250.6508 (8)0.4900 (7)0.3824 (5)0.034 (2)
O100.7580 (5)0.6907 (7)0.0295 (2)0.0139 (11)
H10B0.746 (7)0.658 (8)0.0002 (11)0.017*
H10A0.783 (6)0.789 (4)0.025 (2)0.017*
O111.0097 (5)0.7020 (8)0.0838 (3)0.0192 (12)
H11A1.079 (3)0.736 (9)0.075 (3)0.023*
H11B0.987 (7)0.799 (4)0.092 (3)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0083 (6)0.0090 (5)0.0157 (7)0.0010 (5)0.0018 (4)0.0005 (7)
Ca20.0095 (6)0.0084 (5)0.0155 (7)0.0010 (5)0.0021 (4)0.0016 (7)
Cl30.0096 (11)0.0097 (11)0.0113 (11)0.0005 (4)0.0016 (10)0.0004 (4)
Cl40.0127 (5)0.0095 (6)0.0108 (5)0.0007 (4)0.0020 (4)0.0012 (5)
Cl10.0124 (6)0.0080 (6)0.0122 (5)0.0018 (4)0.0019 (4)0.0008 (5)
Cl20.0180 (13)0.0098 (11)0.0105 (11)0.0001 (4)0.0016 (11)0.0002 (4)
O50.015 (2)0.015 (2)0.020 (2)0.0012 (19)0.0022 (19)0.0054 (19)
O30.019 (3)0.013 (2)0.024 (2)0.007 (2)0.007 (2)0.0047 (18)
O70.022 (3)0.019 (3)0.008 (3)0.0018 (18)0.009 (2)0.0048 (16)
O80.011 (2)0.0077 (19)0.020 (2)0.0033 (17)0.0061 (18)0.0006 (17)
O60.0201 (19)0.024 (2)0.0130 (16)0.0123 (17)0.0008 (17)0.0029 (18)
O10.0196 (19)0.021 (2)0.0151 (17)0.0079 (17)0.0003 (17)0.0028 (18)
O20.017 (2)0.009 (2)0.009 (2)0.0002 (19)0.0009 (17)0.0010 (17)
O40.033 (4)0.023 (3)0.023 (4)0.000 (2)0.008 (3)0.006 (2)
O150.014 (4)0.010 (3)0.022 (4)0.0049 (13)0.001 (3)0.0002 (14)
O140.019 (4)0.019 (4)0.021 (4)0.0067 (15)0.000 (3)0.0045 (15)
O190.013 (4)0.019 (3)0.011 (3)0.0049 (14)0.007 (3)0.0011 (13)
O200.027 (5)0.023 (4)0.033 (5)0.0106 (18)0.016 (4)0.0050 (18)
O260.034 (5)0.011 (3)0.020 (4)0.0004 (16)0.014 (4)0.0002 (14)
O120.016 (2)0.011 (2)0.013 (2)0.0011 (19)0.0010 (17)0.0021 (18)
O160.027 (3)0.022 (2)0.021 (3)0.001 (2)0.015 (2)0.011 (2)
O210.035 (5)0.029 (4)0.013 (4)0.0009 (18)0.010 (4)0.0018 (15)
O280.037 (4)0.011 (3)0.021 (3)0.004 (2)0.002 (3)0.005 (2)
O270.042 (4)0.017 (3)0.019 (3)0.008 (3)0.003 (3)0.008 (3)
O230.027 (3)0.014 (3)0.015 (3)0.002 (2)0.001 (2)0.006 (2)
O240.034 (3)0.012 (3)0.017 (3)0.003 (2)0.006 (2)0.008 (2)
O180.025 (3)0.027 (2)0.015 (3)0.001 (2)0.012 (2)0.002 (2)
O130.0195 (19)0.0081 (18)0.017 (2)0.0011 (14)0.0007 (15)0.0020 (15)
O170.0197 (19)0.0074 (17)0.020 (2)0.0009 (15)0.0007 (15)0.0014 (16)
O90.025 (3)0.011 (2)0.016 (2)0.003 (2)0.003 (2)0.0006 (19)
O220.024 (5)0.032 (4)0.044 (6)0.0013 (19)0.013 (4)0.000 (2)
O250.010 (4)0.038 (4)0.054 (6)0.0011 (19)0.014 (4)0.004 (2)
O100.012 (2)0.014 (2)0.016 (2)0.0008 (19)0.0021 (18)0.0005 (18)
O110.016 (3)0.015 (2)0.027 (2)0.002 (2)0.000 (2)0.0030 (19)
Geometric parameters (Å, º) top
Ca1—O32.319 (6)Cl3—O251.432 (9)
Ca1—O52.347 (6)Cl3—O271.440 (7)
Ca1—O12.349 (5)Cl3—O281.446 (7)
Ca1—O42.412 (9)Cl3—O261.452 (9)
Ca1—O122.421 (6)Cl4—O161.414 (8)
Ca1—O22.490 (6)Cl4—O141.421 (8)
Ca1—O172.533 (5)Cl4—O131.449 (4)
Ca1—O163.104 (9)Cl4—O151.474 (8)
Ca2—O112.335 (6)Cl1—O171.444 (4)
Ca2—O62.343 (5)Cl1—O191.448 (8)
Ca2—O82.360 (5)Cl1—O181.451 (8)
Ca2—O92.423 (6)Cl1—O201.455 (9)
Ca2—O72.491 (7)Cl2—O221.416 (10)
Ca2—O102.500 (6)Cl2—O211.433 (10)
Ca2—O132.523 (4)Cl2—O241.449 (7)
Ca2—O183.061 (9)Cl2—O231.453 (7)
O3—Ca1—O591.1 (3)O7—Ca2—O1074.9 (2)
O3—Ca1—O186.81 (19)O11—Ca2—O13135.8 (2)
O5—Ca1—O1132.0 (2)O6—Ca2—O1373.17 (15)
O3—Ca1—O478.0 (2)O8—Ca2—O1375.00 (17)
O5—Ca1—O476.5 (3)O9—Ca2—O1371.91 (17)
O1—Ca1—O4148.3 (2)O7—Ca2—O13135.81 (17)
O3—Ca1—O12152.9 (2)O10—Ca2—O13128.95 (17)
O5—Ca1—O1298.5 (2)O11—Ca2—O1869.4 (2)
O1—Ca1—O12104.72 (19)O6—Ca2—O1868.03 (19)
O4—Ca1—O1279.7 (3)O8—Ca2—O1867.9 (2)
O3—Ca1—O282.1 (2)O9—Ca2—O18138.2 (2)
O5—Ca1—O2152.3 (2)O7—Ca2—O18129.2 (3)
O1—Ca1—O274.68 (18)O10—Ca2—O18132.42 (19)
O4—Ca1—O275.8 (2)O13—Ca2—O1866.58 (17)
O12—Ca1—O277.7 (2)O25—Cl3—O27108.3 (5)
O3—Ca1—O17134.5 (2)O25—Cl3—O28108.5 (5)
O5—Ca1—O1775.01 (18)O27—Cl3—O28110.4 (5)
O1—Ca1—O1772.92 (15)O25—Cl3—O26112.4 (7)
O4—Ca1—O17136.29 (19)O27—Cl3—O26108.3 (4)
O12—Ca1—O1772.61 (17)O28—Cl3—O26108.8 (4)
O2—Ca1—O17127.91 (18)O16—Cl4—O14110.7 (5)
O3—Ca1—O1668.4 (2)O16—Cl4—O13110.5 (3)
O5—Ca1—O1667.5 (2)O14—Cl4—O13109.2 (3)
O1—Ca1—O1667.2 (2)O16—Cl4—O15109.2 (5)
O4—Ca1—O16129.3 (3)O14—Cl4—O15109.1 (5)
O12—Ca1—O16138.63 (19)O13—Cl4—O15108.1 (3)
O2—Ca1—O16132.21 (19)O17—Cl1—O19108.7 (3)
O17—Ca1—O1666.22 (16)O17—Cl1—O18109.3 (3)
O11—Ca2—O687.4 (2)O19—Cl1—O18109.0 (5)
O11—Ca2—O892.1 (3)O17—Cl1—O20108.8 (3)
O6—Ca2—O8133.0 (2)O19—Cl1—O20110.0 (5)
O11—Ca2—O9152.3 (2)O18—Cl1—O20111.1 (5)
O6—Ca2—O9105.0 (2)O22—Cl2—O21108.6 (7)
O8—Ca2—O996.8 (2)O22—Cl2—O24111.9 (4)
O11—Ca2—O777.6 (2)O21—Cl2—O24108.9 (4)
O6—Ca2—O7148.20 (18)O22—Cl2—O23110.9 (4)
O8—Ca2—O776.1 (2)O21—Cl2—O23108.9 (4)
O9—Ca2—O779.2 (2)O24—Cl2—O23107.5 (5)
O11—Ca2—O1080.3 (2)Cl4—O16—Ca1132.3 (5)
O6—Ca2—O1075.00 (17)Cl1—O18—Ca2132.5 (5)
O8—Ca2—O10151.0 (2)Cl4—O13—Ca2141.3 (3)
O9—Ca2—O1079.2 (3)Cl1—O17—Ca1140.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O150.84 (2)2.07 (3)2.887 (10)164 (8)
O1—H1B···O5i0.84 (2)2.25 (5)2.915 (7)136 (6)
O1—H1B···O16i0.84 (2)2.44 (5)3.132 (10)140 (6)
O2—H2A···O23ii0.84 (2)2.03 (2)2.856 (9)169 (7)
O2—H2B···O26iii0.84 (2)2.14 (3)2.932 (8)155 (6)
O3—H3A···O12iv0.84 (2)2.07 (2)2.899 (8)168 (8)
O3—H3B···O19iii0.84 (2)2.15 (3)2.934 (8)156 (7)
O4—H4A···O270.84 (2)2.28 (3)3.074 (11)158 (8)
O4—H4B···O28iii0.84 (2)2.36 (3)3.177 (10)163 (8)
O5—H5A···O2iv0.84 (2)1.98 (3)2.783 (8)159 (7)
O5—H5B···O190.84 (2)2.20 (5)2.903 (9)142 (6)
O6—H6A···O8v0.84 (2)2.18 (4)2.925 (7)149 (7)
O6—H6B···O190.84 (2)2.08 (3)2.891 (10)162 (8)
O7—H7A···O23vi0.84 (2)2.29 (4)3.042 (9)149 (6)
O7—H7B···O24vii0.84 (2)2.50 (5)3.199 (9)141 (6)
O7—H7B···O27viii0.84 (2)2.57 (5)3.242 (11)138 (6)
O8—H8A···O10ix0.84 (2)2.08 (4)2.805 (8)145 (6)
O8—H8B···O150.84 (2)2.07 (3)2.879 (9)162 (7)
O9—H9A···O27x0.84 (2)2.06 (3)2.865 (10)161 (7)
O9—H9B···O21vi0.84 (2)2.23 (5)2.962 (10)145 (7)
O10—H10A···O21vii0.84 (2)2.12 (3)2.930 (9)163 (7)
O10—H10B···O28x0.84 (2)2.10 (3)2.902 (10)162 (7)
O11—H11A···O9ix0.84 (2)2.14 (4)2.893 (9)150 (7)
O11—H11B···O15xi0.84 (2)2.11 (3)2.915 (9)161 (7)
O12—H12A···O260.84 (2)2.35 (5)2.995 (9)135 (6)
O12—H12A···O200.84 (2)2.40 (4)3.102 (9)142 (6)
O12—H12B···O24ii0.84 (2)2.03 (2)2.861 (9)171 (7)
Symmetry codes: (i) x+1/2, y, z; (ii) x+1, y1, z; (iii) x, y1, z; (iv) x1/2, y, z; (v) x1/2, y+1, z; (vi) x+1, y+1, z1/2; (vii) x+1, y+2, z1/2; (viii) x+2, y+1, z1/2; (ix) x+1/2, y+1, z; (x) x+3/2, y, z1/2; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (CaClO4_6H2O_180K) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O150.841 (15)2.07 (3)2.887 (10)164 (8)
O1—H1B···O5i0.838 (15)2.25 (5)2.915 (7)136 (6)
O1—H1B···O16i0.838 (15)2.44 (5)3.132 (10)140 (6)
O2—H2A···O23ii0.836 (15)2.03 (2)2.856 (9)169 (7)
O2—H2B···O26iii0.843 (15)2.14 (3)2.932 (8)155 (6)
O3—H3A···O12iv0.838 (15)2.07 (2)2.899 (8)168 (8)
O3—H3B···O19iii0.838 (15)2.15 (3)2.934 (8)156 (7)
O4—H4A···O270.841 (15)2.28 (3)3.074 (11)158 (8)
O4—H4B···O28iii0.841 (15)2.36 (3)3.177 (10)163 (8)
O5—H5A···O2iv0.837 (15)1.98 (3)2.783 (8)159 (7)
O5—H5B···O190.838 (15)2.20 (5)2.903 (9)142 (6)
O6—H6A···O8v0.837 (15)2.18 (4)2.925 (7)149 (7)
O6—H6B···O190.840 (15)2.08 (3)2.891 (10)162 (8)
O7—H7A···O23vi0.837 (15)2.29 (4)3.042 (9)149 (6)
O7—H7B···O24vii0.840 (15)2.50 (5)3.199 (9)141 (6)
O7—H7B···O27viii0.840 (15)2.57 (5)3.242 (11)138 (6)
O8—H8A···O10ix0.837 (15)2.08 (4)2.805 (8)145 (6)
O8—H8B···O150.838 (15)2.07 (3)2.879 (9)162 (7)
O9—H9A···O27x0.838 (15)2.06 (3)2.865 (10)161 (7)
O9—H9B···O21vi0.840 (15)2.23 (5)2.962 (10)145 (7)
O10—H10A···O21vii0.840 (15)2.12 (3)2.930 (9)163 (7)
O10—H10B···O28x0.836 (15)2.10 (3)2.902 (10)162 (7)
O11—H11A···O9ix0.841 (15)2.14 (4)2.893 (9)150 (7)
O11—H11B···O15xi0.841 (15)2.11 (3)2.915 (9)161 (7)
O12—H12A···O260.837 (15)2.35 (5)2.995 (9)135 (6)
O12—H12A···O200.837 (15)2.40 (4)3.102 (9)142 (6)
O12—H12B···O24ii0.838 (15)2.03 (2)2.861 (9)171 (7)
Symmetry codes: (i) x+1/2, y, z; (ii) x+1, y1, z; (iii) x, y1, z; (iv) x1/2, y, z; (v) x1/2, y+1, z; (vi) x+1, y+1, z1/2; (vii) x+1, y+2, z1/2; (viii) x+2, y+1, z1/2; (ix) x+1/2, y+1, z; (x) x+3/2, y, z1/2; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (CaClO4_4H2O_200K) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O11i0.819 (10)2.113 (15)2.888 (2)158 (3)
O1—H1A···O3ii0.823 (10)2.127 (10)2.947 (2)174 (3)
O2—H2A···O11iii0.822 (10)2.166 (16)2.947 (2)159 (3)
O2—H2B···O4iv0.818 (10)2.018 (11)2.830 (2)172 (3)
O7—H7B···O40.812 (10)2.215 (18)2.924 (2)146 (3)
O7—H7A···O1iii0.817 (10)2.059 (10)2.870 (2)172 (3)
O8—H8A···O4v0.822 (10)2.33 (3)2.986 (2)137 (4)
O8—H8B···O2vi0.820 (10)2.140 (13)2.950 (2)169 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+2; (vi) x1, y, z.

Experimental details

Ca(ClO4)2·4H2OCa(ClO4)2·6H2O
Crystal data
Mr311.04347.08
Crystal system, space groupTriclinic, P1Orthorhombic, Pca21
Temperature (K)200180
a, b, c (Å)5.4886 (11), 7.8518 (15), 11.574 (2)10.9603 (4), 7.9667 (7), 26.7735 (18)
α, β, γ (°)99.663 (16), 90.366 (16), 90.244 (16)90, 90, 90
V3)491.71 (17)2337.8 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)1.241.06
Crystal size (mm)0.04 × 0.03 × 0.020.38 × 0.31 × 0.08
Data collection
DiffractometerStoe IPDS2
diffractometer
Stoe IPDS2
diffractometer
Absorption correctionIntegration
Coppens (1970)
Integration
(Coppens, 1970)
Tmin, Tmax0.644, 0.7890.684, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
2659, 2636, 2529 15755, 5326, 4919
Rint0.0740.062
(sin θ/λ)max1)0.6860.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.20 0.042, 0.113, 1.09
No. of reflections26365326
No. of parameters168380
No. of restraints1237
H-atom treatmentAll H-atom parameters refinedOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.36, 0.750.41, 0.67
Absolute structure?Refined as an inversion twin
Absolute structure parameter?0.45 (9)

Computer programs: X-AREA (Stoe & Cie, 2009), X-AREA(Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationChevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1–6.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDavila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321–325.  Web of Science CrossRef CAS Google Scholar
First citationDobrynina, T. A. (1984). Zh. Neorg. Khim. 29, 1818–1822.  CAS Google Scholar
First citationGallucci, J. C. & Gerkin, R. E. (1989). Acta Cryst. C45, 1279–1284.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, S., Mukherjee, M., Seal, A. & Ray, S. (1997). Acta Cryst. B53, 639–644.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, M. & Ray, S. (1981). Z. Kristallogr. 155, 129–137.  CrossRef CAS Web of Science Google Scholar
First citationHennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510–514.  CSD CrossRef IUCr Journals Google Scholar
First citationJohansson, G. & Sandström, M. (1978). Acta Chem. Scand. 32, 109–113.  CrossRef Web of Science Google Scholar
First citationJohansson, G., Sandström, M., Maartmann-Moe, K., Maberg, O., Scheie, A. & Louër, D. (1987). Acta Chem. Scand. Ser. A, 41, 113–116.  CrossRef Web of Science Google Scholar
First citationJohansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553–562.  CrossRef CAS Web of Science Google Scholar
First citationKerr, R. A. (2013). Science, 340, 138.  Google Scholar
First citationKim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910–4913.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549–1553.  CAS Google Scholar
First citationMani, N. V. & Ramaseshan, S. (1961). Z. Kristallogr. 115, 97–109.  CrossRef CAS Google Scholar
First citationMarion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678–685.  Web of Science CrossRef Google Scholar
First citationNavarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1–11.  Google Scholar
First citationNicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469–4471.  CrossRef CAS Web of Science Google Scholar
First citationPestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409–413.  Web of Science CrossRef CAS Google Scholar
First citationQuinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515–520.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobertson, K. & Bish, D. (2010). Acta Cryst. B66, 579–584.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521–17523.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolovyov, L. A. (2012). Acta Cryst. B68, 89–90.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWest, C. D. (1935). Z. Kristallogr. 91, 480–493.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286–297.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds