research communications
Crystal structures of Ca(ClO4)2·4H2O and Ca(ClO4)2·6H2O
aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de
The title compounds, calcium perchlorate tetrahydrate and calcium perchlorate hexahydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetrahydrate consists of one Ca2+ cation eightfold coordinated in a square-antiprismatic fashion by four water molecules and four O atoms of four perchlorate tetrahedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetrahedra. The structure of the hexahydrate contains two different Ca2+ cations, each coordinated by six water molecules and two O atoms of two perchlorate tetrahedra, forming [Ca(H2O)6(ClO4)]2 dimers by sharing two ClO4 tetrahedra. The dimers are arranged in sheets parallel (001) and alternate with layers of non-coordinating ClO4 tetrahedra. O—H⋯O hydrogen bonds between the water molecules as donor and ClO4 tetrahedra and water molecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO4)2·6H2O was refined as a two-component with an approximate twin component ratio of 1:1 in each of the two structures.
1. Chemical context
Since the detection of perchlorates on Mars during the Phoenix Mission (Chevrier et al., 2009), interest in these salts, and especially their hydrates, has risen considerably (Kim et al., 2013; Quinn et al., 2013; Kerr, 2013; Davila et al., 2013; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010). To gain more knowledge about the behavior of salts and salt hydrates, it is essential to determine the corresponding phase diagrams. For calcium perchlorate, this was performed by several authors (Marion et al., 2010; Pestova et al., 2005; Dobrynina, 1984; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) for different concentration areas with different results. The stable salt hydrate phase at room temperature in this system is calcium perchlorate tetrahydrate. At lower temperatures, a higher hydrated phase, i.e. the hexahydrate, occurs as the stable phase.
2. Structural commentary
The Ca2+ cation in Ca(ClO4)·4H2O is coordinated by four water molecules (O1, O2, O7, O8) and four O atoms from two pairs of symmetry-related perchlorate tetrahedra as shown in Fig. 1a. The resulting is a distorted square anti-prism (Fig. 1b). The Ca—O bond lengths involving the water molecules range from 2.3284 (17) to 2.4153 (16) Å and are considerably shorter than the Ca—O bond lengths involving the perchlorate O atoms [2.5417 (16) to 2.5695 (17) Å].
The two different Ca2+ cations in Ca(ClO4)·6H2O are each coordinated by six water molecules and two perchlorate tetrahedra (Fig. 2). Again, the bond lengths between the cations and water molecules [2.319 (6)–2.500 (6) Å] are shorter than those to the perchlorate groups. For the latter, one of the two distances for each of the Ca2+ cations is by 0.5 Å markedly longer than the other (∼3.07 versus ∼2.53 Å). Nevertheless, according to the bond-valence model (Brown, 2002), the longer bond contributes ca. 0.05 valence units to the overall bond-valence sum and hence should not be neglected. If this longer bond is considered to be relevant, again a square anti-prismatic is realised for both Ca2+ cations, however with a much greater distortion. Two perchlorate tetrahedra in the hexahydrate are shared between two Ca2+ ions, leading to the formation of [Ca(H2O)6(ClO4)]2 dimers oriented in layers parallel to (001).
3. Supramolecular features
The perchlorate tetrahedra in the structure of Ca(ClO4)·4H2O are shared between two adjacent Ca2+ ions, forming chains extending parallel to [01] (Fig. 3) whereby each Ca2+ ion is connected along the chain on one side with a pair of Cl1 perchlorate tetrahedra, and on the opposite side with a pair of Cl2 perchlorate tetrahedra. The chains are arranged in sheets parallel to (01) and are linked by O—H⋯O hydrogen bonds into a three-dimensional network with similar O⋯O distances between the water molecules and the perchlorate tetrahedra (Table 1).
In addition to the two coordinating perchlorate tetrahedra in Ca(ClO4)·6H2O, two `free' perchlorate tetrahedra are present in the These `free' ClO4 tetrahedra are arranged in sheets and alternate with the [Ca(H2O)6(ClO4)]2 sheets along [001] (Fig. 4). The `free' perchlorate tetrahedra are connected to the dimers via O—H⋯O hydrogen bonds, as shown in Fig. 4. The dimers are additionally connected through further O—H⋯O hydrogen bonds (Table 2) into a three-dimensional network (Fig. 5).
|
4. Database survey
For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010; M = Mg); Hennings et al. (2014; Sr); Solovyov (2012; Mg); Johansson (1966; Hg). For crystal structures of other M(ClO4)2·6H2O phases, see: Ghosh et al. (1997; M = Ni, Zn); Ghosh & Ray (1981; Fe); Johansson et al. (1978; Hg); Mani & Ramaseshan (1961; Cu); Johansson & Sandström (1987; Cd); Gallucci & Gerkin (1989; Cu); West (1935; Mg).
5. Synthesis and crystallization
Ca(ClO4)2·4H2O was crystallized from an aqueous solution of 62.96 wt% Ca(ClO4)2 at 273 K after one day and Ca(ClO4)2·6H2O from an aqueous solution of 57.55 wt% Ca(ClO4)2 at 238 K after one week. For the preparation of these aqueous solutions, Ca(ClO4)2·4H2O (Acros Organics, p.A.) was used. The Ca2+ content was analysed via with EDTA. The crystals remain stable in the saturated aqueous solution over at least four weeks.
The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.
6. Refinement
Crystal data, data collection and structure . The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Ca(ClO4)2·4H2O, distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively. For Ca(ClO4)2·6H2O, Uiso values were set at 1.2Ueq(O) using a riding-model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (2) and 1.4 (2) Å, respectively. Ca(ClO4)2·6H2O was refined as a two-component with an approximate twin component ratio of 1:1.
details are summarized in Table 3
|
Supporting information
10.1107/S1600536814024532/wm5079sup1.cif
contains datablocks CaClO4_4H2O_200K, CaClO4_6H2O_180K. DOI:Structure factors: contains datablock CaClO4_4H2O_200K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup2.hkl
Structure factors: contains datablock CaClO4_6H2O_180K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup3.hkl
Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup4.cml
Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup5.cml
Since the detection of perchlorates on Mars during the Phoenix Mission (Chevrier et al., 2009), interest in these salts, and especially their hydrates, has risen considerably (Kim et al., 2013; Quinn et al., 2013; Kerr, 2013; Davila et al., 2013; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010). To gain more knowledge about the behavior of salts and salt hydrates, it is essential to determine the corresponding phase diagrams. For calcium perchlorate, this was performed by several authors (Marion et al., 2010; Pestova et al., 2005; Dobrynina, 1984; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) for different concentration areas with different results. The stable salt hydrate phase at room temperature in this system is calcium perchlorate tetrahydrate. At lower temperatures, a higher hydrated phase, i.e. the hexahydrate, occurs as the stable phase.
The Ca2+ cation in Ca(ClO4)·4H2O is coordinated by four water molecules (O1, O2, O7, O8) and four O atoms from two pairs of symmetry-related perchlorate tetrahedra as shown in Fig. 1a. The resulting
is a distorted square anti-prism (Fig. 1b). The Ca—O bond lengths involving the water molecules range from 2.3284 (17) to 2.4153 (16) Å and are considerably shorter than the Ca—O bond lengths involving the perchlorate O atoms [2.5417 (16) to 2.5695 (17) Å].The two different Ca2+ cations in Ca(ClO4)·6H2O are each coordinated by six water molecules and two perchlorate tetrahedra (Fig. 2). Again, the bond lengths between the cations and water molecules [2.319 (6)–2.500 (6) Å] are shorter than those to the perchlorate groups. For the latter, one of the two distances for each of the Ca2+ cations is by 0.5 Å markedly longer than the other (~3.07 versus ~2.53 Å). Nevertheless, according to the bond-valence model (Brown, 2002), the longer bond contributes ca. 0.05 valence units to the overall bond-valence sum and hence should not be neglected. If this longer bond is considered to be relevant, again a square anti-prismatic is realised for both Ca2+ cations, however with a much greater distortion. Two perchlorate tetrahedra in the hexahydrate are shared between two Ca2+ ions, leading to the formation of [Ca(H2O)6(ClO4)]2 dimers oriented in layers parallel to (001).
The perchlorate tetrahedra in the structure of Ca(ClO4)·4H2O are shared between two adjacent Ca2+ ions, forming chains extending parallel to [011] (Fig. 3) whereby each Ca2+ ion is connected along the chain on one side with a pair of Cl1 perchlorate tetrahedra, and on the opposite side with a pair of Cl2 perchlorate tetrahedra. The chains are arranged in sheets parallel to (011) and are linked by O—H···O hydrogen bonds into a three-dimensional network with similar O···O distances between the water molecules and the perchlorate tetrahedra (Table 1).
In addition to the two coordinating perchlorate tetrahedra in Ca(ClO4)·6H2O, two `free' perchlorate tetrahedra are present in the
These `free' ClO4 tetrahedra are arranged in sheets and alternate with the [Ca(H2O)6(ClO4)]2 sheets along [001] (Fig. 4). The `free' perchlorate tetrahedra are connected to the dimers via O—H···O hydrogen bonds, as shown in Fig. 4. The dimers itself are additionally connected through further O—H···O hydrogen bonds (Table 2) into a three-dimensional network (Fig. 5).For crystal structures of other MClO4·4H2O phases, see: Robertson et al. (2010; M = Mg); Hennings et al. (2014; Sr); Solovyov (2012; Mg); Johansson (1966; Hg). For crystal structures of other MClO4·6H2O phases, see: Ghosh et al. (1997; M = Ni, Zn); Ghosh et al. (1981; Fe); Johansson et al. (1978; Hg); Mani et al. (1961; Cu); Johansson et al. (1987; Cd); Gallucci et al. (1989; Cu); West (1935; Mg).
Ca(ClO4)2·4H2O was crystallized from an aqueous solution of 62.96 wt% Ca(ClO4)2 at 273 K after one day and Ca(ClO4)2·6H2O from an aqueous solution of 57.55 wt% Ca(ClO4)2 at 238 K after one week. For the preparation of these aqueous solutions, Ca(ClO4)2·4H2O (Acros Organics, p.A.) was used. The Ca2+ content was analysed via
with EDTA. The crystals remain stable in the saturated aqueous solution over at least four weeks.The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.
Crystal data, data collection and structure
details are summarized in Table 3. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Ca(ClO4)2·4H2O, distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively. For Ca(ClO4)2·6H2O, Uiso values were set at 1.2Ueq(O) using a riding-model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (2) and 1.4 (2) Å, respectively. Ca(ClO4)2·6H2O was refined as a two-component with an approximate twin component ratio of 1:1.For both compounds, data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA(Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(a) The principle building block in the structure of Ca(ClO4)2·4H2O and (b) the square anti-prismatic coordination of Ca2+. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1-x, 1-y, 2-z.] The principle building blocks in the structure of Ca(ClO4)2·6H2O. Displacement ellipsoids are drawn at the 50% probability level. Formation of sheets and interconnection of chains via hydrogen bonds in Ca(ClO4)2·4H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines. Formation of perchlorate-bridged dimers in Ca(ClO4)2·6 H2O and location of `free' perchlorate tetrahedra in the gaps between the dimers (highlighted in dark green). Only the strongest hydrogen bonds are shown, represented by dashed lines. Formation of layers parallel to (001) in Ca(ClO4)2·6H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines. |
Ca(ClO4)2·4H2O | Z = 2 |
Mr = 311.04 | F(000) = 316 |
Triclinic, P1 | Dx = 2.101 Mg m−3 |
a = 5.4886 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.8518 (15) Å | Cell parameters from 26892 reflections |
c = 11.574 (2) Å | θ = 1.8–29.6° |
α = 99.663 (16)° | µ = 1.24 mm−1 |
β = 90.366 (16)° | T = 200 K |
γ = 90.244 (16)° | Plate, colourless |
V = 491.71 (17) Å3 | 0.04 × 0.03 × 0.02 mm |
Stoe IPDS-2 diffractometer | 2636 independent reflections |
Radiation source: fine-focus sealed tube | 2529 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.2°, θmin = 1.8° |
rotation method scans | h = −6→7 |
Absorption correction: integration Coppens (1970) | k = −10→10 |
Tmin = 0.644, Tmax = 0.789 | l = −15→15 |
2659 measured reflections |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | All H-atom parameters refined |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.6952P] where P = (Fo2 + 2Fc2)/3 |
S = 1.20 | (Δ/σ)max = 0.001 |
2636 reflections | Δρmax = 0.36 e Å−3 |
168 parameters | Δρmin = −0.75 e Å−3 |
Ca(ClO4)2·4H2O | γ = 90.244 (16)° |
Mr = 311.04 | V = 491.71 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.4886 (11) Å | Mo Kα radiation |
b = 7.8518 (15) Å | µ = 1.24 mm−1 |
c = 11.574 (2) Å | T = 200 K |
α = 99.663 (16)° | 0.04 × 0.03 × 0.02 mm |
β = 90.366 (16)° |
Stoe IPDS-2 diffractometer | 2636 independent reflections |
Absorption correction: integration Coppens (1970) | 2529 reflections with I > 2σ(I) |
Tmin = 0.644, Tmax = 0.789 | Rint = 0.074 |
2659 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 12 restraints |
wR(F2) = 0.089 | All H-atom parameters refined |
S = 1.20 | Δρmax = 0.36 e Å−3 |
2636 reflections | Δρmin = −0.75 e Å−3 |
168 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.51082 (7) | 0.23667 (5) | 0.75582 (3) | 0.01027 (10) | |
Cl1 | 0.24098 (7) | −0.16433 (5) | 0.55712 (4) | 0.00941 (11) | |
Cl2 | 0.32358 (8) | 0.67561 (5) | 0.92062 (4) | 0.01142 (11) | |
O2 | 0.7504 (3) | −0.01296 (18) | 0.76729 (13) | 0.0139 (3) | |
O1 | 0.2602 (3) | 0.38606 (19) | 0.63310 (12) | 0.0138 (3) | |
O3 | 0.4297 (3) | −0.2742 (2) | 0.58913 (14) | 0.0186 (3) | |
O4 | 0.5616 (3) | 0.7400 (2) | 0.89554 (15) | 0.0212 (3) | |
O10 | 0.2625 (3) | −0.1487 (2) | 0.43554 (13) | 0.0178 (3) | |
O11 | 0.0048 (3) | −0.2367 (2) | 0.57611 (13) | 0.0169 (3) | |
O9 | 0.2594 (3) | 0.00467 (19) | 0.62752 (14) | 0.0182 (3) | |
O5 | 0.2746 (3) | 0.7265 (2) | 1.04351 (13) | 0.0205 (3) | |
O8 | 0.2156 (3) | 0.1319 (2) | 0.86975 (14) | 0.0203 (3) | |
O7 | 0.7938 (3) | 0.4545 (2) | 0.74134 (15) | 0.0209 (3) | |
O6 | 0.3224 (3) | 0.48966 (18) | 0.89187 (14) | 0.0177 (3) | |
O12 | 0.1399 (3) | 0.7434 (2) | 0.85344 (17) | 0.0290 (4) | |
H2B | 0.683 (6) | −0.078 (3) | 0.806 (2) | 0.033 (9)* | |
H1A | 0.317 (6) | 0.477 (2) | 0.618 (2) | 0.025 (8)* | |
H2A | 0.788 (6) | −0.072 (3) | 0.7045 (15) | 0.031 (9)* | |
H7A | 0.931 (3) | 0.444 (4) | 0.714 (3) | 0.033 (9)* | |
H7B | 0.792 (6) | 0.541 (3) | 0.791 (2) | 0.040 (10)* | |
H8B | 0.087 (5) | 0.083 (6) | 0.848 (3) | 0.077 (16)* | |
H1B | 0.219 (6) | 0.328 (3) | 0.5705 (15) | 0.026 (8)* | |
H8A | 0.196 (7) | 0.179 (5) | 0.9380 (15) | 0.058 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.00953 (17) | 0.00980 (17) | 0.01102 (17) | −0.00055 (12) | −0.00070 (12) | 0.00046 (12) |
Cl1 | 0.00864 (19) | 0.01026 (19) | 0.00859 (19) | −0.00147 (14) | −0.00038 (13) | −0.00050 (14) |
Cl2 | 0.0136 (2) | 0.00949 (19) | 0.0102 (2) | 0.00073 (14) | −0.00324 (15) | −0.00092 (14) |
O2 | 0.0161 (7) | 0.0134 (6) | 0.0121 (6) | 0.0015 (5) | 0.0011 (5) | 0.0018 (5) |
O1 | 0.0149 (6) | 0.0131 (6) | 0.0129 (6) | −0.0014 (5) | −0.0024 (5) | 0.0006 (5) |
O3 | 0.0151 (7) | 0.0190 (7) | 0.0226 (8) | 0.0042 (6) | −0.0026 (6) | 0.0062 (6) |
O4 | 0.0218 (8) | 0.0199 (7) | 0.0220 (8) | −0.0058 (6) | 0.0042 (6) | 0.0039 (6) |
O10 | 0.0210 (7) | 0.0236 (7) | 0.0094 (6) | 0.0030 (6) | 0.0031 (5) | 0.0040 (5) |
O11 | 0.0119 (6) | 0.0209 (7) | 0.0172 (7) | −0.0079 (5) | 0.0007 (5) | 0.0013 (6) |
O9 | 0.0177 (7) | 0.0133 (7) | 0.0201 (7) | −0.0032 (5) | −0.0029 (5) | −0.0072 (5) |
O5 | 0.0185 (7) | 0.0267 (8) | 0.0128 (7) | 0.0025 (6) | 0.0015 (5) | −0.0071 (6) |
O8 | 0.0193 (7) | 0.0199 (7) | 0.0188 (7) | −0.0092 (6) | 0.0044 (6) | −0.0055 (6) |
O7 | 0.0168 (7) | 0.0175 (7) | 0.0251 (8) | −0.0064 (6) | 0.0063 (6) | −0.0062 (6) |
O6 | 0.0226 (7) | 0.0085 (6) | 0.0203 (7) | 0.0012 (5) | 0.0008 (6) | −0.0029 (5) |
O12 | 0.0314 (9) | 0.0213 (8) | 0.0347 (10) | 0.0029 (7) | −0.0216 (8) | 0.0065 (7) |
Ca1—O8 | 2.3284 (17) | Cl1—O10 | 1.4385 (15) |
Ca1—O7 | 2.3329 (17) | Cl1—O9 | 1.4387 (15) |
Ca1—O2 | 2.3866 (15) | Cl1—O11 | 1.4461 (15) |
Ca1—O1 | 2.4153 (16) | Cl2—O12 | 1.4274 (16) |
Ca1—O10i | 2.5417 (16) | Cl2—O5 | 1.4388 (15) |
Ca1—O9 | 2.5439 (16) | Cl2—O6 | 1.4420 (15) |
Ca1—O6 | 2.5463 (16) | Cl2—O4 | 1.4473 (17) |
Ca1—O5ii | 2.5695 (17) | O10—Ca1i | 2.5417 (16) |
Cl1—O3 | 1.4365 (15) | O5—Ca1ii | 2.5695 (17) |
O8—Ca1—O7 | 146.78 (6) | O7—Ca1—O5ii | 78.03 (6) |
O8—Ca1—O2 | 89.06 (6) | O2—Ca1—O5ii | 70.60 (5) |
O7—Ca1—O2 | 104.79 (6) | O1—Ca1—O5ii | 142.78 (5) |
O8—Ca1—O1 | 100.92 (6) | O10i—Ca1—O5ii | 122.42 (5) |
O7—Ca1—O1 | 84.26 (6) | O9—Ca1—O5ii | 136.94 (6) |
O2—Ca1—O1 | 146.29 (5) | O6—Ca1—O5ii | 70.75 (5) |
O8—Ca1—O10i | 140.33 (6) | O3—Cl1—O10 | 110.02 (9) |
O7—Ca1—O10i | 72.75 (6) | O3—Cl1—O9 | 110.18 (10) |
O2—Ca1—O10i | 70.60 (5) | O10—Cl1—O9 | 109.06 (10) |
O1—Ca1—O10i | 81.78 (5) | O3—Cl1—O11 | 109.83 (9) |
O8—Ca1—O9 | 70.75 (6) | O10—Cl1—O11 | 109.13 (9) |
O7—Ca1—O9 | 140.80 (6) | O9—Cl1—O11 | 108.59 (9) |
O2—Ca1—O9 | 79.34 (5) | O12—Cl2—O5 | 109.54 (11) |
O1—Ca1—O9 | 73.95 (5) | O12—Cl2—O6 | 109.31 (10) |
O10i—Ca1—O9 | 72.18 (5) | O5—Cl2—O6 | 109.33 (10) |
O8—Ca1—O6 | 71.00 (6) | O12—Cl2—O4 | 110.57 (11) |
O7—Ca1—O6 | 79.25 (6) | O5—Cl2—O4 | 108.97 (10) |
O2—Ca1—O6 | 139.24 (5) | O6—Cl2—O4 | 109.09 (10) |
O1—Ca1—O6 | 73.94 (5) | Cl1—O10—Ca1i | 147.22 (10) |
O10i—Ca1—O6 | 144.46 (5) | Cl1—O9—Ca1 | 150.03 (10) |
O9—Ca1—O6 | 123.19 (5) | Cl2—O5—Ca1ii | 140.90 (10) |
O8—Ca1—O5ii | 78.49 (6) | Cl2—O6—Ca1 | 142.92 (10) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O11iii | 0.82 (1) | 2.11 (2) | 2.888 (2) | 158 (3) |
O1—H1A···O3iv | 0.82 (1) | 2.13 (1) | 2.947 (2) | 174 (3) |
O2—H2A···O11v | 0.82 (1) | 2.17 (2) | 2.947 (2) | 159 (3) |
O2—H2B···O4vi | 0.82 (1) | 2.02 (1) | 2.830 (2) | 172 (3) |
O7—H7B···O4 | 0.81 (1) | 2.22 (2) | 2.924 (2) | 146 (3) |
O7—H7A···O1v | 0.82 (1) | 2.06 (1) | 2.870 (2) | 172 (3) |
O8—H8A···O4ii | 0.82 (1) | 2.33 (3) | 2.986 (2) | 137 (4) |
O8—H8B···O2vii | 0.82 (1) | 2.14 (1) | 2.950 (2) | 169 (5) |
Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) −x, −y, −z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y−1, z; (vii) x−1, y, z. |
Ca(ClO4)2·6H2O | Dx = 1.972 Mg m−3 |
Mr = 347.08 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 17254 reflections |
a = 10.9603 (4) Å | θ = 2.9–29.6° |
b = 7.9667 (7) Å | µ = 1.06 mm−1 |
c = 26.7735 (18) Å | T = 180 K |
V = 2337.8 (3) Å3 | Plate, colourless |
Z = 8 | 0.38 × 0.31 × 0.08 mm |
F(000) = 1424 |
Stoe IPDS-2 diffractometer | 5326 independent reflections |
Radiation source: fine-focus sealed tube | 4919 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.5°, θmin = 1.5° |
rotation method scans | h = −15→15 |
Absorption correction: integration (Coppens, 1970) | k = −11→9 |
Tmin = 0.684, Tmax = 0.923 | l = −37→37 |
15755 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | Only H-atom coordinates refined |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0687P)2 + 2.3411P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.41 e Å−3 |
5326 reflections | Δρmin = −0.67 e Å−3 |
380 parameters | Absolute structure: Refined as an inversion twin |
37 restraints | Absolute structure parameter: 0.45 (9) |
Ca(ClO4)2·6H2O | V = 2337.8 (3) Å3 |
Mr = 347.08 | Z = 8 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 10.9603 (4) Å | µ = 1.06 mm−1 |
b = 7.9667 (7) Å | T = 180 K |
c = 26.7735 (18) Å | 0.38 × 0.31 × 0.08 mm |
Stoe IPDS-2 diffractometer | 5326 independent reflections |
Absorption correction: integration (Coppens, 1970) | 4919 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 0.923 | Rint = 0.062 |
15755 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | Only H-atom coordinates refined |
wR(F2) = 0.113 | Δρmax = 0.41 e Å−3 |
S = 1.09 | Δρmin = −0.67 e Å−3 |
5326 reflections | Absolute structure: Refined as an inversion twin |
380 parameters | Absolute structure parameter: 0.45 (9) |
37 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.87471 (15) | 0.02736 (19) | 0.29261 (6) | 0.0110 (3) | |
Ca2 | 0.87640 (16) | 0.47462 (18) | 0.07672 (6) | 0.0112 (3) | |
Cl3 | 0.7770 (2) | 0.50239 (14) | 0.39582 (8) | 0.0102 (5) | |
Cl4 | 0.79753 (11) | 0.06649 (15) | 0.13985 (8) | 0.0110 (2) | |
Cl1 | 0.95348 (11) | 0.43473 (15) | 0.22917 (8) | 0.0109 (2) | |
Cl2 | 0.0260 (2) | 0.99991 (14) | 0.47324 (8) | 0.0128 (5) | |
O5 | 0.7128 (5) | 0.2189 (8) | 0.2859 (2) | 0.0169 (11) | |
H5B | 0.714 (6) | 0.295 (6) | 0.264 (2) | 0.020* | |
H5A | 0.660 (5) | 0.209 (10) | 0.3081 (19) | 0.020* | |
O3 | 0.7416 (5) | −0.1972 (7) | 0.2841 (2) | 0.0185 (12) | |
H3A | 0.672 (3) | −0.190 (10) | 0.296 (3) | 0.022* | |
H3B | 0.752 (7) | −0.274 (6) | 0.263 (2) | 0.022* | |
O7 | 0.9726 (7) | 0.4844 (6) | −0.0075 (3) | 0.0162 (14) | |
H7B | 0.995 (7) | 0.557 (7) | −0.028 (2) | 0.019* | |
H7A | 0.989 (6) | 0.406 (6) | −0.027 (2) | 0.019* | |
O8 | 1.0380 (5) | 0.2796 (7) | 0.0823 (2) | 0.0132 (10) | |
H8A | 1.094 (4) | 0.245 (8) | 0.064 (2) | 0.016* | |
H8B | 1.013 (6) | 0.186 (4) | 0.093 (2) | 0.016* | |
O6 | 0.7539 (4) | 0.6064 (6) | 0.13676 (16) | 0.0190 (8) | |
H6B | 0.761 (7) | 0.565 (10) | 0.1655 (14) | 0.023* | |
H6A | 0.684 (3) | 0.648 (9) | 0.133 (3) | 0.023* | |
O1 | 0.9967 (4) | −0.1049 (6) | 0.23219 (17) | 0.0186 (8) | |
H1A | 0.987 (7) | −0.060 (10) | 0.2041 (15) | 0.022* | |
H1B | 1.0726 (17) | −0.118 (9) | 0.232 (3) | 0.022* | |
O2 | 0.9964 (5) | −0.1849 (7) | 0.3393 (2) | 0.0119 (11) | |
H2A | 1.007 (7) | −0.184 (9) | 0.3702 (7) | 0.014* | |
H2B | 0.967 (6) | −0.281 (4) | 0.335 (2) | 0.014* | |
O4 | 0.7803 (9) | 0.0171 (8) | 0.3739 (3) | 0.0262 (18) | |
H4B | 0.793 (8) | −0.068 (6) | 0.392 (3) | 0.031* | |
H4A | 0.795 (7) | 0.093 (7) | 0.395 (2) | 0.031* | |
O15 | 0.9234 (8) | 0.0045 (5) | 0.1339 (4) | 0.0152 (16) | |
O14 | 0.7230 (8) | −0.0046 (5) | 0.1019 (3) | 0.0194 (18) | |
O19 | 0.8302 (8) | 0.4971 (5) | 0.2349 (3) | 0.0142 (15) | |
O20 | 1.0316 (9) | 0.5052 (6) | 0.2678 (4) | 0.027 (2) | |
O26 | 0.8567 (9) | 0.5044 (5) | 0.3525 (3) | 0.0215 (19) | |
O12 | 1.0148 (5) | 0.2008 (7) | 0.3398 (2) | 0.0129 (11) | |
H12B | 1.034 (7) | 0.189 (9) | 0.3699 (10) | 0.016* | |
H12A | 1.006 (6) | 0.303 (3) | 0.334 (2) | 0.016* | |
O16 | 0.7540 (9) | 0.0215 (7) | 0.1877 (3) | 0.0234 (15) | |
O21 | 0.1020 (10) | 0.9989 (6) | 0.5168 (3) | 0.026 (2) | |
O28 | 0.7947 (7) | 0.6558 (9) | 0.4237 (3) | 0.0231 (15) | |
O27 | 0.8080 (7) | 0.3589 (9) | 0.4260 (3) | 0.0260 (16) | |
O23 | 0.0566 (6) | 0.8560 (8) | 0.4423 (3) | 0.0183 (13) | |
O24 | 0.0519 (7) | 1.1496 (9) | 0.4444 (3) | 0.0212 (14) | |
O18 | 0.9975 (9) | 0.4783 (7) | 0.1797 (3) | 0.0223 (14) | |
O13 | 0.7991 (3) | 0.2473 (5) | 0.13424 (18) | 0.0150 (8) | |
O17 | 0.9520 (4) | 0.2544 (5) | 0.23441 (19) | 0.0158 (8) | |
O9 | 0.7381 (6) | 0.2976 (8) | 0.0297 (2) | 0.0171 (12) | |
H9A | 0.721 (7) | 0.338 (8) | 0.0016 (13) | 0.021* | |
H9B | 0.753 (7) | 0.195 (3) | 0.025 (3) | 0.021* | |
O22 | −0.0976 (9) | 0.9933 (7) | 0.4886 (5) | 0.034 (2) | |
O25 | 0.6508 (8) | 0.4900 (7) | 0.3824 (5) | 0.034 (2) | |
O10 | 0.7580 (5) | 0.6907 (7) | 0.0295 (2) | 0.0139 (11) | |
H10B | 0.746 (7) | 0.658 (8) | 0.0002 (11) | 0.017* | |
H10A | 0.783 (6) | 0.789 (4) | 0.025 (2) | 0.017* | |
O11 | 1.0097 (5) | 0.7020 (8) | 0.0838 (3) | 0.0192 (12) | |
H11A | 1.079 (3) | 0.736 (9) | 0.075 (3) | 0.023* | |
H11B | 0.987 (7) | 0.799 (4) | 0.092 (3) | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0083 (6) | 0.0090 (5) | 0.0157 (7) | 0.0010 (5) | 0.0018 (4) | −0.0005 (7) |
Ca2 | 0.0095 (6) | 0.0084 (5) | 0.0155 (7) | 0.0010 (5) | 0.0021 (4) | 0.0016 (7) |
Cl3 | 0.0096 (11) | 0.0097 (11) | 0.0113 (11) | −0.0005 (4) | 0.0016 (10) | 0.0004 (4) |
Cl4 | 0.0127 (5) | 0.0095 (6) | 0.0108 (5) | −0.0007 (4) | 0.0020 (4) | 0.0012 (5) |
Cl1 | 0.0124 (6) | 0.0080 (6) | 0.0122 (5) | −0.0018 (4) | 0.0019 (4) | 0.0008 (5) |
Cl2 | 0.0180 (13) | 0.0098 (11) | 0.0105 (11) | −0.0001 (4) | 0.0016 (11) | 0.0002 (4) |
O5 | 0.015 (2) | 0.015 (2) | 0.020 (2) | 0.0012 (19) | 0.0022 (19) | 0.0054 (19) |
O3 | 0.019 (3) | 0.013 (2) | 0.024 (2) | −0.007 (2) | 0.007 (2) | −0.0047 (18) |
O7 | 0.022 (3) | 0.019 (3) | 0.008 (3) | 0.0018 (18) | 0.009 (2) | −0.0048 (16) |
O8 | 0.011 (2) | 0.0077 (19) | 0.020 (2) | 0.0033 (17) | 0.0061 (18) | −0.0006 (17) |
O6 | 0.0201 (19) | 0.024 (2) | 0.0130 (16) | 0.0123 (17) | 0.0008 (17) | 0.0029 (18) |
O1 | 0.0196 (19) | 0.021 (2) | 0.0151 (17) | 0.0079 (17) | 0.0003 (17) | 0.0028 (18) |
O2 | 0.017 (2) | 0.009 (2) | 0.009 (2) | −0.0002 (19) | −0.0009 (17) | 0.0010 (17) |
O4 | 0.033 (4) | 0.023 (3) | 0.023 (4) | 0.000 (2) | 0.008 (3) | 0.006 (2) |
O15 | 0.014 (4) | 0.010 (3) | 0.022 (4) | 0.0049 (13) | −0.001 (3) | −0.0002 (14) |
O14 | 0.019 (4) | 0.019 (4) | 0.021 (4) | −0.0067 (15) | 0.000 (3) | −0.0045 (15) |
O19 | 0.013 (4) | 0.019 (3) | 0.011 (3) | 0.0049 (14) | 0.007 (3) | 0.0011 (13) |
O20 | 0.027 (5) | 0.023 (4) | 0.033 (5) | −0.0106 (18) | −0.016 (4) | −0.0050 (18) |
O26 | 0.034 (5) | 0.011 (3) | 0.020 (4) | −0.0004 (16) | 0.014 (4) | 0.0002 (14) |
O12 | 0.016 (2) | 0.011 (2) | 0.013 (2) | 0.0011 (19) | −0.0010 (17) | 0.0021 (18) |
O16 | 0.027 (3) | 0.022 (2) | 0.021 (3) | 0.001 (2) | 0.015 (2) | 0.011 (2) |
O21 | 0.035 (5) | 0.029 (4) | 0.013 (4) | 0.0009 (18) | −0.010 (4) | 0.0018 (15) |
O28 | 0.037 (4) | 0.011 (3) | 0.021 (3) | −0.004 (2) | 0.002 (3) | −0.005 (2) |
O27 | 0.042 (4) | 0.017 (3) | 0.019 (3) | 0.008 (3) | 0.003 (3) | 0.008 (3) |
O23 | 0.027 (3) | 0.014 (3) | 0.015 (3) | 0.002 (2) | 0.001 (2) | −0.006 (2) |
O24 | 0.034 (3) | 0.012 (3) | 0.017 (3) | −0.003 (2) | −0.006 (2) | 0.008 (2) |
O18 | 0.025 (3) | 0.027 (2) | 0.015 (3) | 0.001 (2) | 0.012 (2) | 0.002 (2) |
O13 | 0.0195 (19) | 0.0081 (18) | 0.017 (2) | 0.0011 (14) | 0.0007 (15) | 0.0020 (15) |
O17 | 0.0197 (19) | 0.0074 (17) | 0.020 (2) | −0.0009 (15) | −0.0007 (15) | 0.0014 (16) |
O9 | 0.025 (3) | 0.011 (2) | 0.016 (2) | −0.003 (2) | −0.003 (2) | 0.0006 (19) |
O22 | 0.024 (5) | 0.032 (4) | 0.044 (6) | 0.0013 (19) | 0.013 (4) | 0.000 (2) |
O25 | 0.010 (4) | 0.038 (4) | 0.054 (6) | −0.0011 (19) | −0.014 (4) | 0.004 (2) |
O10 | 0.012 (2) | 0.014 (2) | 0.016 (2) | 0.0008 (19) | 0.0021 (18) | 0.0005 (18) |
O11 | 0.016 (3) | 0.015 (2) | 0.027 (2) | −0.002 (2) | 0.000 (2) | −0.0030 (19) |
Ca1—O3 | 2.319 (6) | Cl3—O25 | 1.432 (9) |
Ca1—O5 | 2.347 (6) | Cl3—O27 | 1.440 (7) |
Ca1—O1 | 2.349 (5) | Cl3—O28 | 1.446 (7) |
Ca1—O4 | 2.412 (9) | Cl3—O26 | 1.452 (9) |
Ca1—O12 | 2.421 (6) | Cl4—O16 | 1.414 (8) |
Ca1—O2 | 2.490 (6) | Cl4—O14 | 1.421 (8) |
Ca1—O17 | 2.533 (5) | Cl4—O13 | 1.449 (4) |
Ca1—O16 | 3.104 (9) | Cl4—O15 | 1.474 (8) |
Ca2—O11 | 2.335 (6) | Cl1—O17 | 1.444 (4) |
Ca2—O6 | 2.343 (5) | Cl1—O19 | 1.448 (8) |
Ca2—O8 | 2.360 (5) | Cl1—O18 | 1.451 (8) |
Ca2—O9 | 2.423 (6) | Cl1—O20 | 1.455 (9) |
Ca2—O7 | 2.491 (7) | Cl2—O22 | 1.416 (10) |
Ca2—O10 | 2.500 (6) | Cl2—O21 | 1.433 (10) |
Ca2—O13 | 2.523 (4) | Cl2—O24 | 1.449 (7) |
Ca2—O18 | 3.061 (9) | Cl2—O23 | 1.453 (7) |
O3—Ca1—O5 | 91.1 (3) | O7—Ca2—O10 | 74.9 (2) |
O3—Ca1—O1 | 86.81 (19) | O11—Ca2—O13 | 135.8 (2) |
O5—Ca1—O1 | 132.0 (2) | O6—Ca2—O13 | 73.17 (15) |
O3—Ca1—O4 | 78.0 (2) | O8—Ca2—O13 | 75.00 (17) |
O5—Ca1—O4 | 76.5 (3) | O9—Ca2—O13 | 71.91 (17) |
O1—Ca1—O4 | 148.3 (2) | O7—Ca2—O13 | 135.81 (17) |
O3—Ca1—O12 | 152.9 (2) | O10—Ca2—O13 | 128.95 (17) |
O5—Ca1—O12 | 98.5 (2) | O11—Ca2—O18 | 69.4 (2) |
O1—Ca1—O12 | 104.72 (19) | O6—Ca2—O18 | 68.03 (19) |
O4—Ca1—O12 | 79.7 (3) | O8—Ca2—O18 | 67.9 (2) |
O3—Ca1—O2 | 82.1 (2) | O9—Ca2—O18 | 138.2 (2) |
O5—Ca1—O2 | 152.3 (2) | O7—Ca2—O18 | 129.2 (3) |
O1—Ca1—O2 | 74.68 (18) | O10—Ca2—O18 | 132.42 (19) |
O4—Ca1—O2 | 75.8 (2) | O13—Ca2—O18 | 66.58 (17) |
O12—Ca1—O2 | 77.7 (2) | O25—Cl3—O27 | 108.3 (5) |
O3—Ca1—O17 | 134.5 (2) | O25—Cl3—O28 | 108.5 (5) |
O5—Ca1—O17 | 75.01 (18) | O27—Cl3—O28 | 110.4 (5) |
O1—Ca1—O17 | 72.92 (15) | O25—Cl3—O26 | 112.4 (7) |
O4—Ca1—O17 | 136.29 (19) | O27—Cl3—O26 | 108.3 (4) |
O12—Ca1—O17 | 72.61 (17) | O28—Cl3—O26 | 108.8 (4) |
O2—Ca1—O17 | 127.91 (18) | O16—Cl4—O14 | 110.7 (5) |
O3—Ca1—O16 | 68.4 (2) | O16—Cl4—O13 | 110.5 (3) |
O5—Ca1—O16 | 67.5 (2) | O14—Cl4—O13 | 109.2 (3) |
O1—Ca1—O16 | 67.2 (2) | O16—Cl4—O15 | 109.2 (5) |
O4—Ca1—O16 | 129.3 (3) | O14—Cl4—O15 | 109.1 (5) |
O12—Ca1—O16 | 138.63 (19) | O13—Cl4—O15 | 108.1 (3) |
O2—Ca1—O16 | 132.21 (19) | O17—Cl1—O19 | 108.7 (3) |
O17—Ca1—O16 | 66.22 (16) | O17—Cl1—O18 | 109.3 (3) |
O11—Ca2—O6 | 87.4 (2) | O19—Cl1—O18 | 109.0 (5) |
O11—Ca2—O8 | 92.1 (3) | O17—Cl1—O20 | 108.8 (3) |
O6—Ca2—O8 | 133.0 (2) | O19—Cl1—O20 | 110.0 (5) |
O11—Ca2—O9 | 152.3 (2) | O18—Cl1—O20 | 111.1 (5) |
O6—Ca2—O9 | 105.0 (2) | O22—Cl2—O21 | 108.6 (7) |
O8—Ca2—O9 | 96.8 (2) | O22—Cl2—O24 | 111.9 (4) |
O11—Ca2—O7 | 77.6 (2) | O21—Cl2—O24 | 108.9 (4) |
O6—Ca2—O7 | 148.20 (18) | O22—Cl2—O23 | 110.9 (4) |
O8—Ca2—O7 | 76.1 (2) | O21—Cl2—O23 | 108.9 (4) |
O9—Ca2—O7 | 79.2 (2) | O24—Cl2—O23 | 107.5 (5) |
O11—Ca2—O10 | 80.3 (2) | Cl4—O16—Ca1 | 132.3 (5) |
O6—Ca2—O10 | 75.00 (17) | Cl1—O18—Ca2 | 132.5 (5) |
O8—Ca2—O10 | 151.0 (2) | Cl4—O13—Ca2 | 141.3 (3) |
O9—Ca2—O10 | 79.2 (3) | Cl1—O17—Ca1 | 140.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O15 | 0.84 (2) | 2.07 (3) | 2.887 (10) | 164 (8) |
O1—H1B···O5i | 0.84 (2) | 2.25 (5) | 2.915 (7) | 136 (6) |
O1—H1B···O16i | 0.84 (2) | 2.44 (5) | 3.132 (10) | 140 (6) |
O2—H2A···O23ii | 0.84 (2) | 2.03 (2) | 2.856 (9) | 169 (7) |
O2—H2B···O26iii | 0.84 (2) | 2.14 (3) | 2.932 (8) | 155 (6) |
O3—H3A···O12iv | 0.84 (2) | 2.07 (2) | 2.899 (8) | 168 (8) |
O3—H3B···O19iii | 0.84 (2) | 2.15 (3) | 2.934 (8) | 156 (7) |
O4—H4A···O27 | 0.84 (2) | 2.28 (3) | 3.074 (11) | 158 (8) |
O4—H4B···O28iii | 0.84 (2) | 2.36 (3) | 3.177 (10) | 163 (8) |
O5—H5A···O2iv | 0.84 (2) | 1.98 (3) | 2.783 (8) | 159 (7) |
O5—H5B···O19 | 0.84 (2) | 2.20 (5) | 2.903 (9) | 142 (6) |
O6—H6A···O8v | 0.84 (2) | 2.18 (4) | 2.925 (7) | 149 (7) |
O6—H6B···O19 | 0.84 (2) | 2.08 (3) | 2.891 (10) | 162 (8) |
O7—H7A···O23vi | 0.84 (2) | 2.29 (4) | 3.042 (9) | 149 (6) |
O7—H7B···O24vii | 0.84 (2) | 2.50 (5) | 3.199 (9) | 141 (6) |
O7—H7B···O27viii | 0.84 (2) | 2.57 (5) | 3.242 (11) | 138 (6) |
O8—H8A···O10ix | 0.84 (2) | 2.08 (4) | 2.805 (8) | 145 (6) |
O8—H8B···O15 | 0.84 (2) | 2.07 (3) | 2.879 (9) | 162 (7) |
O9—H9A···O27x | 0.84 (2) | 2.06 (3) | 2.865 (10) | 161 (7) |
O9—H9B···O21vi | 0.84 (2) | 2.23 (5) | 2.962 (10) | 145 (7) |
O10—H10A···O21vii | 0.84 (2) | 2.12 (3) | 2.930 (9) | 163 (7) |
O10—H10B···O28x | 0.84 (2) | 2.10 (3) | 2.902 (10) | 162 (7) |
O11—H11A···O9ix | 0.84 (2) | 2.14 (4) | 2.893 (9) | 150 (7) |
O11—H11B···O15xi | 0.84 (2) | 2.11 (3) | 2.915 (9) | 161 (7) |
O12—H12A···O26 | 0.84 (2) | 2.35 (5) | 2.995 (9) | 135 (6) |
O12—H12A···O20 | 0.84 (2) | 2.40 (4) | 3.102 (9) | 142 (6) |
O12—H12B···O24ii | 0.84 (2) | 2.03 (2) | 2.861 (9) | 171 (7) |
Symmetry codes: (i) x+1/2, −y, z; (ii) x+1, y−1, z; (iii) x, y−1, z; (iv) x−1/2, −y, z; (v) x−1/2, −y+1, z; (vi) −x+1, −y+1, z−1/2; (vii) −x+1, −y+2, z−1/2; (viii) −x+2, −y+1, z−1/2; (ix) x+1/2, −y+1, z; (x) −x+3/2, y, z−1/2; (xi) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O15 | 0.841 (15) | 2.07 (3) | 2.887 (10) | 164 (8) |
O1—H1B···O5i | 0.838 (15) | 2.25 (5) | 2.915 (7) | 136 (6) |
O1—H1B···O16i | 0.838 (15) | 2.44 (5) | 3.132 (10) | 140 (6) |
O2—H2A···O23ii | 0.836 (15) | 2.03 (2) | 2.856 (9) | 169 (7) |
O2—H2B···O26iii | 0.843 (15) | 2.14 (3) | 2.932 (8) | 155 (6) |
O3—H3A···O12iv | 0.838 (15) | 2.07 (2) | 2.899 (8) | 168 (8) |
O3—H3B···O19iii | 0.838 (15) | 2.15 (3) | 2.934 (8) | 156 (7) |
O4—H4A···O27 | 0.841 (15) | 2.28 (3) | 3.074 (11) | 158 (8) |
O4—H4B···O28iii | 0.841 (15) | 2.36 (3) | 3.177 (10) | 163 (8) |
O5—H5A···O2iv | 0.837 (15) | 1.98 (3) | 2.783 (8) | 159 (7) |
O5—H5B···O19 | 0.838 (15) | 2.20 (5) | 2.903 (9) | 142 (6) |
O6—H6A···O8v | 0.837 (15) | 2.18 (4) | 2.925 (7) | 149 (7) |
O6—H6B···O19 | 0.840 (15) | 2.08 (3) | 2.891 (10) | 162 (8) |
O7—H7A···O23vi | 0.837 (15) | 2.29 (4) | 3.042 (9) | 149 (6) |
O7—H7B···O24vii | 0.840 (15) | 2.50 (5) | 3.199 (9) | 141 (6) |
O7—H7B···O27viii | 0.840 (15) | 2.57 (5) | 3.242 (11) | 138 (6) |
O8—H8A···O10ix | 0.837 (15) | 2.08 (4) | 2.805 (8) | 145 (6) |
O8—H8B···O15 | 0.838 (15) | 2.07 (3) | 2.879 (9) | 162 (7) |
O9—H9A···O27x | 0.838 (15) | 2.06 (3) | 2.865 (10) | 161 (7) |
O9—H9B···O21vi | 0.840 (15) | 2.23 (5) | 2.962 (10) | 145 (7) |
O10—H10A···O21vii | 0.840 (15) | 2.12 (3) | 2.930 (9) | 163 (7) |
O10—H10B···O28x | 0.836 (15) | 2.10 (3) | 2.902 (10) | 162 (7) |
O11—H11A···O9ix | 0.841 (15) | 2.14 (4) | 2.893 (9) | 150 (7) |
O11—H11B···O15xi | 0.841 (15) | 2.11 (3) | 2.915 (9) | 161 (7) |
O12—H12A···O26 | 0.837 (15) | 2.35 (5) | 2.995 (9) | 135 (6) |
O12—H12A···O20 | 0.837 (15) | 2.40 (4) | 3.102 (9) | 142 (6) |
O12—H12B···O24ii | 0.838 (15) | 2.03 (2) | 2.861 (9) | 171 (7) |
Symmetry codes: (i) x+1/2, −y, z; (ii) x+1, y−1, z; (iii) x, y−1, z; (iv) x−1/2, −y, z; (v) x−1/2, −y+1, z; (vi) −x+1, −y+1, z−1/2; (vii) −x+1, −y+2, z−1/2; (viii) −x+2, −y+1, z−1/2; (ix) x+1/2, −y+1, z; (x) −x+3/2, y, z−1/2; (xi) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O11i | 0.819 (10) | 2.113 (15) | 2.888 (2) | 158 (3) |
O1—H1A···O3ii | 0.823 (10) | 2.127 (10) | 2.947 (2) | 174 (3) |
O2—H2A···O11iii | 0.822 (10) | 2.166 (16) | 2.947 (2) | 159 (3) |
O2—H2B···O4iv | 0.818 (10) | 2.018 (11) | 2.830 (2) | 172 (3) |
O7—H7B···O4 | 0.812 (10) | 2.215 (18) | 2.924 (2) | 146 (3) |
O7—H7A···O1iii | 0.817 (10) | 2.059 (10) | 2.870 (2) | 172 (3) |
O8—H8A···O4v | 0.822 (10) | 2.33 (3) | 2.986 (2) | 137 (4) |
O8—H8B···O2vi | 0.820 (10) | 2.140 (13) | 2.950 (2) | 169 (5) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z+2; (vi) x−1, y, z. |
Experimental details
Ca(ClO4)2·4H2O | Ca(ClO4)2·6H2O | |
Crystal data | ||
Mr | 311.04 | 347.08 |
Crystal system, space group | Triclinic, P1 | Orthorhombic, Pca21 |
Temperature (K) | 200 | 180 |
a, b, c (Å) | 5.4886 (11), 7.8518 (15), 11.574 (2) | 10.9603 (4), 7.9667 (7), 26.7735 (18) |
α, β, γ (°) | 99.663 (16), 90.366 (16), 90.244 (16) | 90, 90, 90 |
V (Å3) | 491.71 (17) | 2337.8 (3) |
Z | 2 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.24 | 1.06 |
Crystal size (mm) | 0.04 × 0.03 × 0.02 | 0.38 × 0.31 × 0.08 |
Data collection | ||
Diffractometer | Stoe IPDS2 diffractometer | Stoe IPDS2 diffractometer |
Absorption correction | Integration Coppens (1970) | Integration (Coppens, 1970) |
Tmin, Tmax | 0.644, 0.789 | 0.684, 0.923 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2659, 2636, 2529 | 15755, 5326, 4919 |
Rint | 0.074 | 0.062 |
(sin θ/λ)max (Å−1) | 0.686 | 0.650 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.089, 1.20 | 0.042, 0.113, 1.09 |
No. of reflections | 2636 | 5326 |
No. of parameters | 168 | 380 |
No. of restraints | 12 | 37 |
H-atom treatment | All H-atom parameters refined | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 0.36, −0.75 | 0.41, −0.67 |
Absolute structure | ? | Refined as an inversion twin |
Absolute structure parameter | ? | 0.45 (9) |
Computer programs: X-AREA (Stoe & Cie, 2009), X-AREA(Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Chevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1–6. Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321–325. Web of Science CrossRef CAS Google Scholar
Dobrynina, T. A. (1984). Zh. Neorg. Khim. 29, 1818–1822. CAS Google Scholar
Gallucci, J. C. & Gerkin, R. E. (1989). Acta Cryst. C45, 1279–1284. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ghosh, S., Mukherjee, M., Seal, A. & Ray, S. (1997). Acta Cryst. B53, 639–644. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ghosh, M. & Ray, S. (1981). Z. Kristallogr. 155, 129–137. CrossRef CAS Web of Science Google Scholar
Hennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510–514. CSD CrossRef IUCr Journals Google Scholar
Johansson, G. & Sandström, M. (1978). Acta Chem. Scand. 32, 109–113. CrossRef Web of Science Google Scholar
Johansson, G., Sandström, M., Maartmann-Moe, K., Maberg, O., Scheie, A. & Louër, D. (1987). Acta Chem. Scand. Ser. A, 41, 113–116. CrossRef Web of Science Google Scholar
Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553–562. CrossRef CAS Web of Science Google Scholar
Kerr, R. A. (2013). Science, 340, 138. Google Scholar
Kim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910–4913. Web of Science CrossRef CAS PubMed Google Scholar
Lilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549–1553. CAS Google Scholar
Mani, N. V. & Ramaseshan, S. (1961). Z. Kristallogr. 115, 97–109. CrossRef CAS Google Scholar
Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678–685. Web of Science CrossRef Google Scholar
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1–11. Google Scholar
Nicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469–4471. CrossRef CAS Web of Science Google Scholar
Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409–413. Web of Science CrossRef CAS Google Scholar
Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515–520. Web of Science CrossRef CAS PubMed Google Scholar
Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579–584. Web of Science CrossRef IUCr Journals Google Scholar
Schuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521–17523. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solovyov, L. A. (2012). Acta Cryst. B68, 89–90. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
West, C. D. (1935). Z. Kristallogr. 91, 480–493. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286–297. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.