research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O

aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: Horst.Schmidt@chemie.tu-freiberg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 October 2014; accepted 11 November 2014; online 15 November 2014)

The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetra­hydrate {di-μ-aqua-bis­(tri­aqua­diperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nona­hydrate {hepta­aqua­diperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetra­hydrate consist of Sr2+ cations coordinated by five water mol­ecules and four O atoms of four perchlorate tetra­hedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water mol­ecules and thus forming chains parallel to [100]. In the tetra­hydrate, dimers of two [SrO9] polyhedra connected by two sharing water mol­ecules are formed. The structure of the nona­hydrate contains one Sr2+ cation coordinated by seven water mol­ecules and by two O atoms of two perchlorate tetra­hedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water mol­ecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures.

1. Chemical context

The amount of research into perchlorates has increased considerably in the last few years, beginning with the Phoenix Mars mission (Kim et al., 2013[Kim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910-4913.]; Kerr, 2013[Kerr, R. A. (2013). Science, 340, 138.]; Chevrier et al., 2009[Chevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1-6.]; Quinn et al., 2013[Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515-520.]; Davila et al., 2013[Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321-325.]; Gough et al., 2011[Gough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E. & Tolbert, M. A. (2011). Earth Planet. Sci. Lett. 312, 371-377.]; Navarro-González & McKay, 2011[Navarro-González, R. & McKay, C. P. (2011). J. Geophys. Res. 116, 1-6.]; Robertson & Bish, 2011[Robertson, K. & Bish, D. (2011). J. Geophys. Res. 116, E07006.]; Schuttlefield et al., 2011[Schuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521-17523.]; Navarro-González et al., 2010[Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1-11.]; Marion et al., 2010[Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678-685.]; Hecht et al., 2009[Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., Catling, D. C., Clark, B. C., Boynton, W. V., Hoffman, J., Deflores, L. P., Gospodinova, K., Kapit, J. & Smith, P. H. (2009). Science, 325, 64-67.]). Important perchlorate salts in the martian regolith are Mg and Ca perchlorates. It seemed worthwhile to complete the chemical systematics in this series of alkaline-earth perchlorates. The solubility diagram of strontium perchlorate has been investigated by several authors (Pestova et al., 2005[Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409-413.]; Lilich & Djurinskii, 1956[Lilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549-1553.]; Nicholson & Felsing, 1950[Nicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469-4471.]; Willard & Smith, 1923[Willard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286-297.]) in different temperature and concentration regions. They reported the tetra­hydrate and the hexa­hydrate to be stable phases. While re-investigating the phase diagram, we found at higher temperatures the trihydrate, the tetra­hydrate at room temperature and the nona­hydrate near the eutectic temperature. The existence of the hexa­hydrate could not be confirmed.

2. Structural commentary

The crystal structure of strontium perchlorate trihydrate contains two crystallographically distinct Sr2+cations. Both are coordinated by five water mol­ecules and four monodentately bonding perchlorate tetra­hedra (Fig. 1[link]). Four of the five water mol­ecules (O1, O6 and O3, O4) share edges between two Sr2+ cations, resulting in chains with alternating Sr1 and Sr2 cations. The chains extend parallel to [100] (Fig. 2[link]). The crystal structure of strontium perchlorate tetra­hydrate is similar to the trihydrate, but different to the magnesium analogue (Robertson & Bish, 2010[Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579-584.]; Solovyov, 2012[Solovyov, L. A. (2012). Acta Cryst. B68, 89-90.]) or mercury perchlor­ate tetra­hydrate (Johansson et al., 1966[Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553-562.]). Two symmetry-related Sr2+ cations, both coordinated by five water mol­ecules and four monodentate perchlorate tetra­hedra, form dimers by sharing two water mol­ecules. In strontium perchlorate nona­hydrate, the Sr2+ cation occupies a single crystallographic site with site symmetry m2m. It is coordinated by seven water mol­ecules and two monodentate perchlorate tetra­hedra (point group symmetry ..m; Fig. 3[link]a) within a tricapped trigonal-prismatic oxygen coordination environment (Fig. 3[link]b). Thereby, the trigonal base planes are chosen such that each oxygen atom of the perchlorate anions represents a capping atom. The third cap is provided by a water oxygen atom.

[Figure 1]
Figure 1
Coordination around the Sr12+ cation in Sr(ClO4)2·3H2O. Atoms O3 and O4 as well as O6 and O1 are shared between two different Sr2+ cations. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ii) −[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z.]
[Figure 2]
Figure 2
Formation of chains parallel [100] by sharing water mol­ecules in the structure of Sr(ClO4)2·3H2O.
[Figure 3]
Figure 3
(a) Coordination around the Sr2+ cation and (b) the resulting coordination polyhedron in the structure of Sr(ClO4)2·9H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, [{3\over 2}] − z; (ii) 2 − x, y, z; (iii) 2 − x, y, [{3\over 2}] − z.]

3. Supra­molecular features

In strontium perchlorate trihydrate, chains are formed with alternating Sr2+ cations (Fig. 2[link]). These zigzag chains are oriented parallel to [100] and are linked by edge-sharing with the perchlorate tetra­hedra (Fig. 4[link]) into a layered arrangement parallel to (001), as shown in Fig. 5[link]. Within the structure of the tetra­hydrate, each perchlorate anion coordinates to the dimeric unit of two Sr2+ cations (Fig. 6[link]). At the same time, it also coordinates to another dimeric unit. Thus, each dimeric unit is connected pairwise by perchlorate anions with four others. This yields in (001) layers stacked along [001], as visualized in Fig. 7[link]. The nona­hydrate structure contains additional lattice water mol­ecules, which are both donor and acceptor groups, resulting in a tetra­hedral arrangement of O—H⋯O hydrogen bonds. Two hydrogen bonds are formed towards the [SrO2(OH2)7] coordination polyhedra and two towards perchlorate tetra­hedra (Fig. 8[link]a, Table 1[link]). The [SrO2(OH2)7] polyhedra additionally are linked via other O—H⋯O hydrogen bonds. The resulting arrangement can be seen in a larger section of the structure (Fig. 8[link]b). O—H⋯O hydrogen bonds also dominate the crystal packing in the two other structures, in each case leading to the formation of a three-dimensional network (Tables 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for Sr(ClO4)2·9H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O7i 0.84 (1) 2.02 (2) 2.844 (4) 169 (5)
O1—H1A⋯O4 0.84 (1) 1.98 (1) 2.811 (4) 170 (5)
O2—H2A⋯O1ii 0.84 (1) 1.99 (2) 2.780 (4) 156 (5)
O3—H3A⋯O2i 0.84 (1) 2.05 (3) 2.851 (5) 158 (7)
O4—H4A⋯O6iii 0.84 (1) 2.62 (3) 3.337 (2) 144 (4)
O4—H4A⋯O7iv 0.84 (1) 2.39 (3) 3.041 (4) 135 (4)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x, -y, -z+1; (iv) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for Sr(ClO4)2·3H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.84 (1) 2.13 (4) 2.683 (4) 123 (4)
O1—H1B⋯O18i 0.84 (1) 2.07 (2) 2.858 (4) 158 (4)
O2—H2B⋯O16ii 0.84 (1) 2.10 (1) 2.923 (4) 169 (4)
O2—H2A⋯O16 0.84 (1) 2.17 (2) 2.992 (4) 167 (7)
O3—H3A⋯O18iii 0.84 (1) 1.96 (1) 2.793 (4) 172 (4)
O3—H3B⋯O17iv 0.84 (1) 2.06 (2) 2.857 (4) 159 (4)
O4—H4B⋯O21v 0.84 (1) 2.15 (2) 2.953 (4) 161 (5)
O4—H4A⋯O22vi 0.84 (1) 2.42 (2) 3.173 (4) 150 (4)
O6—H6A⋯O14iii 0.84 (7) 2.56 (7) 3.069 (4) 121 (5)
O6—H6A⋯O19vii 0.84 (7) 2.19 (7) 2.964 (4) 155 (6)
O6—H6B⋯O17viii 0.92 (6) 2.09 (6) 2.920 (4) 150 (5)
O7—H7A⋯O20ix 0.84 (1) 2.31 (4) 3.044 (4) 146 (7)
O7—H7A⋯O22vi 0.84 (1) 2.44 (7) 2.902 (4) 116 (6)
O7—H7B⋯O17viii 0.84 (1) 2.48 (5) 2.916 (4) 114 (4)
O7—H7B⋯O20v 0.84 (1) 2.25 (2) 3.071 (4) 167 (5)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+2, -z; (vii) -x, -y+1, -z; (viii) x-1, y, z; (ix) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for Sr(ClO4)2·4H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O8i 0.84 (1) 2.15 (2) 2.966 (3) 164 (4)
O9—H9B⋯O8ii 0.84 (1) 2.18 (2) 2.986 (3) 161 (5)
O10—H10B⋯O4iii 0.84 (1) 2.04 (2) 2.858 (3) 165 (6)
O10—H10A⋯O4iv 0.84 (1) 2.17 (2) 2.967 (3) 157 (5)
O11—H11B⋯O9v 0.84 (1) 1.99 (2) 2.809 (3) 164 (4)
O11—H11A⋯O8 0.84 (1) 2.38 (3) 3.093 (3) 143 (5)
O12—H12A⋯O7vi 0.84 (1) 2.23 (2) 2.986 (3) 150 (4)
O12—H12A⋯O10vii 0.84 (1) 2.31 (4) 2.820 (3) 120 (3)
O12—H12B⋯O4 0.84 (1) 2.06 (2) 2.875 (3) 164 (5)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) -x+2, -y+2, -z+1; (v) -x+1, -y+2, -z+2; (vi) x, y+1, z; (vii) -x+1, -y+2, -z+1.
[Figure 4]
Figure 4
Perchlorate tetra­hedra in the structure of Sr(ClO4)2·3H2O linking the chains (oriented parallel to [100]) into (100) layers.
[Figure 5]
Figure 5
Zigzag chains parallel to [100] in the structure of Sr(ClO4)2·3H2O, linked by perchlorate tetra­hedra into (100) layers, as viewed along [001].
[Figure 6]
Figure 6
Formation of dimers in the structure of Sr(ClO4)2·4H2O by sharing two water mol­ecules. [Symmetry code: (i) 1 − x, 2 − y, 1 − z.]
[Figure 7]
Figure 7
Formation of layers in the structure of Sr(ClO4)2·4H2O, viewed along [100].
[Figure 8]
Figure 8
(a) Coordination of the lattice water mol­ecules in the structure of Sr(ClO4)2·9H2O by hydrogen bonds. (b) A larger section of the structure in the viewing direction [010]. Dashed lines indicate hydrogen bonds.

4. Database survey

For crystal structures of other M(ClO4)2·3H2O phases, see: Gallucci & Gerkin (1988[Gallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873-1876.]; M = Ba); Hennings et al. (2014a[Hennings, E., Schmidt, H., Köhler, M. & Voigt, W. (2014a). Acta Cryst. E70, 474-476.]; Sn). For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010[Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579-584.]; Mg); Hennings et al. (2014b[Hennings, E., Schmidt, H. & Voigt, W. (2014b). Acta Cryst. E70, 489-493.]; Ca); Solovyov (2012[Solovyov, L. A. (2012). Acta Cryst. B68, 89-90.]; Mg); Johansson et al. (1966[Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553-562.]; Hg).

5. Synthesis and crystallization

Crystals of Sr(ClO4)2·3H2O were used as purchased (ABCR, 98%). The isolated crystals were stored in a freezer separated and embedded in perfluorinated ether to avoid contact with humidity. Sr(ClO4)2·4H2O crystallized from an aqueous solution of 75.08 wt% Sr(ClO4)2 at 273 K after two days and Sr(ClO4)2·9H2O from an aqueous solution of 60.12 wt% Sr(ClO4)2 at 238 K after one week. For preparing these aqueous solutions, strontium perchlorate trihydrate was used. The Sr2+ content was analyzed per complexometric titration with EDTA. The crystals are stable in the saturated aqueous solutions over a range of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures and were separated and embedded in perfluorinated ether for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Sr(ClO4)2·3H2O and Sr(ClO4)2·4H2O distance restraints were applied for all water mol­ecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For Sr(ClO4)2·9H2O Uiso values were set at 1.2Ueq(O) using a riding model approximation. Distance restraints were applied for that structure for all water mol­ecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively.

Table 4
Experimental details

  Sr(ClO4)2·3H2O Sr(ClO4)2·4H2O Sr(ClO4)2·9H2O
Crystal data
Mr 340.57 358.58 448.66
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Orthorhombic, Cmcm
Temperature (K) 100 150 100
a, b, c (Å) 8.9787 (6), 13.4870 (12), 14.7875 (10) 7.1571 (6), 7.3942 (6), 10.0231 (9) 18.7808 (15), 6.860 (3), 11.1884 (16)
α, β, γ (°) 90, 95.448 (5), 90 86.674 (7), 86.291 (7), 72.027 (6) 90, 90, 90
V3) 1782.6 (2) 503.09 (8) 1441.5 (7)
Z 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 6.70 5.94 4.20
Crystal size (mm) 0.45 × 0.34 × 0.23 0.33 × 0.25 × 0.16 0.20 × 0.11 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.081, 0.212 0.187, 0.383 0.015, 0.085
No. of measured, independent and observed [I > 2σ(I)] reflections 50555, 4941, 3337 10691, 2818, 2650 6877, 1087, 993
Rint 0.125 0.065 0.020
(sin θ/λ)max−1) 0.650 0.695 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.046, 1.09 0.028, 0.076, 1.10 0.048, 0.134, 1.16
No. of reflections 4087 2795 1087
No. of parameters 297 169 70
No. of restraints 15 12 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.56, −0.63 0.83, −1.15 1.27, −2.26
Computer programs: X-AREA and X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The amount of research into perchlorates has increased considerably in the last few years, beginning with the Phoenix Mars mission (Kim et al., 2013; Kerr, 2013; Chevrier et al., 2009; Quinn et al., 2013; Davila et al., 2013; Gough et al., 2011; Navarro-González & McKay, 2011; Robertson & Bish, 2011; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010; Hecht et al., 2009). Important perchlorate salts in the martian regolith are Mg and Ca perchlorates. It seemed worthwhile to complete the chemical systematics in this series of alkaline-earth perchlorates. The solubility diagram of strontium perchlorate has been investigated by several authors (Pestova et al., 2005; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) in different temperature and concentration regions. They reported the tetra­hydrate and the hexahydrate to be stable phases. While re-investigating the phase diagram, we found at higher temperatures the trihydrate, the tetra­hydrate at room temperature and the nonahydrate near the eutectic temperature. The existence of the hexahydrate could not be confirmed.

Structural commentary top

The crystal structure of strontium perchlorate trihydrate contains two crystallographically distinct Sr2+cations. Both are coordinated by five water molecules and four monodentately bonding perchlorate tetra­hedra (Fig. 1). Four of the five water molecules (O1, O6 and O3, O4) share edges between two Sr2+ cations, resulting in chains with alternating Sr1 and Sr2 cations. The chains extend parallel to [100] (Fig. 2). The crystal structure of strontium perchlorate tetra­hydrate is similar to the trihydrate, but different to the magnesium analogue (Robertson et al., 2010; Solovyov, 2012) or mercury perchlorate tetra­hydrate (Johansson et al., 1966). Two symmetry-related Sr2+ cations, both coordinated by five water molecules and four monodentate perchlorate tetra­hedra, form dimers by sharing two water molecules. In strontium perchlorate nonahydrate, the Sr2+ cation occupies a single crystallographic site with site symmetry m2m. It is coordinated by seven water molecules and two monodentate perchlorate tetra­hedra (point group symmetry ..m; Fig. 3a) within a tricapped trigonal-prismatic oxygen coordination environment (Fig. 3b). Thereby, the trigonal base planes are chosen such that each oxygen atom of the perchlorate anions represents a capping atom. The third cap is provided by a water oxygen atom.

Supra­molecular features top

In strontium perchlorate trihydrate, chains are formed with alternating Sr2+ cations (Fig. 2). These zigzag chains are oriented parallel to [100] and are linked by edge-sharing with the perchlorate tetra­hedra (Fig. 4) into a layered arrangement parallel to (001), as shown in Fig. 5. Within the structure of the tetra­hydrate, each perchlorate anion coordinates to the dimeric unit of two Sr2+ cations (Fig. 6). At the same time, it also coordinates to another dimeric unit. Thus, each dimeric unit is connected pairwise by perchlorate anions with four others. This yields in (001) layers stacked along [001], as visualized in Fig. 7. The nonahydrate structure contains additional lattice water molecules, which are both donor and acceptor groups, resulting in a tetra­hedral arrangement of O—H···O hydrogen bonds. Two hydrogen bonds are formed towards the [SrO2(OH2)7] coordination polyhedra and two towards perchlorate tetra­hedra (Fig. 8a, Table 1). The [SrO2(OH2)7] polyhedra additionally are linked via other O—H···O hydrogen bonds. These resulting arrangement can be seen in a larger section of the structure (Fig. 8b). O—H···O hydrogen bonds also dominate the crystal packing in the two other structures, in each case leading to the formation of a three-dimensional network (Tables 2 and 3).

Database survey top

For crystal structures of other M(ClO4)2·3H2O phases, see: Gallucci & Gerkin (1988; M = Ba); Hennings et al. (2014a; Sn). For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010; Mg); Hennings et al. (2014b; Ca); Solovyov (2012; Mg); Johansson (1966; Hg).

Synthesis and crystallization top

Crystals of Sr(ClO4)2·3H2O were used as purchased (ABCR, 98%). The isolated crystals were stored in a freezer separated and embedded in perfluorinated ether to avoid contact with humidity. Sr(ClO4)2·4H2O crystallized from an aqueous solution of 75.08 wt% Sr(ClO4)2 at 273 K after two days and Sr(ClO4)2·9H2O from an aqueous solution of 60.12 wt% Sr(ClO4)2 at 238 K after one week. For preparing these aqueous solutions, strontium perchlorate trihydrate was used. The Sr2+ content was analyzed per complexometric titration with EDTA. The crystals are stable in the saturated aqueous solutions over a range of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures and were separated and embedded in perfluorinated ether for X-ray analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 4. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Sr(ClO4)2·3 H2O and Sr(ClO4)2·4H2O distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For Sr(ClO4)2·9H2O Uiso values were set at 1.2Ueq(O) using a riding model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively.

Related literature top

For related literature, see: Chevrier et al. (2009); Davila et al. (2013); Gallucci & Gerkin (1988); Gough et al. (2011); Hecht et al. (2009); Hennings et al. (2014a, 2014b); Johansson (1966); Kerr (2013); Kim et al. (2013); Lilich & Djurinskii (1956); Marion et al. (2010); Navarro-González & McKay (2011); Navarro-González, Vargas, de la Rosa, Raga & McKay (2010); Nicholson & Felsing (1950); Pestova et al. (2005); Quinn et al. (2013); Robertson & Bish (2010, 2011); Schuttlefield et al. (2011); Solovyov (2012); Willard & Smith (1923).

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Coordination around the Sr12+ cation in Sr(ClO4)2·3H2O. Atoms O3 and O4 as well as O6 and O1 are shared between two different Sr2+ cations. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) -1/2 + x, 3/2 - y, 1/2 + z.]

Formation of chains parallel [100] by sharing water molecules in the structure of Sr(ClO4)2·3H2O.

(a) Coordination around the Sr2+ cation and (b) the resulting coordination polyhedra in the structure of Sr(ClO4)2·9H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, 3/2 - z; (ii) 2 - x, y, z; (iii) 2 - x, y, 3/2 - z.]

Perchlorate tetrahedra in the structure of Sr(ClO4)2·3H2O linking the chains (oriented parallel to [100]) into (100) layers.

Zigzag chains parallel to [100] in the structure of Sr(ClO4)2·3H2O, linked by perchlorate tetrahedra into (100) layers, as viewed along [001].

Formation of dimers in the structure of Sr(ClO4)2·4H2O by sharing two water molecules. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]

Formation of layers in the structure of Sr(ClO4)2·4H2O, viewed along [100].

(a) Coordination of the lattice water molecules in the structure of Sr(ClO4)2·9H2O by hydrogen bonds. (b) A larger section of the structure in the viewing direction [001] . Dashed lines indicate hydrogen bonds.
(SrClO4_3H2O_100K) Di-µ-aqua-aquadi-µ-perchlorato-strontium top
Crystal data top
[Sr(ClO4)2(H2O)3]F(000) = 1328
Mr = 340.57Dx = 2.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9787 (6) ÅCell parameters from 32895 reflections
b = 13.4870 (12) Åθ = 2.3–29.7°
c = 14.7875 (10) ŵ = 6.70 mm1
β = 95.448 (5)°T = 100 K
V = 1782.6 (2) Å3Plate, colourless
Z = 80.45 × 0.34 × 0.23 mm
Data collection top
Stoe IPDS 2T
diffractometer
4941 independent reflections
Radiation source: fine-focus sealed tube3337 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.125
rotation method scansθmax = 27.5°, θmin = 2.7°
Absorption correction: integration
(Coppens, 1970)
h = 1212
Tmin = 0.081, Tmax = 0.212k = 1818
50555 measured reflectionsl = 2020
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4087 reflectionsΔρmax = 0.56 e Å3
297 parametersΔρmin = 0.63 e Å3
Crystal data top
[Sr(ClO4)2(H2O)3]V = 1782.6 (2) Å3
Mr = 340.57Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.9787 (6) ŵ = 6.70 mm1
b = 13.4870 (12) ÅT = 100 K
c = 14.7875 (10) Å0.45 × 0.34 × 0.23 mm
β = 95.448 (5)°
Data collection top
Stoe IPDS 2T
diffractometer
4941 independent reflections
Absorption correction: integration
(Coppens, 1970)
3337 reflections with I > 2σ(I)
Tmin = 0.081, Tmax = 0.212Rint = 0.125
50555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02415 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.56 e Å3
4087 reflectionsΔρmin = 0.63 e Å3
297 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.17700 (4)0.73963 (3)0.16063 (2)0.00938 (8)
Sr20.67377 (4)0.76115 (3)0.16252 (2)0.00958 (8)
Cl30.76166 (10)0.55363 (6)0.34594 (6)0.01186 (17)
Cl40.20327 (9)0.63169 (6)0.08358 (6)0.01123 (17)
O20.5554 (3)0.6148 (2)0.07663 (19)0.0157 (6)
H2B0.584 (5)0.5569 (14)0.089 (3)0.022 (12)*
H2A0.503 (7)0.618 (5)0.027 (3)0.09 (3)*
O50.1514 (3)0.6834 (2)0.33230 (18)0.0173 (6)
O70.0494 (3)0.8819 (2)0.07657 (19)0.0169 (6)
H7A0.040 (8)0.939 (2)0.098 (4)0.09 (3)*
H7B0.054 (6)0.891 (4)0.0208 (11)0.049 (17)*
O110.1497 (3)0.6863 (2)0.16432 (18)0.0159 (6)
O80.2947 (3)0.8877 (2)0.26593 (18)0.0142 (6)
O30.4421 (3)0.6926 (2)0.23812 (18)0.0122 (5)
H3A0.427 (5)0.6316 (10)0.232 (3)0.015*
H3B0.446 (5)0.704 (3)0.2940 (9)0.015*
O60.0905 (3)0.6659 (2)0.0871 (2)0.0126 (5)
H6A0.074 (8)0.606 (5)0.096 (4)0.07 (2)*
H6B0.102 (7)0.682 (4)0.026 (4)0.057 (18)*
O10.9396 (3)0.7980 (2)0.24536 (19)0.0155 (6)
H1A0.954 (5)0.767 (3)0.2947 (15)0.019*
H1B0.958 (5)0.8588 (10)0.248 (3)0.019*
O40.4076 (3)0.8486 (2)0.09960 (19)0.0142 (6)
H4B0.401 (7)0.852 (4)0.0427 (8)0.055 (19)*
H4A0.385 (5)0.9070 (13)0.112 (3)0.017 (11)*
O90.2141 (3)0.7003 (2)0.00724 (17)0.0166 (6)
O120.7632 (4)0.6041 (2)0.25968 (19)0.0223 (7)
O100.6522 (3)0.8049 (2)0.00904 (17)0.0165 (5)
O130.7794 (4)0.4491 (2)0.3295 (2)0.0282 (7)
Cl10.22615 (10)0.95938 (6)0.32252 (5)0.01093 (16)
Cl20.73566 (10)0.83941 (6)0.08210 (6)0.01110 (17)
O170.8781 (3)0.78723 (18)0.07714 (16)0.0148 (5)
O150.2081 (3)0.91715 (19)0.40937 (17)0.0193 (6)
O160.3517 (3)0.59257 (18)0.09445 (17)0.0163 (5)
O140.3185 (3)1.0469 (2)0.33193 (18)0.0164 (6)
O180.0800 (3)0.98662 (17)0.27720 (17)0.0160 (5)
O200.6198 (3)0.56974 (19)0.38222 (17)0.0171 (5)
O190.1020 (3)0.55287 (19)0.06828 (18)0.0209 (6)
O220.7597 (3)0.94455 (18)0.07510 (19)0.0230 (6)
O210.8810 (3)0.5889 (3)0.4073 (2)0.0371 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00941 (16)0.01189 (17)0.00731 (16)0.00047 (14)0.00327 (12)0.00006 (14)
Sr20.00977 (16)0.01221 (17)0.00729 (16)0.00071 (14)0.00355 (12)0.00017 (14)
Cl30.0138 (4)0.0126 (4)0.0097 (4)0.0003 (3)0.0036 (3)0.0002 (3)
Cl40.0124 (4)0.0140 (4)0.0079 (3)0.0004 (3)0.0043 (3)0.0001 (3)
O20.0220 (15)0.0140 (14)0.0112 (15)0.0028 (12)0.0031 (12)0.0009 (12)
O50.0159 (14)0.0286 (17)0.0078 (14)0.0028 (12)0.0024 (11)0.0044 (12)
O70.0231 (15)0.0150 (14)0.0125 (15)0.0029 (12)0.0016 (12)0.0007 (12)
O110.0184 (15)0.0220 (16)0.0077 (13)0.0056 (12)0.0040 (11)0.0054 (11)
O80.0170 (13)0.0140 (13)0.0125 (13)0.0020 (10)0.0056 (10)0.0052 (10)
O30.0140 (13)0.0154 (13)0.0077 (13)0.0002 (11)0.0032 (10)0.0005 (11)
O60.0143 (13)0.0126 (12)0.0112 (14)0.0004 (10)0.0030 (10)0.0003 (11)
O10.0141 (14)0.0190 (13)0.0135 (14)0.0015 (11)0.0012 (11)0.0027 (11)
O40.0180 (14)0.0163 (14)0.0094 (13)0.0024 (11)0.0069 (10)0.0014 (10)
O90.0213 (14)0.0182 (12)0.0110 (12)0.0017 (11)0.0057 (11)0.0055 (10)
O120.0307 (16)0.0240 (16)0.0140 (14)0.0088 (13)0.0119 (12)0.0093 (12)
O100.0161 (13)0.0255 (13)0.0094 (12)0.0004 (11)0.0094 (10)0.0040 (10)
O130.0450 (19)0.0104 (14)0.0319 (17)0.0083 (12)0.0183 (14)0.0030 (12)
Cl10.0134 (4)0.0117 (4)0.0082 (3)0.0002 (3)0.0036 (3)0.0006 (3)
Cl20.0129 (4)0.0142 (4)0.0068 (4)0.0004 (3)0.0042 (3)0.0000 (3)
O170.0122 (11)0.0201 (13)0.0128 (12)0.0017 (9)0.0045 (9)0.0016 (9)
O150.0282 (16)0.0224 (13)0.0090 (12)0.0012 (11)0.0101 (11)0.0059 (10)
O160.0133 (13)0.0214 (13)0.0150 (13)0.0061 (10)0.0055 (10)0.0007 (10)
O140.0192 (13)0.0108 (12)0.0195 (13)0.0051 (11)0.0021 (10)0.0023 (11)
O180.0139 (12)0.0146 (12)0.0191 (13)0.0032 (9)0.0003 (10)0.0003 (10)
O200.0124 (12)0.0249 (13)0.0156 (13)0.0010 (11)0.0085 (10)0.0009 (10)
O190.0212 (14)0.0172 (13)0.0255 (14)0.0074 (11)0.0089 (11)0.0013 (11)
O220.0280 (15)0.0118 (12)0.0294 (15)0.0044 (11)0.0041 (12)0.0002 (11)
O210.0178 (15)0.077 (2)0.0173 (15)0.0198 (15)0.0059 (12)0.0202 (15)
Geometric parameters (Å, º) top
Sr1—O72.504 (3)Sr2—O6v2.797 (3)
Sr1—O92.591 (3)Cl3—O211.419 (3)
Sr1—O14i2.602 (3)Cl3—O131.442 (3)
Sr1—O32.619 (3)Cl3—O201.445 (2)
Sr1—O52.680 (3)Cl3—O121.447 (3)
Sr1—O82.686 (3)Cl4—O191.430 (3)
Sr1—O1ii2.691 (3)Cl4—O111.446 (3)
Sr1—O62.729 (3)Cl4—O91.456 (3)
Sr1—O42.760 (3)Cl4—O161.456 (3)
Sr2—O22.527 (3)Cl1—O151.428 (2)
Sr2—O13iii2.571 (3)Cl1—O141.441 (3)
Sr2—O102.594 (2)Cl1—O181.463 (3)
Sr2—O32.622 (3)O8—Cl11.453 (3)
Sr2—O12.625 (3)Cl2—O221.437 (3)
Sr2—O122.641 (3)Cl2—O5vi1.445 (3)
Sr2—O11iv2.685 (3)Cl2—O171.456 (3)
Sr2—O42.747 (3)O10—Cl21.449 (2)
O7—Sr1—O977.04 (9)O3—Sr2—O11iv63.08 (8)
O7—Sr1—O14i142.31 (9)O1—Sr2—O11iv69.95 (9)
O9—Sr1—O14i80.39 (9)O12—Sr2—O11iv74.97 (9)
O7—Sr1—O3139.15 (9)O2—Sr2—O481.63 (9)
O9—Sr1—O3100.11 (9)O13iii—Sr2—O474.05 (9)
O14i—Sr1—O374.33 (9)O10—Sr2—O465.74 (8)
O7—Sr1—O5127.65 (10)O3—Sr2—O466.16 (8)
O9—Sr1—O5151.64 (9)O1—Sr2—O4143.12 (9)
O14i—Sr1—O571.31 (9)O12—Sr2—O4137.59 (9)
O3—Sr1—O570.93 (8)O11iv—Sr2—O493.63 (9)
O7—Sr1—O881.62 (9)O2—Sr2—O6v74.85 (9)
O9—Sr1—O8128.93 (8)O13iii—Sr2—O6v110.16 (10)
O14i—Sr1—O8135.59 (9)O10—Sr2—O6v72.76 (9)
O3—Sr1—O868.60 (8)O3—Sr2—O6v132.01 (9)
O5—Sr1—O874.09 (9)O1—Sr2—O6v65.43 (8)
O7—Sr1—O1ii70.21 (9)O12—Sr2—O6v69.26 (9)
O9—Sr1—O1ii133.29 (9)O11iv—Sr2—O6v129.34 (9)
O14i—Sr1—O1ii106.42 (9)O4—Sr2—O6v136.82 (8)
O3—Sr1—O1ii126.45 (8)O21—Cl3—O13110.3 (2)
O5—Sr1—O1ii59.93 (9)O21—Cl3—O20110.54 (17)
O8—Sr1—O1ii78.34 (8)O13—Cl3—O20108.95 (17)
O7—Sr1—O674.80 (10)O21—Cl3—O12109.65 (19)
O9—Sr1—O674.45 (8)O13—Cl3—O12107.51 (18)
O14i—Sr1—O670.26 (9)O20—Cl3—O12109.82 (17)
O3—Sr1—O6144.59 (9)O19—Cl4—O11110.03 (17)
O5—Sr1—O697.05 (9)O19—Cl4—O9110.27 (16)
O8—Sr1—O6141.72 (8)O11—Cl4—O9107.98 (16)
O1ii—Sr1—O665.54 (9)O19—Cl4—O16110.49 (16)
O7—Sr1—O475.61 (9)O11—Cl4—O16109.26 (16)
O9—Sr1—O468.10 (8)O9—Cl4—O16108.76 (16)
O14i—Sr1—O4122.46 (9)Cl2vii—O5—Sr1143.63 (17)
O3—Sr1—O466.00 (8)Cl4—O11—Sr2viii150.58 (17)
O5—Sr1—O4126.51 (9)Cl1—O8—Sr1131.56 (15)
O8—Sr1—O461.80 (8)Sr1—O3—Sr2116.94 (10)
O1ii—Sr1—O4130.41 (9)Sr1—O6—Sr2ii110.15 (10)
O6—Sr1—O4136.33 (8)Sr2—O1—Sr1v116.91 (10)
O2—Sr2—O13iii148.51 (10)Sr2—O4—Sr1108.42 (9)
O2—Sr2—O1072.37 (9)Cl4—O9—Sr1150.23 (16)
O13iii—Sr2—O1079.47 (9)Cl3—O12—Sr2145.98 (17)
O2—Sr2—O368.04 (9)Cl2—O10—Sr2143.74 (16)
O13iii—Sr2—O3117.46 (9)Cl3—O13—Sr2ix167.61 (19)
O10—Sr2—O3120.57 (8)O15—Cl1—O14110.68 (16)
O2—Sr2—O1134.68 (9)O15—Cl1—O8110.06 (16)
O13iii—Sr2—O169.76 (10)O14—Cl1—O8109.22 (16)
O10—Sr2—O1113.18 (9)O15—Cl1—O18109.78 (16)
O3—Sr2—O1126.23 (8)O14—Cl1—O18108.74 (16)
O2—Sr2—O1274.83 (10)O8—Cl1—O18108.31 (15)
O13iii—Sr2—O12136.56 (10)O22—Cl2—O5vi109.62 (18)
O10—Sr2—O12134.83 (9)O22—Cl2—O10110.39 (17)
O3—Sr2—O1272.42 (9)O5vi—Cl2—O10108.66 (16)
O1—Sr2—O1271.48 (10)O22—Cl2—O17110.36 (16)
O2—Sr2—O11iv128.12 (9)O5vi—Cl2—O17109.02 (16)
O13iii—Sr2—O11iv73.98 (9)O10—Cl2—O17108.75 (15)
O10—Sr2—O11iv150.15 (9)Cl1—O14—Sr1x145.97 (17)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y, z; (vi) x+1/2, y+3/2, z1/2; (vii) x1/2, y+3/2, z+1/2; (viii) x1/2, y+3/2, z1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5v0.84 (1)2.13 (4)2.683 (4)123 (4)
O1—H1B···O18v0.84 (1)2.07 (2)2.858 (4)158 (4)
O2—H2B···O16xi0.84 (1)2.10 (1)2.923 (4)169 (4)
O2—H2A···O160.84 (1)2.17 (2)2.992 (4)167 (7)
O3—H3A···O18i0.84 (1)1.96 (1)2.793 (4)172 (4)
O3—H3B···O17vii0.84 (1)2.06 (2)2.857 (4)159 (4)
O4—H4B···O21viii0.84 (1)2.15 (2)2.953 (4)161 (5)
O4—H4A···O22xii0.84 (1)2.42 (2)3.173 (4)150 (4)
O6—H6A···O14i0.84 (7)2.56 (7)3.069 (4)121 (5)
O6—H6A···O19xiii0.84 (7)2.19 (7)2.964 (4)155 (6)
O6—H6B···O17ii0.92 (6)2.09 (6)2.920 (4)150 (5)
O7—H7A···O20x0.84 (1)2.31 (4)3.044 (4)146 (7)
O7—H7A···O22xii0.84 (1)2.44 (7)2.902 (4)116 (6)
O7—H7B···O17ii0.84 (1)2.48 (5)2.916 (4)114 (4)
O7—H7B···O20viii0.84 (1)2.25 (2)3.071 (4)167 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (v) x+1, y, z; (vii) x1/2, y+3/2, z+1/2; (viii) x1/2, y+3/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1, y+1, z; (xii) x+1, y+2, z; (xiii) x, y+1, z.
(SrClO4_4H2O_150K) Di-µ-aqua-bis(triaquadiperchloratostrontium) top
Crystal data top
[Sr(ClO4)2(H2O)4]Z = 2
Mr = 358.58F(000) = 352
Triclinic, P1Dx = 2.367 Mg m3
a = 7.1571 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3942 (6) ÅCell parameters from 16929 reflections
c = 10.0231 (9) Åθ = 2.1–29.6°
α = 86.674 (7)°µ = 5.94 mm1
β = 86.291 (7)°T = 150 K
γ = 72.027 (6)°Prism, colourless
V = 503.09 (8) Å30.33 × 0.25 × 0.16 mm
Data collection top
Stoe IPDS 2T
diffractometer
2818 independent reflections
Radiation source: fine-focus sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 6.67 pixels mm-1θmax = 29.6°, θmin = 2.9°
rotation method scansh = 99
Absorption correction: integration
(Coppens, 1970)
k = 1010
Tmin = 0.187, Tmax = 0.383l = 1313
10691 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.7614P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.83 e Å3
2795 reflectionsΔρmin = 1.15 e Å3
169 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraintsExtinction coefficient: 0.034 (2)
Crystal data top
[Sr(ClO4)2(H2O)4]γ = 72.027 (6)°
Mr = 358.58V = 503.09 (8) Å3
Triclinic, P1Z = 2
a = 7.1571 (6) ÅMo Kα radiation
b = 7.3942 (6) ŵ = 5.94 mm1
c = 10.0231 (9) ÅT = 150 K
α = 86.674 (7)°0.33 × 0.25 × 0.16 mm
β = 86.291 (7)°
Data collection top
Stoe IPDS 2T
diffractometer
2818 independent reflections
Absorption correction: integration
(Coppens, 1970)
2650 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.383Rint = 0.065
10691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02812 restraints
wR(F2) = 0.076All H-atom parameters refined
S = 1.10Δρmax = 0.83 e Å3
2795 reflectionsΔρmin = 1.15 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.53930 (4)0.92911 (3)0.72424 (2)0.01180 (9)
Cl10.97143 (9)1.15488 (9)0.70369 (6)0.01360 (14)
Cl20.35731 (9)0.48563 (9)0.78026 (6)0.01327 (14)
O110.3252 (4)0.9281 (3)0.9363 (2)0.0214 (4)
O90.7828 (3)0.7469 (3)0.9095 (2)0.0179 (4)
O120.5409 (3)1.1774 (3)0.5157 (2)0.0153 (4)
O100.8215 (3)0.6788 (3)0.6077 (2)0.0184 (4)
O40.8716 (3)1.2814 (3)0.5953 (2)0.0196 (4)
O80.2149 (3)0.5654 (3)0.8872 (2)0.0225 (5)
O60.4501 (3)0.2861 (3)0.8128 (2)0.0194 (4)
O50.5058 (3)0.5815 (3)0.7694 (2)0.0218 (5)
O21.1720 (3)1.0650 (3)0.6579 (2)0.0223 (5)
O30.8764 (4)1.0108 (3)0.7327 (3)0.0264 (5)
O10.9628 (4)1.2609 (4)0.8192 (3)0.0306 (6)
O70.2630 (4)0.5075 (4)0.6555 (2)0.0254 (5)
H11A0.287 (7)0.835 (5)0.962 (5)0.044 (15)*
H11B0.271 (6)1.025 (4)0.981 (4)0.029 (11)*
H12B0.637 (4)1.218 (6)0.524 (5)0.031 (12)*
H12A0.437 (4)1.267 (4)0.531 (4)0.025 (11)*
H10A0.926 (4)0.690 (8)0.570 (5)0.044 (14)*
H10B0.841 (9)0.561 (2)0.619 (6)0.065 (19)*
H9B0.757 (8)0.662 (6)0.960 (4)0.048 (15)*
H9A0.903 (2)0.707 (6)0.888 (5)0.031 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01137 (13)0.00999 (13)0.01328 (13)0.00231 (8)0.00157 (8)0.00154 (8)
Cl10.0113 (3)0.0126 (3)0.0167 (3)0.0036 (2)0.0019 (2)0.0024 (2)
Cl20.0148 (3)0.0106 (3)0.0139 (3)0.0037 (2)0.0001 (2)0.0009 (2)
O110.0271 (11)0.0163 (10)0.0184 (10)0.0045 (9)0.0045 (9)0.0003 (8)
O90.0161 (10)0.0197 (10)0.0172 (10)0.0057 (8)0.0004 (8)0.0057 (8)
O120.0142 (9)0.0156 (9)0.0162 (9)0.0041 (8)0.0031 (7)0.0010 (7)
O100.0151 (10)0.0141 (9)0.0240 (11)0.0030 (8)0.0037 (8)0.0009 (8)
O40.0157 (10)0.0183 (10)0.0239 (11)0.0050 (8)0.0053 (8)0.0099 (8)
O80.0222 (11)0.0207 (10)0.0226 (11)0.0050 (9)0.0071 (9)0.0028 (8)
O60.0271 (11)0.0103 (9)0.0198 (10)0.0045 (8)0.0020 (8)0.0015 (7)
O50.0196 (10)0.0149 (10)0.0326 (12)0.0088 (8)0.0040 (9)0.0002 (9)
O20.0113 (9)0.0278 (11)0.0233 (11)0.0001 (8)0.0012 (8)0.0032 (9)
O30.0218 (11)0.0207 (11)0.0400 (14)0.0130 (9)0.0091 (10)0.0148 (10)
O10.0314 (13)0.0299 (13)0.0271 (13)0.0009 (10)0.0077 (10)0.0120 (10)
O70.0273 (12)0.0262 (12)0.0197 (11)0.0024 (9)0.0098 (9)0.0013 (9)
Geometric parameters (Å, º) top
Sr1—O112.540 (2)Cl1—O31.438 (2)
Sr1—O102.551 (2)Cl1—O21.441 (2)
Sr1—O2i2.623 (2)Cl1—O41.461 (2)
Sr1—O92.642 (2)Cl2—O71.437 (2)
Sr1—O52.665 (2)Cl2—O51.444 (2)
Sr1—O32.669 (2)Cl2—O61.446 (2)
Sr1—O122.703 (2)Cl2—O81.448 (2)
Sr1—O6ii2.706 (2)O12—Sr1iii2.723 (2)
Sr1—O12iii2.723 (2)O6—Sr1iv2.706 (2)
Sr1—Sr1iii4.5867 (6)O2—Sr1v2.623 (2)
Cl1—O11.423 (2)
O11—Sr1—O10134.33 (7)O9—Sr1—O12iii132.16 (7)
O11—Sr1—O2i72.84 (8)O5—Sr1—O12iii74.43 (7)
O10—Sr1—O2i128.32 (8)O3—Sr1—O12iii116.35 (8)
O11—Sr1—O974.35 (7)O12—Sr1—O12iii64.57 (7)
O10—Sr1—O972.64 (7)O6ii—Sr1—O12iii127.67 (7)
O2i—Sr1—O9146.33 (7)O11—Sr1—Sr1iii138.29 (6)
O11—Sr1—O571.31 (7)O10—Sr1—Sr1iii75.06 (5)
O10—Sr1—O568.57 (7)O2i—Sr1—Sr1iii65.53 (5)
O2i—Sr1—O591.52 (8)O9—Sr1—Sr1iii146.06 (5)
O9—Sr1—O570.82 (7)O5—Sr1—Sr1iii106.51 (5)
O11—Sr1—O3120.25 (8)O3—Sr1—Sr1iii96.03 (6)
O10—Sr1—O369.06 (8)O12—Sr1—Sr1iii32.42 (4)
O2i—Sr1—O3144.07 (7)O6ii—Sr1—Sr1iii99.31 (5)
O9—Sr1—O362.77 (7)O12iii—Sr1—Sr1iii32.15 (4)
O5—Sr1—O3124.01 (7)O1—Cl1—O3110.34 (17)
O11—Sr1—O12135.63 (7)O1—Cl1—O2111.09 (16)
O10—Sr1—O1289.75 (7)O3—Cl1—O2108.88 (15)
O2i—Sr1—O1274.61 (7)O1—Cl1—O4109.88 (15)
O9—Sr1—O12137.04 (7)O3—Cl1—O4108.60 (14)
O5—Sr1—O12138.82 (7)O2—Cl1—O4107.99 (13)
O3—Sr1—O1274.40 (7)O7—Cl2—O5109.56 (15)
O11—Sr1—O6ii75.27 (7)O7—Cl2—O6110.02 (14)
O10—Sr1—O6ii140.31 (7)O5—Cl2—O6108.81 (14)
O2i—Sr1—O6ii80.03 (8)O7—Cl2—O8110.49 (15)
O9—Sr1—O6ii98.83 (7)O5—Cl2—O8109.30 (14)
O5—Sr1—O6ii146.54 (7)O6—Cl2—O8108.63 (14)
O3—Sr1—O6ii72.64 (8)Sr1—O12—Sr1iii115.43 (7)
O12—Sr1—O6ii70.06 (6)Cl2—O6—Sr1iv144.85 (13)
O11—Sr1—O12iii123.23 (7)Cl2—O5—Sr1140.13 (14)
O10—Sr1—O12iii64.54 (7)Cl1—O2—Sr1v146.10 (14)
O2i—Sr1—O12iii64.25 (7)Cl1—O3—Sr1144.73 (14)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O8v0.84 (1)2.15 (2)2.966 (3)164 (4)
O9—H9B···O8vi0.84 (1)2.18 (2)2.986 (3)161 (5)
O10—H10B···O4iv0.84 (1)2.04 (2)2.858 (3)165 (6)
O10—H10A···O4vii0.84 (1)2.17 (2)2.967 (3)157 (5)
O11—H11B···O9viii0.84 (1)1.99 (2)2.809 (3)164 (4)
O11—H11A···O80.84 (1)2.38 (3)3.093 (3)143 (5)
O12—H12A···O7ii0.84 (1)2.23 (2)2.986 (3)150 (4)
O12—H12A···O10iii0.84 (1)2.31 (4)2.820 (3)120 (3)
O12—H12B···O40.84 (1)2.06 (2)2.875 (3)164 (5)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y+1, z+2; (vii) x+2, y+2, z+1; (viii) x+1, y+2, z+2.
(SrClO4_9H2O_100K) Heptaaquadiperchloratostrontium dihydrate top
Crystal data top
[Sr(ClO4)2(H2O)7]·2H2ODx = 2.067 Mg m3
Mr = 448.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 5894 reflections
a = 18.7808 (15) Åθ = 8.3–29.6°
b = 6.860 (3) ŵ = 4.20 mm1
c = 11.1884 (16) ÅT = 100 K
V = 1441.5 (7) Å3Prism, colourless
Z = 40.2 × 0.11 × 0.05 mm
F(000) = 904
Data collection top
Stoe IPDS 2T
diffractometer
1087 independent reflections
Radiation source: fine-focus sealed tube993 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.020
rotation method scansθmax = 29.5°, θmin = 3.2°
Absorption correction: integration
(Coppens, 1970)
h = 2626
Tmin = 0.015, Tmax = 0.085k = 99
6877 measured reflectionsl = 1515
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Only H-atom coordinates refined
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
1087 reflectionsΔρmax = 1.27 e Å3
70 parametersΔρmin = 2.25 e Å3
Crystal data top
[Sr(ClO4)2(H2O)7]·2H2OV = 1441.5 (7) Å3
Mr = 448.66Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 18.7808 (15) ŵ = 4.20 mm1
b = 6.860 (3) ÅT = 100 K
c = 11.1884 (16) Å0.2 × 0.11 × 0.05 mm
Data collection top
Stoe IPDS 2T
diffractometer
1087 independent reflections
Absorption correction: integration
(Coppens, 1970)
993 reflections with I > 2σ(I)
Tmin = 0.015, Tmax = 0.085Rint = 0.020
6877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.134Only H-atom coordinates refined
S = 1.16Δρmax = 1.27 e Å3
1087 reflectionsΔρmin = 2.25 e Å3
70 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.50000.05870 (8)0.25000.0096 (2)
Cl10.32953 (5)0.30996 (15)0.25000.0113 (3)
O70.34391 (14)0.4247 (4)0.3560 (2)0.0177 (5)
O40.29063 (18)0.00000.50000.0203 (7)
H4A0.263 (2)0.041 (7)0.553 (3)0.024*
O20.50000.2257 (5)0.4061 (3)0.0156 (7)
H2A0.5369 (16)0.215 (6)0.448 (4)0.019*
O10.40632 (13)0.2050 (4)0.4020 (2)0.0147 (5)
H1A0.3693 (15)0.146 (6)0.424 (4)0.018*
H1B0.392 (2)0.315 (3)0.380 (5)0.018*
O50.3748 (2)0.1397 (5)0.25000.0211 (8)
O60.2561 (2)0.2480 (6)0.25000.0209 (8)
O30.50000.4459 (6)0.25000.0141 (9)
H3A0.50000.519 (9)0.310 (4)0.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0111 (3)0.0142 (3)0.0035 (3)0.0000.0000.000
Cl10.0105 (5)0.0152 (5)0.0083 (5)0.0003 (3)0.0000.000
O70.0221 (11)0.0230 (11)0.0079 (11)0.0032 (10)0.0004 (9)0.0033 (8)
O40.0117 (15)0.0346 (18)0.0147 (17)0.0000.0000.0023 (16)
O20.0144 (14)0.0219 (15)0.0106 (16)0.0000.0000.0009 (13)
O10.0143 (10)0.0202 (10)0.0095 (10)0.0006 (9)0.0009 (8)0.0001 (9)
O50.0208 (17)0.0181 (16)0.0243 (19)0.0067 (14)0.0000.000
O60.0096 (15)0.0243 (17)0.029 (2)0.0032 (12)0.0000.000
O30.021 (2)0.0122 (19)0.009 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Sr1—O22.619 (4)Sr1—O52.716 (4)
Sr1—O2i2.619 (4)Sr1—O5ii2.716 (4)
Sr1—O1ii2.645 (2)Cl1—O61.443 (4)
Sr1—O1i2.645 (2)Cl1—O51.445 (4)
Sr1—O1iii2.645 (2)Cl1—O71.449 (3)
Sr1—O12.645 (2)Cl1—O7i1.449 (3)
Sr1—O32.656 (5)
O2—Sr1—O2i83.68 (16)O2i—Sr1—O568.08 (7)
O2—Sr1—O1ii81.60 (8)O1ii—Sr1—O5139.99 (5)
O2i—Sr1—O1ii135.37 (6)O1i—Sr1—O567.32 (8)
O2—Sr1—O1i135.37 (6)O1iii—Sr1—O5139.99 (5)
O2i—Sr1—O1i81.60 (8)O1—Sr1—O567.33 (8)
O1ii—Sr1—O1i135.38 (11)O3—Sr1—O5120.07 (8)
O2—Sr1—O1iii135.37 (6)O2—Sr1—O5ii68.08 (7)
O2i—Sr1—O1iii81.60 (8)O2i—Sr1—O5ii68.08 (7)
O1ii—Sr1—O1iii80.01 (11)O1ii—Sr1—O5ii67.32 (8)
O1i—Sr1—O1iii83.41 (11)O1i—Sr1—O5ii139.99 (5)
O2—Sr1—O181.60 (8)O1iii—Sr1—O5ii67.32 (8)
O2i—Sr1—O1135.37 (6)O1—Sr1—O5ii139.99 (5)
O1ii—Sr1—O183.41 (11)O3—Sr1—O5ii120.07 (8)
O1i—Sr1—O180.01 (11)O5—Sr1—O5ii119.85 (17)
O1iii—Sr1—O1135.38 (11)O6—Cl1—O5108.9 (2)
O2—Sr1—O3138.16 (8)O6—Cl1—O7109.77 (14)
O2i—Sr1—O3138.16 (8)O5—Cl1—O7109.23 (14)
O1ii—Sr1—O367.69 (6)O6—Cl1—O7i109.77 (14)
O1i—Sr1—O367.69 (6)O5—Cl1—O7i109.24 (14)
O1iii—Sr1—O367.69 (6)O7—Cl1—O7i109.9 (2)
O1—Sr1—O367.69 (6)Cl1—O5—Sr1156.2 (2)
O2—Sr1—O568.08 (7)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O7iv0.84 (1)2.02 (2)2.844 (4)169 (5)
O1—H1A···O40.84 (1)1.98 (1)2.811 (4)170 (5)
O2—H2A···O1v0.84 (1)1.99 (2)2.780 (4)156 (5)
O3—H3A···O2iv0.84 (1)2.05 (3)2.851 (5)158 (7)
O4—H4A···O6vi0.84 (1)2.62 (3)3.337 (2)144 (4)
O4—H4A···O7vii0.84 (1)2.39 (3)3.041 (4)135 (4)
Symmetry codes: (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (SrClO4_9H2O_100K) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O7i0.838 (10)2.017 (15)2.844 (4)169 (5)
O1—H1A···O40.840 (10)1.979 (14)2.811 (4)170 (5)
O2—H2A···O1ii0.840 (10)1.99 (2)2.780 (4)156 (5)
O3—H3A···O2i0.840 (10)2.05 (3)2.851 (5)158 (7)
O4—H4A···O6iii0.839 (10)2.62 (3)3.337 (2)144 (4)
O4—H4A···O7iv0.839 (10)2.39 (3)3.041 (4)135 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (SrClO4_3H2O_100K) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.837 (10)2.13 (4)2.683 (4)123 (4)
O1—H1B···O18i0.835 (10)2.07 (2)2.858 (4)158 (4)
O2—H2B···O16ii0.837 (10)2.096 (14)2.923 (4)169 (4)
O2—H2A···O160.839 (10)2.17 (2)2.992 (4)167 (7)
O3—H3A···O18iii0.838 (10)1.961 (12)2.793 (4)172 (4)
O3—H3B···O17iv0.838 (10)2.058 (18)2.857 (4)159 (4)
O4—H4B···O21v0.839 (10)2.15 (2)2.953 (4)161 (5)
O4—H4A···O22vi0.838 (10)2.42 (2)3.173 (4)150 (4)
O6—H6A···O14iii0.84 (7)2.56 (7)3.069 (4)121 (5)
O6—H6A···O19vii0.84 (7)2.19 (7)2.964 (4)155 (6)
O6—H6B···O17viii0.92 (6)2.09 (6)2.920 (4)150 (5)
O7—H7A···O20ix0.839 (10)2.31 (4)3.044 (4)146 (7)
O7—H7A···O22vi0.839 (10)2.44 (7)2.902 (4)116 (6)
O7—H7B···O17viii0.840 (10)2.48 (5)2.916 (4)114 (4)
O7—H7B···O20v0.840 (10)2.247 (17)3.071 (4)167 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z+1/2; (v) x1/2, y+3/2, z1/2; (vi) x+1, y+2, z; (vii) x, y+1, z; (viii) x1, y, z; (ix) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (SrClO4_4H2O_150K) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O8i0.838 (10)2.152 (17)2.966 (3)164 (4)
O9—H9B···O8ii0.839 (10)2.18 (2)2.986 (3)161 (5)
O10—H10B···O4iii0.838 (10)2.039 (19)2.858 (3)165 (6)
O10—H10A···O4iv0.841 (10)2.17 (2)2.967 (3)157 (5)
O11—H11B···O9v0.838 (10)1.992 (16)2.809 (3)164 (4)
O11—H11A···O80.838 (10)2.38 (3)3.093 (3)143 (5)
O12—H12A···O7vi0.840 (10)2.23 (2)2.986 (3)150 (4)
O12—H12A···O10vii0.840 (10)2.31 (4)2.820 (3)120 (3)
O12—H12B···O40.839 (10)2.060 (17)2.875 (3)164 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y1, z; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+2; (vi) x, y+1, z; (vii) x+1, y+2, z+1.

Experimental details

[Sr(ClO4)2(H2O)3][Sr(ClO4)2(H2O)4][Sr(ClO4)2(H2O)7]·2H2O
Crystal data
Mr340.57358.58448.66
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Orthorhombic, Cmcm
Temperature (K)100150100
a, b, c (Å)8.9787 (6), 13.4870 (12), 14.7875 (10)7.1571 (6), 7.3942 (6), 10.0231 (9)18.7808 (15), 6.860 (3), 11.1884 (16)
α, β, γ (°)90, 95.448 (5), 9086.674 (7), 86.291 (7), 72.027 (6)90, 90, 90
V3)1782.6 (2)503.09 (8)1441.5 (7)
Z824
Radiation typeMo KαMo KαMo Kα
µ (mm1)6.705.944.20
Crystal size (mm)0.45 × 0.34 × 0.230.33 × 0.25 × 0.160.2 × 0.11 × 0.05
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Stoe IPDS 2T
diffractometer
Stoe IPDS 2T
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Integration
(Coppens, 1970)
Integration
(Coppens, 1970)
Tmin, Tmax0.081, 0.2120.187, 0.3830.015, 0.085
No. of measured, independent and
observed [I > 2σ(I)] reflections
50555, 4941, 3337 10691, 2818, 2650 6877, 1087, 993
Rint0.1250.0650.020
(sin θ/λ)max1)0.6500.6950.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.046, 1.09 0.028, 0.076, 1.10 0.048, 0.134, 1.16
No. of reflections408727951087
No. of parameters29716970
No. of restraints15126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refinedOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.56, 0.630.83, 1.151.27, 2.25

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1–6.  Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDavila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321–325.  Web of Science CrossRef CAS Google Scholar
First citationGallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873–1876.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E. & Tolbert, M. A. (2011). Earth Planet. Sci. Lett. 312, 371–377.  Web of Science CrossRef CAS Google Scholar
First citationHecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., Catling, D. C., Clark, B. C., Boynton, W. V., Hoffman, J., Deflores, L. P., Gospodinova, K., Kapit, J. & Smith, P. H. (2009). Science, 325, 64–67.  PubMed CAS Google Scholar
First citationHennings, E., Schmidt, H., Köhler, M. & Voigt, W. (2014a). Acta Cryst. E70, 474–476.  CSD CrossRef IUCr Journals Google Scholar
First citationHennings, E., Schmidt, H. & Voigt, W. (2014b). Acta Cryst. E70, 489–493.  CSD CrossRef IUCr Journals Google Scholar
First citationJohansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553–562.  CrossRef CAS Web of Science Google Scholar
First citationKerr, R. A. (2013). Science, 340, 138.  Google Scholar
First citationKim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910–4913.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549–1553.  CAS Google Scholar
First citationMarion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678–685.  Web of Science CrossRef Google Scholar
First citationNavarro-González, R. & McKay, C. P. (2011). J. Geophys. Res. 116, 1–6.  Google Scholar
First citationNavarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1–11.  Google Scholar
First citationNicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469–4471.  CrossRef CAS Web of Science Google Scholar
First citationPestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409–413.  Web of Science CrossRef CAS Google Scholar
First citationQuinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515–520.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobertson, K. & Bish, D. (2010). Acta Cryst. B66, 579–584.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRobertson, K. & Bish, D. (2011). J. Geophys. Res. 116, E07006.  Google Scholar
First citationSchuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521–17523.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolovyov, L. A. (2012). Acta Cryst. B68, 89–90.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286–297.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds