research communications
Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O
aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: Horst.Schmidt@chemie.tu-freiberg.de
The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetrahydrate {di-μ-aqua-bis(triaquadiperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nonahydrate {heptaaquadiperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetrahydrate consist of Sr2+ cations coordinated by five water molecules and four O atoms of four perchlorate tetrahedra in a distorted tricapped trigonal–prismatic coordination mode. The of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water molecules and thus forming chains parallel to [100]. In the tetrahydrate, dimers of two [SrO9] polyhedra connected by two sharing water molecules are formed. The structure of the nonahydrate contains one Sr2+ cation coordinated by seven water molecules and by two O atoms of two perchlorate tetrahedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water molecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water molecules as donor and ClO4 tetrahedra and water molecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures.
1. Chemical context
The amount of research into perchlorates has increased considerably in the last few years, beginning with the Phoenix Mars mission (Kim et al., 2013; Kerr, 2013; Chevrier et al., 2009; Quinn et al., 2013; Davila et al., 2013; Gough et al., 2011; Navarro-González & McKay, 2011; Robertson & Bish, 2011; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010; Hecht et al., 2009). Important perchlorate salts in the martian regolith are Mg and Ca perchlorates. It seemed worthwhile to complete the chemical systematics in this series of alkaline-earth perchlorates. The solubility diagram of strontium perchlorate has been investigated by several authors (Pestova et al., 2005; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) in different temperature and concentration regions. They reported the tetrahydrate and the hexahydrate to be stable phases. While re-investigating the phase diagram, we found at higher temperatures the trihydrate, the tetrahydrate at room temperature and the nonahydrate near the eutectic temperature. The existence of the hexahydrate could not be confirmed.
2. Structural commentary
The 2+cations. Both are coordinated by five water molecules and four monodentately bonding perchlorate tetrahedra (Fig. 1). Four of the five water molecules (O1, O6 and O3, O4) share edges between two Sr2+ cations, resulting in chains with alternating Sr1 and Sr2 cations. The chains extend parallel to [100] (Fig. 2). The of strontium perchlorate tetrahydrate is similar to the trihydrate, but different to the magnesium analogue (Robertson & Bish, 2010; Solovyov, 2012) or mercury perchlorate tetrahydrate (Johansson et al., 1966). Two symmetry-related Sr2+ cations, both coordinated by five water molecules and four monodentate perchlorate tetrahedra, form dimers by sharing two water molecules. In strontium perchlorate nonahydrate, the Sr2+ cation occupies a single crystallographic site with m2m. It is coordinated by seven water molecules and two monodentate perchlorate tetrahedra (point group symmetry ..m; Fig. 3a) within a tricapped trigonal-prismatic oxygen coordination environment (Fig. 3b). Thereby, the trigonal base planes are chosen such that each oxygen atom of the perchlorate anions represents a capping atom. The third cap is provided by a water oxygen atom.
of strontium perchlorate trihydrate contains two crystallographically distinct Sr3. Supramolecular features
In strontium perchlorate trihydrate, chains are formed with alternating Sr2+ cations (Fig. 2). These zigzag chains are oriented parallel to [100] and are linked by edge-sharing with the perchlorate tetrahedra (Fig. 4) into a layered arrangement parallel to (001), as shown in Fig. 5. Within the structure of the tetrahydrate, each perchlorate anion coordinates to the dimeric unit of two Sr2+ cations (Fig. 6). At the same time, it also coordinates to another dimeric unit. Thus, each dimeric unit is connected pairwise by perchlorate anions with four others. This yields in (001) layers stacked along [001], as visualized in Fig. 7. The nonahydrate structure contains additional lattice water molecules, which are both donor and acceptor groups, resulting in a tetrahedral arrangement of O—H⋯O hydrogen bonds. Two hydrogen bonds are formed towards the [SrO2(OH2)7] coordination polyhedra and two towards perchlorate tetrahedra (Fig. 8a, Table 1). The [SrO2(OH2)7] polyhedra additionally are linked via other O—H⋯O hydrogen bonds. The resulting arrangement can be seen in a larger section of the structure (Fig. 8b). O—H⋯O hydrogen bonds also dominate the crystal packing in the two other structures, in each case leading to the formation of a three-dimensional network (Tables 2 and 3).
|
|
4. Database survey
For crystal structures of other M(ClO4)2·3H2O phases, see: Gallucci & Gerkin (1988; M = Ba); Hennings et al. (2014a; Sn). For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010; Mg); Hennings et al. (2014b; Ca); Solovyov (2012; Mg); Johansson et al. (1966; Hg).
5. Synthesis and crystallization
Crystals of Sr(ClO4)2·3H2O were used as purchased (ABCR, 98%). The isolated crystals were stored in a freezer separated and embedded in perfluorinated ether to avoid contact with humidity. Sr(ClO4)2·4H2O crystallized from an aqueous solution of 75.08 wt% Sr(ClO4)2 at 273 K after two days and Sr(ClO4)2·9H2O from an aqueous solution of 60.12 wt% Sr(ClO4)2 at 238 K after one week. For preparing these aqueous solutions, strontium perchlorate trihydrate was used. The Sr2+ content was analyzed per with EDTA. The crystals are stable in the saturated aqueous solutions over a range of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures and were separated and embedded in perfluorinated ether for X-ray analysis.
6. Refinement
Crystal data, data collection and structure . The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Sr(ClO4)2·3H2O and Sr(ClO4)2·4H2O distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For Sr(ClO4)2·9H2O Uiso values were set at 1.2Ueq(O) using a riding model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively.
details are summarized in Table 4
|
Supporting information
10.1107/S1600536814024726/wm5080sup1.cif
contains datablocks SrClO4_3H2O_100K, SrClO4_4H2O_150K, SrClO4_9H2O_100K. DOI:Structure factors: contains datablock SrClO4_3H2O_100K. DOI: 10.1107/S1600536814024726/wm5080SrClO4_3H2O_100Ksup2.hkl
Structure factors: contains datablock SrClO4_4H2O_150K. DOI: 10.1107/S1600536814024726/wm5080SrClO4_4H2O_150Ksup3.hkl
Structure factors: contains datablock SrClO4_9H2O_100K. DOI: 10.1107/S1600536814024726/wm5080SrClO4_9H2O_100Ksup4.hkl
Supporting information file. DOI: 10.1107/S1600536814024726/wm5080SrClO4_3H2O_100Ksup5.cml
Supporting information file. DOI: 10.1107/S1600536814024726/wm5080SrClO4_4H2O_150Ksup6.cml
Supporting information file. DOI: 10.1107/S1600536814024726/wm5080SrClO4_9H2O_100Ksup7.cml
The amount of research into perchlorates has increased considerably in the last few years, beginning with the Phoenix Mars mission (Kim et al., 2013; Kerr, 2013; Chevrier et al., 2009; Quinn et al., 2013; Davila et al., 2013; Gough et al., 2011; Navarro-González & McKay, 2011; Robertson & Bish, 2011; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010; Hecht et al., 2009). Important perchlorate salts in the martian regolith are Mg and Ca perchlorates. It seemed worthwhile to complete the chemical systematics in this series of alkaline-earth perchlorates. The solubility diagram of strontium perchlorate has been investigated by several authors (Pestova et al., 2005; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) in different temperature and concentration regions. They reported the tetrahydrate and the hexahydrate to be stable phases. While re-investigating the phase diagram, we found at higher temperatures the trihydrate, the tetrahydrate at room temperature and the nonahydrate near the eutectic temperature. The existence of the hexahydrate could not be confirmed.
The
of strontium perchlorate trihydrate contains two crystallographically distinct Sr2+cations. Both are coordinated by five water molecules and four monodentately bonding perchlorate tetrahedra (Fig. 1). Four of the five water molecules (O1, O6 and O3, O4) share edges between two Sr2+ cations, resulting in chains with alternating Sr1 and Sr2 cations. The chains extend parallel to [100] (Fig. 2). The of strontium perchlorate tetrahydrate is similar to the trihydrate, but different to the magnesium analogue (Robertson et al., 2010; Solovyov, 2012) or mercury perchlorate tetrahydrate (Johansson et al., 1966). Two symmetry-related Sr2+ cations, both coordinated by five water molecules and four monodentate perchlorate tetrahedra, form dimers by sharing two water molecules. In strontium perchlorate nonahydrate, the Sr2+ cation occupies a single crystallographic site with m2m. It is coordinated by seven water molecules and two monodentate perchlorate tetrahedra (point group symmetry ..m; Fig. 3a) within a tricapped trigonal-prismatic oxygen coordination environment (Fig. 3b). Thereby, the trigonal base planes are chosen such that each oxygen atom of the perchlorate anions represents a capping atom. The third cap is provided by a water oxygen atom.In strontium perchlorate trihydrate, chains are formed with alternating Sr2+ cations (Fig. 2). These zigzag chains are oriented parallel to [100] and are linked by edge-sharing with the perchlorate tetrahedra (Fig. 4) into a layered arrangement parallel to (001), as shown in Fig. 5. Within the structure of the tetrahydrate, each perchlorate anion coordinates to the dimeric unit of two Sr2+ cations (Fig. 6). At the same time, it also coordinates to another dimeric unit. Thus, each dimeric unit is connected pairwise by perchlorate anions with four others. This yields in (001) layers stacked along [001], as visualized in Fig. 7. The nonahydrate structure contains additional lattice water molecules, which are both donor and acceptor groups, resulting in a tetrahedral arrangement of O—H···O hydrogen bonds. Two hydrogen bonds are formed towards the [SrO2(OH2)7] coordination polyhedra and two towards perchlorate tetrahedra (Fig. 8a, Table 1). The [SrO2(OH2)7] polyhedra additionally are linked via other O—H···O hydrogen bonds. These resulting arrangement can be seen in a larger section of the structure (Fig. 8b). O—H···O hydrogen bonds also dominate the crystal packing in the two other structures, in each case leading to the formation of a three-dimensional network (Tables 2 and 3).
For crystal structures of other M(ClO4)2·3H2O phases, see: Gallucci & Gerkin (1988; M = Ba); Hennings et al. (2014a; Sn). For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010; Mg); Hennings et al. (2014b; Ca); Solovyov (2012; Mg); Johansson (1966; Hg).
Crystals of Sr(ClO4)2·3H2O were used as purchased (ABCR, 98%). The isolated crystals were stored in a freezer separated and embedded in perfluorinated ether to avoid contact with humidity. Sr(ClO4)2·4H2O crystallized from an aqueous solution of 75.08 wt% Sr(ClO4)2 at 273 K after two days and Sr(ClO4)2·9H2O from an aqueous solution of 60.12 wt% Sr(ClO4)2 at 238 K after one week. For preparing these aqueous solutions, strontium perchlorate trihydrate was used. The Sr2+ content was analyzed per
with EDTA. The crystals are stable in the saturated aqueous solutions over a range of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures and were separated and embedded in perfluorinated ether for X-ray analysis.Crystal data, data collection and structure
details are summarized in Table 4. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Sr(ClO4)2·3 H2O and Sr(ClO4)2·4H2O distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For Sr(ClO4)2·9H2O Uiso values were set at 1.2Ueq(O) using a riding model approximation. Distance restraints were applied for that structure for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively.For all compounds, data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Coordination around the Sr12+ cation in Sr(ClO4)2·3H2O. Atoms O3 and O4 as well as O6 and O1 are shared between two different Sr2+ cations. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) -1/2 + x, 3/2 - y, 1/2 + z.] Formation of chains parallel [100] by sharing water molecules in the structure of Sr(ClO4)2·3H2O. (a) Coordination around the Sr2+ cation and (b) the resulting coordination polyhedra in the structure of Sr(ClO4)2·9H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, 3/2 - z; (ii) 2 - x, y, z; (iii) 2 - x, y, 3/2 - z.] Perchlorate tetrahedra in the structure of Sr(ClO4)2·3H2O linking the chains (oriented parallel to [100]) into (100) layers. Zigzag chains parallel to [100] in the structure of Sr(ClO4)2·3H2O, linked by perchlorate tetrahedra into (100) layers, as viewed along [001]. Formation of dimers in the structure of Sr(ClO4)2·4H2O by sharing two water molecules. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.] Formation of layers in the structure of Sr(ClO4)2·4H2O, viewed along [100]. (a) Coordination of the lattice water molecules in the structure of Sr(ClO4)2·9H2O by hydrogen bonds. (b) A larger section of the structure in the viewing direction [001] . Dashed lines indicate hydrogen bonds. |
[Sr(ClO4)2(H2O)3] | F(000) = 1328 |
Mr = 340.57 | Dx = 2.538 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9787 (6) Å | Cell parameters from 32895 reflections |
b = 13.4870 (12) Å | θ = 2.3–29.7° |
c = 14.7875 (10) Å | µ = 6.70 mm−1 |
β = 95.448 (5)° | T = 100 K |
V = 1782.6 (2) Å3 | Plate, colourless |
Z = 8 | 0.45 × 0.34 × 0.23 mm |
Stoe IPDS 2T diffractometer | 4941 independent reflections |
Radiation source: fine-focus sealed tube | 3337 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.125 |
rotation method scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: integration (Coppens, 1970) | h = −12→12 |
Tmin = 0.081, Tmax = 0.212 | k = −18→18 |
50555 measured reflections | l = −20→20 |
Refinement on F2 | 15 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.015P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
4087 reflections | Δρmax = 0.56 e Å−3 |
297 parameters | Δρmin = −0.63 e Å−3 |
[Sr(ClO4)2(H2O)3] | V = 1782.6 (2) Å3 |
Mr = 340.57 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.9787 (6) Å | µ = 6.70 mm−1 |
b = 13.4870 (12) Å | T = 100 K |
c = 14.7875 (10) Å | 0.45 × 0.34 × 0.23 mm |
β = 95.448 (5)° |
Stoe IPDS 2T diffractometer | 4941 independent reflections |
Absorption correction: integration (Coppens, 1970) | 3337 reflections with I > 2σ(I) |
Tmin = 0.081, Tmax = 0.212 | Rint = 0.125 |
50555 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 15 restraints |
wR(F2) = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.56 e Å−3 |
4087 reflections | Δρmin = −0.63 e Å−3 |
297 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.17700 (4) | 0.73963 (3) | 0.16063 (2) | 0.00938 (8) | |
Sr2 | 0.67377 (4) | 0.76115 (3) | 0.16252 (2) | 0.00958 (8) | |
Cl3 | 0.76166 (10) | 0.55363 (6) | 0.34594 (6) | 0.01186 (17) | |
Cl4 | 0.20327 (9) | 0.63169 (6) | −0.08358 (6) | 0.01123 (17) | |
O2 | 0.5554 (3) | 0.6148 (2) | 0.07663 (19) | 0.0157 (6) | |
H2B | 0.584 (5) | 0.5569 (14) | 0.089 (3) | 0.022 (12)* | |
H2A | 0.503 (7) | 0.618 (5) | 0.027 (3) | 0.09 (3)* | |
O5 | 0.1514 (3) | 0.6834 (2) | 0.33230 (18) | 0.0173 (6) | |
O7 | 0.0494 (3) | 0.8819 (2) | 0.07657 (19) | 0.0169 (6) | |
H7A | 0.040 (8) | 0.939 (2) | 0.098 (4) | 0.09 (3)* | |
H7B | 0.054 (6) | 0.891 (4) | 0.0208 (11) | 0.049 (17)* | |
O11 | 0.1497 (3) | 0.6863 (2) | −0.16432 (18) | 0.0159 (6) | |
O8 | 0.2947 (3) | 0.8877 (2) | 0.26593 (18) | 0.0142 (6) | |
O3 | 0.4421 (3) | 0.6926 (2) | 0.23812 (18) | 0.0122 (5) | |
H3A | 0.427 (5) | 0.6316 (10) | 0.232 (3) | 0.015* | |
H3B | 0.446 (5) | 0.704 (3) | 0.2940 (9) | 0.015* | |
O6 | −0.0905 (3) | 0.6659 (2) | 0.0871 (2) | 0.0126 (5) | |
H6A | −0.074 (8) | 0.606 (5) | 0.096 (4) | 0.07 (2)* | |
H6B | −0.102 (7) | 0.682 (4) | 0.026 (4) | 0.057 (18)* | |
O1 | 0.9396 (3) | 0.7980 (2) | 0.24536 (19) | 0.0155 (6) | |
H1A | 0.954 (5) | 0.767 (3) | 0.2947 (15) | 0.019* | |
H1B | 0.958 (5) | 0.8588 (10) | 0.248 (3) | 0.019* | |
O4 | 0.4076 (3) | 0.8486 (2) | 0.09960 (19) | 0.0142 (6) | |
H4B | 0.401 (7) | 0.852 (4) | 0.0427 (8) | 0.055 (19)* | |
H4A | 0.385 (5) | 0.9070 (13) | 0.112 (3) | 0.017 (11)* | |
O9 | 0.2141 (3) | 0.7003 (2) | −0.00724 (17) | 0.0166 (6) | |
O12 | 0.7632 (4) | 0.6041 (2) | 0.25968 (19) | 0.0223 (7) | |
O10 | 0.6522 (3) | 0.8049 (2) | −0.00904 (17) | 0.0165 (5) | |
O13 | 0.7794 (4) | 0.4491 (2) | 0.3295 (2) | 0.0282 (7) | |
Cl1 | 0.22615 (10) | 0.95938 (6) | 0.32252 (5) | 0.01093 (16) | |
Cl2 | 0.73566 (10) | 0.83941 (6) | −0.08210 (6) | 0.01110 (17) | |
O17 | 0.8781 (3) | 0.78723 (18) | −0.07714 (16) | 0.0148 (5) | |
O15 | 0.2081 (3) | 0.91715 (19) | 0.40937 (17) | 0.0193 (6) | |
O16 | 0.3517 (3) | 0.59257 (18) | −0.09445 (17) | 0.0163 (5) | |
O14 | 0.3185 (3) | 1.0469 (2) | 0.33193 (18) | 0.0164 (6) | |
O18 | 0.0800 (3) | 0.98662 (17) | 0.27720 (17) | 0.0160 (5) | |
O20 | 0.6198 (3) | 0.56974 (19) | 0.38222 (17) | 0.0171 (5) | |
O19 | 0.1020 (3) | 0.55287 (19) | −0.06828 (18) | 0.0209 (6) | |
O22 | 0.7597 (3) | 0.94455 (18) | −0.07510 (19) | 0.0230 (6) | |
O21 | 0.8810 (3) | 0.5889 (3) | 0.4073 (2) | 0.0371 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00941 (16) | 0.01189 (17) | 0.00731 (16) | 0.00047 (14) | 0.00327 (12) | 0.00006 (14) |
Sr2 | 0.00977 (16) | 0.01221 (17) | 0.00729 (16) | −0.00071 (14) | 0.00355 (12) | 0.00017 (14) |
Cl3 | 0.0138 (4) | 0.0126 (4) | 0.0097 (4) | −0.0003 (3) | 0.0036 (3) | 0.0002 (3) |
Cl4 | 0.0124 (4) | 0.0140 (4) | 0.0079 (3) | 0.0004 (3) | 0.0043 (3) | −0.0001 (3) |
O2 | 0.0220 (15) | 0.0140 (14) | 0.0112 (15) | −0.0028 (12) | 0.0031 (12) | −0.0009 (12) |
O5 | 0.0159 (14) | 0.0286 (17) | 0.0078 (14) | −0.0028 (12) | 0.0024 (11) | 0.0044 (12) |
O7 | 0.0231 (15) | 0.0150 (14) | 0.0125 (15) | 0.0029 (12) | 0.0016 (12) | −0.0007 (12) |
O11 | 0.0184 (15) | 0.0220 (16) | 0.0077 (13) | 0.0056 (12) | 0.0040 (11) | 0.0054 (11) |
O8 | 0.0170 (13) | 0.0140 (13) | 0.0125 (13) | 0.0020 (10) | 0.0056 (10) | −0.0052 (10) |
O3 | 0.0140 (13) | 0.0154 (13) | 0.0077 (13) | 0.0002 (11) | 0.0032 (10) | −0.0005 (11) |
O6 | 0.0143 (13) | 0.0126 (12) | 0.0112 (14) | −0.0004 (10) | 0.0030 (10) | 0.0003 (11) |
O1 | 0.0141 (14) | 0.0190 (13) | 0.0135 (14) | 0.0015 (11) | 0.0012 (11) | −0.0027 (11) |
O4 | 0.0180 (14) | 0.0163 (14) | 0.0094 (13) | 0.0024 (11) | 0.0069 (10) | 0.0014 (10) |
O9 | 0.0213 (14) | 0.0182 (12) | 0.0110 (12) | −0.0017 (11) | 0.0057 (11) | −0.0055 (10) |
O12 | 0.0307 (16) | 0.0240 (16) | 0.0140 (14) | 0.0088 (13) | 0.0119 (12) | 0.0093 (12) |
O10 | 0.0161 (13) | 0.0255 (13) | 0.0094 (12) | 0.0004 (11) | 0.0094 (10) | 0.0040 (10) |
O13 | 0.0450 (19) | 0.0104 (14) | 0.0319 (17) | 0.0083 (12) | 0.0183 (14) | 0.0030 (12) |
Cl1 | 0.0134 (4) | 0.0117 (4) | 0.0082 (3) | −0.0002 (3) | 0.0036 (3) | −0.0006 (3) |
Cl2 | 0.0129 (4) | 0.0142 (4) | 0.0068 (4) | −0.0004 (3) | 0.0042 (3) | 0.0000 (3) |
O17 | 0.0122 (11) | 0.0201 (13) | 0.0128 (12) | 0.0017 (9) | 0.0045 (9) | 0.0016 (9) |
O15 | 0.0282 (16) | 0.0224 (13) | 0.0090 (12) | 0.0012 (11) | 0.0101 (11) | 0.0059 (10) |
O16 | 0.0133 (13) | 0.0214 (13) | 0.0150 (13) | 0.0061 (10) | 0.0055 (10) | 0.0007 (10) |
O14 | 0.0192 (13) | 0.0108 (12) | 0.0195 (13) | −0.0051 (11) | 0.0021 (10) | −0.0023 (11) |
O18 | 0.0139 (12) | 0.0146 (12) | 0.0191 (13) | 0.0032 (9) | 0.0003 (10) | −0.0003 (10) |
O20 | 0.0124 (12) | 0.0249 (13) | 0.0156 (13) | 0.0010 (11) | 0.0085 (10) | 0.0009 (10) |
O19 | 0.0212 (14) | 0.0172 (13) | 0.0255 (14) | −0.0074 (11) | 0.0089 (11) | 0.0013 (11) |
O22 | 0.0280 (15) | 0.0118 (12) | 0.0294 (15) | −0.0044 (11) | 0.0041 (12) | 0.0002 (11) |
O21 | 0.0178 (15) | 0.077 (2) | 0.0173 (15) | −0.0198 (15) | 0.0059 (12) | −0.0202 (15) |
Sr1—O7 | 2.504 (3) | Sr2—O6v | 2.797 (3) |
Sr1—O9 | 2.591 (3) | Cl3—O21 | 1.419 (3) |
Sr1—O14i | 2.602 (3) | Cl3—O13 | 1.442 (3) |
Sr1—O3 | 2.619 (3) | Cl3—O20 | 1.445 (2) |
Sr1—O5 | 2.680 (3) | Cl3—O12 | 1.447 (3) |
Sr1—O8 | 2.686 (3) | Cl4—O19 | 1.430 (3) |
Sr1—O1ii | 2.691 (3) | Cl4—O11 | 1.446 (3) |
Sr1—O6 | 2.729 (3) | Cl4—O9 | 1.456 (3) |
Sr1—O4 | 2.760 (3) | Cl4—O16 | 1.456 (3) |
Sr2—O2 | 2.527 (3) | Cl1—O15 | 1.428 (2) |
Sr2—O13iii | 2.571 (3) | Cl1—O14 | 1.441 (3) |
Sr2—O10 | 2.594 (2) | Cl1—O18 | 1.463 (3) |
Sr2—O3 | 2.622 (3) | O8—Cl1 | 1.453 (3) |
Sr2—O1 | 2.625 (3) | Cl2—O22 | 1.437 (3) |
Sr2—O12 | 2.641 (3) | Cl2—O5vi | 1.445 (3) |
Sr2—O11iv | 2.685 (3) | Cl2—O17 | 1.456 (3) |
Sr2—O4 | 2.747 (3) | O10—Cl2 | 1.449 (2) |
O7—Sr1—O9 | 77.04 (9) | O3—Sr2—O11iv | 63.08 (8) |
O7—Sr1—O14i | 142.31 (9) | O1—Sr2—O11iv | 69.95 (9) |
O9—Sr1—O14i | 80.39 (9) | O12—Sr2—O11iv | 74.97 (9) |
O7—Sr1—O3 | 139.15 (9) | O2—Sr2—O4 | 81.63 (9) |
O9—Sr1—O3 | 100.11 (9) | O13iii—Sr2—O4 | 74.05 (9) |
O14i—Sr1—O3 | 74.33 (9) | O10—Sr2—O4 | 65.74 (8) |
O7—Sr1—O5 | 127.65 (10) | O3—Sr2—O4 | 66.16 (8) |
O9—Sr1—O5 | 151.64 (9) | O1—Sr2—O4 | 143.12 (9) |
O14i—Sr1—O5 | 71.31 (9) | O12—Sr2—O4 | 137.59 (9) |
O3—Sr1—O5 | 70.93 (8) | O11iv—Sr2—O4 | 93.63 (9) |
O7—Sr1—O8 | 81.62 (9) | O2—Sr2—O6v | 74.85 (9) |
O9—Sr1—O8 | 128.93 (8) | O13iii—Sr2—O6v | 110.16 (10) |
O14i—Sr1—O8 | 135.59 (9) | O10—Sr2—O6v | 72.76 (9) |
O3—Sr1—O8 | 68.60 (8) | O3—Sr2—O6v | 132.01 (9) |
O5—Sr1—O8 | 74.09 (9) | O1—Sr2—O6v | 65.43 (8) |
O7—Sr1—O1ii | 70.21 (9) | O12—Sr2—O6v | 69.26 (9) |
O9—Sr1—O1ii | 133.29 (9) | O11iv—Sr2—O6v | 129.34 (9) |
O14i—Sr1—O1ii | 106.42 (9) | O4—Sr2—O6v | 136.82 (8) |
O3—Sr1—O1ii | 126.45 (8) | O21—Cl3—O13 | 110.3 (2) |
O5—Sr1—O1ii | 59.93 (9) | O21—Cl3—O20 | 110.54 (17) |
O8—Sr1—O1ii | 78.34 (8) | O13—Cl3—O20 | 108.95 (17) |
O7—Sr1—O6 | 74.80 (10) | O21—Cl3—O12 | 109.65 (19) |
O9—Sr1—O6 | 74.45 (8) | O13—Cl3—O12 | 107.51 (18) |
O14i—Sr1—O6 | 70.26 (9) | O20—Cl3—O12 | 109.82 (17) |
O3—Sr1—O6 | 144.59 (9) | O19—Cl4—O11 | 110.03 (17) |
O5—Sr1—O6 | 97.05 (9) | O19—Cl4—O9 | 110.27 (16) |
O8—Sr1—O6 | 141.72 (8) | O11—Cl4—O9 | 107.98 (16) |
O1ii—Sr1—O6 | 65.54 (9) | O19—Cl4—O16 | 110.49 (16) |
O7—Sr1—O4 | 75.61 (9) | O11—Cl4—O16 | 109.26 (16) |
O9—Sr1—O4 | 68.10 (8) | O9—Cl4—O16 | 108.76 (16) |
O14i—Sr1—O4 | 122.46 (9) | Cl2vii—O5—Sr1 | 143.63 (17) |
O3—Sr1—O4 | 66.00 (8) | Cl4—O11—Sr2viii | 150.58 (17) |
O5—Sr1—O4 | 126.51 (9) | Cl1—O8—Sr1 | 131.56 (15) |
O8—Sr1—O4 | 61.80 (8) | Sr1—O3—Sr2 | 116.94 (10) |
O1ii—Sr1—O4 | 130.41 (9) | Sr1—O6—Sr2ii | 110.15 (10) |
O6—Sr1—O4 | 136.33 (8) | Sr2—O1—Sr1v | 116.91 (10) |
O2—Sr2—O13iii | 148.51 (10) | Sr2—O4—Sr1 | 108.42 (9) |
O2—Sr2—O10 | 72.37 (9) | Cl4—O9—Sr1 | 150.23 (16) |
O13iii—Sr2—O10 | 79.47 (9) | Cl3—O12—Sr2 | 145.98 (17) |
O2—Sr2—O3 | 68.04 (9) | Cl2—O10—Sr2 | 143.74 (16) |
O13iii—Sr2—O3 | 117.46 (9) | Cl3—O13—Sr2ix | 167.61 (19) |
O10—Sr2—O3 | 120.57 (8) | O15—Cl1—O14 | 110.68 (16) |
O2—Sr2—O1 | 134.68 (9) | O15—Cl1—O8 | 110.06 (16) |
O13iii—Sr2—O1 | 69.76 (10) | O14—Cl1—O8 | 109.22 (16) |
O10—Sr2—O1 | 113.18 (9) | O15—Cl1—O18 | 109.78 (16) |
O3—Sr2—O1 | 126.23 (8) | O14—Cl1—O18 | 108.74 (16) |
O2—Sr2—O12 | 74.83 (10) | O8—Cl1—O18 | 108.31 (15) |
O13iii—Sr2—O12 | 136.56 (10) | O22—Cl2—O5vi | 109.62 (18) |
O10—Sr2—O12 | 134.83 (9) | O22—Cl2—O10 | 110.39 (17) |
O3—Sr2—O12 | 72.42 (9) | O5vi—Cl2—O10 | 108.66 (16) |
O1—Sr2—O12 | 71.48 (10) | O22—Cl2—O17 | 110.36 (16) |
O2—Sr2—O11iv | 128.12 (9) | O5vi—Cl2—O17 | 109.02 (16) |
O13iii—Sr2—O11iv | 73.98 (9) | O10—Cl2—O17 | 108.75 (15) |
O10—Sr2—O11iv | 150.15 (9) | Cl1—O14—Sr1x | 145.97 (17) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) x+1, y, z; (vi) x+1/2, −y+3/2, z−1/2; (vii) x−1/2, −y+3/2, z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+3/2, y−1/2, −z+1/2; (x) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5v | 0.84 (1) | 2.13 (4) | 2.683 (4) | 123 (4) |
O1—H1B···O18v | 0.84 (1) | 2.07 (2) | 2.858 (4) | 158 (4) |
O2—H2B···O16xi | 0.84 (1) | 2.10 (1) | 2.923 (4) | 169 (4) |
O2—H2A···O16 | 0.84 (1) | 2.17 (2) | 2.992 (4) | 167 (7) |
O3—H3A···O18i | 0.84 (1) | 1.96 (1) | 2.793 (4) | 172 (4) |
O3—H3B···O17vii | 0.84 (1) | 2.06 (2) | 2.857 (4) | 159 (4) |
O4—H4B···O21viii | 0.84 (1) | 2.15 (2) | 2.953 (4) | 161 (5) |
O4—H4A···O22xii | 0.84 (1) | 2.42 (2) | 3.173 (4) | 150 (4) |
O6—H6A···O14i | 0.84 (7) | 2.56 (7) | 3.069 (4) | 121 (5) |
O6—H6A···O19xiii | 0.84 (7) | 2.19 (7) | 2.964 (4) | 155 (6) |
O6—H6B···O17ii | 0.92 (6) | 2.09 (6) | 2.920 (4) | 150 (5) |
O7—H7A···O20x | 0.84 (1) | 2.31 (4) | 3.044 (4) | 146 (7) |
O7—H7A···O22xii | 0.84 (1) | 2.44 (7) | 2.902 (4) | 116 (6) |
O7—H7B···O17ii | 0.84 (1) | 2.48 (5) | 2.916 (4) | 114 (4) |
O7—H7B···O20viii | 0.84 (1) | 2.25 (2) | 3.071 (4) | 167 (5) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1, y, z; (v) x+1, y, z; (vii) x−1/2, −y+3/2, z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (x) −x+1/2, y+1/2, −z+1/2; (xi) −x+1, −y+1, −z; (xii) −x+1, −y+2, −z; (xiii) −x, −y+1, −z. |
[Sr(ClO4)2(H2O)4] | Z = 2 |
Mr = 358.58 | F(000) = 352 |
Triclinic, P1 | Dx = 2.367 Mg m−3 |
a = 7.1571 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3942 (6) Å | Cell parameters from 16929 reflections |
c = 10.0231 (9) Å | θ = 2.1–29.6° |
α = 86.674 (7)° | µ = 5.94 mm−1 |
β = 86.291 (7)° | T = 150 K |
γ = 72.027 (6)° | Prism, colourless |
V = 503.09 (8) Å3 | 0.33 × 0.25 × 0.16 mm |
Stoe IPDS 2T diffractometer | 2818 independent reflections |
Radiation source: fine-focus sealed tube | 2650 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.6°, θmin = 2.9° |
rotation method scans | h = −9→9 |
Absorption correction: integration (Coppens, 1970) | k = −10→10 |
Tmin = 0.187, Tmax = 0.383 | l = −13→13 |
10691 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0332P)2 + 1.7614P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max = 0.001 |
S = 1.10 | Δρmax = 0.83 e Å−3 |
2795 reflections | Δρmin = −1.15 e Å−3 |
169 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
12 restraints | Extinction coefficient: 0.034 (2) |
[Sr(ClO4)2(H2O)4] | γ = 72.027 (6)° |
Mr = 358.58 | V = 503.09 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1571 (6) Å | Mo Kα radiation |
b = 7.3942 (6) Å | µ = 5.94 mm−1 |
c = 10.0231 (9) Å | T = 150 K |
α = 86.674 (7)° | 0.33 × 0.25 × 0.16 mm |
β = 86.291 (7)° |
Stoe IPDS 2T diffractometer | 2818 independent reflections |
Absorption correction: integration (Coppens, 1970) | 2650 reflections with I > 2σ(I) |
Tmin = 0.187, Tmax = 0.383 | Rint = 0.065 |
10691 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 12 restraints |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 1.10 | Δρmax = 0.83 e Å−3 |
2795 reflections | Δρmin = −1.15 e Å−3 |
169 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.53930 (4) | 0.92911 (3) | 0.72424 (2) | 0.01180 (9) | |
Cl1 | 0.97143 (9) | 1.15488 (9) | 0.70369 (6) | 0.01360 (14) | |
Cl2 | 0.35731 (9) | 0.48563 (9) | 0.78026 (6) | 0.01327 (14) | |
O11 | 0.3252 (4) | 0.9281 (3) | 0.9363 (2) | 0.0214 (4) | |
O9 | 0.7828 (3) | 0.7469 (3) | 0.9095 (2) | 0.0179 (4) | |
O12 | 0.5409 (3) | 1.1774 (3) | 0.5157 (2) | 0.0153 (4) | |
O10 | 0.8215 (3) | 0.6788 (3) | 0.6077 (2) | 0.0184 (4) | |
O4 | 0.8716 (3) | 1.2814 (3) | 0.5953 (2) | 0.0196 (4) | |
O8 | 0.2149 (3) | 0.5654 (3) | 0.8872 (2) | 0.0225 (5) | |
O6 | 0.4501 (3) | 0.2861 (3) | 0.8128 (2) | 0.0194 (4) | |
O5 | 0.5058 (3) | 0.5815 (3) | 0.7694 (2) | 0.0218 (5) | |
O2 | 1.1720 (3) | 1.0650 (3) | 0.6579 (2) | 0.0223 (5) | |
O3 | 0.8764 (4) | 1.0108 (3) | 0.7327 (3) | 0.0264 (5) | |
O1 | 0.9628 (4) | 1.2609 (4) | 0.8192 (3) | 0.0306 (6) | |
O7 | 0.2630 (4) | 0.5075 (4) | 0.6555 (2) | 0.0254 (5) | |
H11A | 0.287 (7) | 0.835 (5) | 0.962 (5) | 0.044 (15)* | |
H11B | 0.271 (6) | 1.025 (4) | 0.981 (4) | 0.029 (11)* | |
H12B | 0.637 (4) | 1.218 (6) | 0.524 (5) | 0.031 (12)* | |
H12A | 0.437 (4) | 1.267 (4) | 0.531 (4) | 0.025 (11)* | |
H10A | 0.926 (4) | 0.690 (8) | 0.570 (5) | 0.044 (14)* | |
H10B | 0.841 (9) | 0.561 (2) | 0.619 (6) | 0.065 (19)* | |
H9B | 0.757 (8) | 0.662 (6) | 0.960 (4) | 0.048 (15)* | |
H9A | 0.903 (2) | 0.707 (6) | 0.888 (5) | 0.031 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01137 (13) | 0.00999 (13) | 0.01328 (13) | −0.00231 (8) | −0.00157 (8) | 0.00154 (8) |
Cl1 | 0.0113 (3) | 0.0126 (3) | 0.0167 (3) | −0.0036 (2) | −0.0019 (2) | 0.0024 (2) |
Cl2 | 0.0148 (3) | 0.0106 (3) | 0.0139 (3) | −0.0037 (2) | 0.0001 (2) | 0.0009 (2) |
O11 | 0.0271 (11) | 0.0163 (10) | 0.0184 (10) | −0.0045 (9) | 0.0045 (9) | −0.0003 (8) |
O9 | 0.0161 (10) | 0.0197 (10) | 0.0172 (10) | −0.0057 (8) | 0.0004 (8) | 0.0057 (8) |
O12 | 0.0142 (9) | 0.0156 (9) | 0.0162 (9) | −0.0041 (8) | −0.0031 (7) | −0.0010 (7) |
O10 | 0.0151 (10) | 0.0141 (9) | 0.0240 (11) | −0.0030 (8) | 0.0037 (8) | 0.0009 (8) |
O4 | 0.0157 (10) | 0.0183 (10) | 0.0239 (11) | −0.0050 (8) | −0.0053 (8) | 0.0099 (8) |
O8 | 0.0222 (11) | 0.0207 (10) | 0.0226 (11) | −0.0050 (9) | 0.0071 (9) | −0.0028 (8) |
O6 | 0.0271 (11) | 0.0103 (9) | 0.0198 (10) | −0.0045 (8) | −0.0020 (8) | 0.0015 (7) |
O5 | 0.0196 (10) | 0.0149 (10) | 0.0326 (12) | −0.0088 (8) | 0.0040 (9) | −0.0002 (9) |
O2 | 0.0113 (9) | 0.0278 (11) | 0.0233 (11) | −0.0001 (8) | −0.0012 (8) | 0.0032 (9) |
O3 | 0.0218 (11) | 0.0207 (11) | 0.0400 (14) | −0.0130 (9) | −0.0091 (10) | 0.0148 (10) |
O1 | 0.0314 (13) | 0.0299 (13) | 0.0271 (13) | −0.0009 (10) | −0.0077 (10) | −0.0120 (10) |
O7 | 0.0273 (12) | 0.0262 (12) | 0.0197 (11) | −0.0024 (9) | −0.0098 (9) | 0.0013 (9) |
Sr1—O11 | 2.540 (2) | Cl1—O3 | 1.438 (2) |
Sr1—O10 | 2.551 (2) | Cl1—O2 | 1.441 (2) |
Sr1—O2i | 2.623 (2) | Cl1—O4 | 1.461 (2) |
Sr1—O9 | 2.642 (2) | Cl2—O7 | 1.437 (2) |
Sr1—O5 | 2.665 (2) | Cl2—O5 | 1.444 (2) |
Sr1—O3 | 2.669 (2) | Cl2—O6 | 1.446 (2) |
Sr1—O12 | 2.703 (2) | Cl2—O8 | 1.448 (2) |
Sr1—O6ii | 2.706 (2) | O12—Sr1iii | 2.723 (2) |
Sr1—O12iii | 2.723 (2) | O6—Sr1iv | 2.706 (2) |
Sr1—Sr1iii | 4.5867 (6) | O2—Sr1v | 2.623 (2) |
Cl1—O1 | 1.423 (2) | ||
O11—Sr1—O10 | 134.33 (7) | O9—Sr1—O12iii | 132.16 (7) |
O11—Sr1—O2i | 72.84 (8) | O5—Sr1—O12iii | 74.43 (7) |
O10—Sr1—O2i | 128.32 (8) | O3—Sr1—O12iii | 116.35 (8) |
O11—Sr1—O9 | 74.35 (7) | O12—Sr1—O12iii | 64.57 (7) |
O10—Sr1—O9 | 72.64 (7) | O6ii—Sr1—O12iii | 127.67 (7) |
O2i—Sr1—O9 | 146.33 (7) | O11—Sr1—Sr1iii | 138.29 (6) |
O11—Sr1—O5 | 71.31 (7) | O10—Sr1—Sr1iii | 75.06 (5) |
O10—Sr1—O5 | 68.57 (7) | O2i—Sr1—Sr1iii | 65.53 (5) |
O2i—Sr1—O5 | 91.52 (8) | O9—Sr1—Sr1iii | 146.06 (5) |
O9—Sr1—O5 | 70.82 (7) | O5—Sr1—Sr1iii | 106.51 (5) |
O11—Sr1—O3 | 120.25 (8) | O3—Sr1—Sr1iii | 96.03 (6) |
O10—Sr1—O3 | 69.06 (8) | O12—Sr1—Sr1iii | 32.42 (4) |
O2i—Sr1—O3 | 144.07 (7) | O6ii—Sr1—Sr1iii | 99.31 (5) |
O9—Sr1—O3 | 62.77 (7) | O12iii—Sr1—Sr1iii | 32.15 (4) |
O5—Sr1—O3 | 124.01 (7) | O1—Cl1—O3 | 110.34 (17) |
O11—Sr1—O12 | 135.63 (7) | O1—Cl1—O2 | 111.09 (16) |
O10—Sr1—O12 | 89.75 (7) | O3—Cl1—O2 | 108.88 (15) |
O2i—Sr1—O12 | 74.61 (7) | O1—Cl1—O4 | 109.88 (15) |
O9—Sr1—O12 | 137.04 (7) | O3—Cl1—O4 | 108.60 (14) |
O5—Sr1—O12 | 138.82 (7) | O2—Cl1—O4 | 107.99 (13) |
O3—Sr1—O12 | 74.40 (7) | O7—Cl2—O5 | 109.56 (15) |
O11—Sr1—O6ii | 75.27 (7) | O7—Cl2—O6 | 110.02 (14) |
O10—Sr1—O6ii | 140.31 (7) | O5—Cl2—O6 | 108.81 (14) |
O2i—Sr1—O6ii | 80.03 (8) | O7—Cl2—O8 | 110.49 (15) |
O9—Sr1—O6ii | 98.83 (7) | O5—Cl2—O8 | 109.30 (14) |
O5—Sr1—O6ii | 146.54 (7) | O6—Cl2—O8 | 108.63 (14) |
O3—Sr1—O6ii | 72.64 (8) | Sr1—O12—Sr1iii | 115.43 (7) |
O12—Sr1—O6ii | 70.06 (6) | Cl2—O6—Sr1iv | 144.85 (13) |
O11—Sr1—O12iii | 123.23 (7) | Cl2—O5—Sr1 | 140.13 (14) |
O10—Sr1—O12iii | 64.54 (7) | Cl1—O2—Sr1v | 146.10 (14) |
O2i—Sr1—O12iii | 64.25 (7) | Cl1—O3—Sr1 | 144.73 (14) |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+1; (iv) x, y−1, z; (v) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O8v | 0.84 (1) | 2.15 (2) | 2.966 (3) | 164 (4) |
O9—H9B···O8vi | 0.84 (1) | 2.18 (2) | 2.986 (3) | 161 (5) |
O10—H10B···O4iv | 0.84 (1) | 2.04 (2) | 2.858 (3) | 165 (6) |
O10—H10A···O4vii | 0.84 (1) | 2.17 (2) | 2.967 (3) | 157 (5) |
O11—H11B···O9viii | 0.84 (1) | 1.99 (2) | 2.809 (3) | 164 (4) |
O11—H11A···O8 | 0.84 (1) | 2.38 (3) | 3.093 (3) | 143 (5) |
O12—H12A···O7ii | 0.84 (1) | 2.23 (2) | 2.986 (3) | 150 (4) |
O12—H12A···O10iii | 0.84 (1) | 2.31 (4) | 2.820 (3) | 120 (3) |
O12—H12B···O4 | 0.84 (1) | 2.06 (2) | 2.875 (3) | 164 (5) |
Symmetry codes: (ii) x, y+1, z; (iii) −x+1, −y+2, −z+1; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) −x+2, −y+2, −z+1; (viii) −x+1, −y+2, −z+2. |
[Sr(ClO4)2(H2O)7]·2H2O | Dx = 2.067 Mg m−3 |
Mr = 448.66 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmcm | Cell parameters from 5894 reflections |
a = 18.7808 (15) Å | θ = 8.3–29.6° |
b = 6.860 (3) Å | µ = 4.20 mm−1 |
c = 11.1884 (16) Å | T = 100 K |
V = 1441.5 (7) Å3 | Prism, colourless |
Z = 4 | 0.2 × 0.11 × 0.05 mm |
F(000) = 904 |
Stoe IPDS 2T diffractometer | 1087 independent reflections |
Radiation source: fine-focus sealed tube | 993 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.020 |
rotation method scans | θmax = 29.5°, θmin = 3.2° |
Absorption correction: integration (Coppens, 1970) | h = −26→26 |
Tmin = 0.015, Tmax = 0.085 | k = −9→9 |
6877 measured reflections | l = −15→15 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Only H-atom coordinates refined |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1087 reflections | Δρmax = 1.27 e Å−3 |
70 parameters | Δρmin = −2.25 e Å−3 |
[Sr(ClO4)2(H2O)7]·2H2O | V = 1441.5 (7) Å3 |
Mr = 448.66 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 18.7808 (15) Å | µ = 4.20 mm−1 |
b = 6.860 (3) Å | T = 100 K |
c = 11.1884 (16) Å | 0.2 × 0.11 × 0.05 mm |
Stoe IPDS 2T diffractometer | 1087 independent reflections |
Absorption correction: integration (Coppens, 1970) | 993 reflections with I > 2σ(I) |
Tmin = 0.015, Tmax = 0.085 | Rint = 0.020 |
6877 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 6 restraints |
wR(F2) = 0.134 | Only H-atom coordinates refined |
S = 1.16 | Δρmax = 1.27 e Å−3 |
1087 reflections | Δρmin = −2.25 e Å−3 |
70 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.5000 | 0.05870 (8) | 0.2500 | 0.0096 (2) | |
Cl1 | 0.32953 (5) | −0.30996 (15) | 0.2500 | 0.0113 (3) | |
O7 | 0.34391 (14) | −0.4247 (4) | 0.3560 (2) | 0.0177 (5) | |
O4 | 0.29063 (18) | 0.0000 | 0.5000 | 0.0203 (7) | |
H4A | 0.263 (2) | 0.041 (7) | 0.553 (3) | 0.024* | |
O2 | 0.5000 | −0.2257 (5) | 0.4061 (3) | 0.0156 (7) | |
H2A | 0.5369 (16) | −0.215 (6) | 0.448 (4) | 0.019* | |
O1 | 0.40632 (13) | 0.2050 (4) | 0.4020 (2) | 0.0147 (5) | |
H1A | 0.3693 (15) | 0.146 (6) | 0.424 (4) | 0.018* | |
H1B | 0.392 (2) | 0.315 (3) | 0.380 (5) | 0.018* | |
O5 | 0.3748 (2) | −0.1397 (5) | 0.2500 | 0.0211 (8) | |
O6 | 0.2561 (2) | −0.2480 (6) | 0.2500 | 0.0209 (8) | |
O3 | 0.5000 | 0.4459 (6) | 0.2500 | 0.0141 (9) | |
H3A | 0.5000 | 0.519 (9) | 0.310 (4) | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.0111 (3) | 0.0142 (3) | 0.0035 (3) | 0.000 | 0.000 | 0.000 |
Cl1 | 0.0105 (5) | 0.0152 (5) | 0.0083 (5) | −0.0003 (3) | 0.000 | 0.000 |
O7 | 0.0221 (11) | 0.0230 (11) | 0.0079 (11) | 0.0032 (10) | 0.0004 (9) | 0.0033 (8) |
O4 | 0.0117 (15) | 0.0346 (18) | 0.0147 (17) | 0.000 | 0.000 | 0.0023 (16) |
O2 | 0.0144 (14) | 0.0219 (15) | 0.0106 (16) | 0.000 | 0.000 | 0.0009 (13) |
O1 | 0.0143 (10) | 0.0202 (10) | 0.0095 (10) | −0.0006 (9) | 0.0009 (8) | −0.0001 (9) |
O5 | 0.0208 (17) | 0.0181 (16) | 0.0243 (19) | −0.0067 (14) | 0.000 | 0.000 |
O6 | 0.0096 (15) | 0.0243 (17) | 0.029 (2) | 0.0032 (12) | 0.000 | 0.000 |
O3 | 0.021 (2) | 0.0122 (19) | 0.009 (2) | 0.000 | 0.000 | 0.000 |
Sr1—O2 | 2.619 (4) | Sr1—O5 | 2.716 (4) |
Sr1—O2i | 2.619 (4) | Sr1—O5ii | 2.716 (4) |
Sr1—O1ii | 2.645 (2) | Cl1—O6 | 1.443 (4) |
Sr1—O1i | 2.645 (2) | Cl1—O5 | 1.445 (4) |
Sr1—O1iii | 2.645 (2) | Cl1—O7 | 1.449 (3) |
Sr1—O1 | 2.645 (2) | Cl1—O7i | 1.449 (3) |
Sr1—O3 | 2.656 (5) | ||
O2—Sr1—O2i | 83.68 (16) | O2i—Sr1—O5 | 68.08 (7) |
O2—Sr1—O1ii | 81.60 (8) | O1ii—Sr1—O5 | 139.99 (5) |
O2i—Sr1—O1ii | 135.37 (6) | O1i—Sr1—O5 | 67.32 (8) |
O2—Sr1—O1i | 135.37 (6) | O1iii—Sr1—O5 | 139.99 (5) |
O2i—Sr1—O1i | 81.60 (8) | O1—Sr1—O5 | 67.33 (8) |
O1ii—Sr1—O1i | 135.38 (11) | O3—Sr1—O5 | 120.07 (8) |
O2—Sr1—O1iii | 135.37 (6) | O2—Sr1—O5ii | 68.08 (7) |
O2i—Sr1—O1iii | 81.60 (8) | O2i—Sr1—O5ii | 68.08 (7) |
O1ii—Sr1—O1iii | 80.01 (11) | O1ii—Sr1—O5ii | 67.32 (8) |
O1i—Sr1—O1iii | 83.41 (11) | O1i—Sr1—O5ii | 139.99 (5) |
O2—Sr1—O1 | 81.60 (8) | O1iii—Sr1—O5ii | 67.32 (8) |
O2i—Sr1—O1 | 135.37 (6) | O1—Sr1—O5ii | 139.99 (5) |
O1ii—Sr1—O1 | 83.41 (11) | O3—Sr1—O5ii | 120.07 (8) |
O1i—Sr1—O1 | 80.01 (11) | O5—Sr1—O5ii | 119.85 (17) |
O1iii—Sr1—O1 | 135.38 (11) | O6—Cl1—O5 | 108.9 (2) |
O2—Sr1—O3 | 138.16 (8) | O6—Cl1—O7 | 109.77 (14) |
O2i—Sr1—O3 | 138.16 (8) | O5—Cl1—O7 | 109.23 (14) |
O1ii—Sr1—O3 | 67.69 (6) | O6—Cl1—O7i | 109.77 (14) |
O1i—Sr1—O3 | 67.69 (6) | O5—Cl1—O7i | 109.24 (14) |
O1iii—Sr1—O3 | 67.69 (6) | O7—Cl1—O7i | 109.9 (2) |
O1—Sr1—O3 | 67.69 (6) | Cl1—O5—Sr1 | 156.2 (2) |
O2—Sr1—O5 | 68.08 (7) |
Symmetry codes: (i) x, y, −z+1/2; (ii) −x+1, y, z; (iii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O7iv | 0.84 (1) | 2.02 (2) | 2.844 (4) | 169 (5) |
O1—H1A···O4 | 0.84 (1) | 1.98 (1) | 2.811 (4) | 170 (5) |
O2—H2A···O1v | 0.84 (1) | 1.99 (2) | 2.780 (4) | 156 (5) |
O3—H3A···O2iv | 0.84 (1) | 2.05 (3) | 2.851 (5) | 158 (7) |
O4—H4A···O6vi | 0.84 (1) | 2.62 (3) | 3.337 (2) | 144 (4) |
O4—H4A···O7vii | 0.84 (1) | 2.39 (3) | 3.041 (4) | 135 (4) |
Symmetry codes: (iv) x, y+1, z; (v) −x+1, −y, −z+1; (vi) x, −y, −z+1; (vii) −x+1/2, −y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O7i | 0.838 (10) | 2.017 (15) | 2.844 (4) | 169 (5) |
O1—H1A···O4 | 0.840 (10) | 1.979 (14) | 2.811 (4) | 170 (5) |
O2—H2A···O1ii | 0.840 (10) | 1.99 (2) | 2.780 (4) | 156 (5) |
O3—H3A···O2i | 0.840 (10) | 2.05 (3) | 2.851 (5) | 158 (7) |
O4—H4A···O6iii | 0.839 (10) | 2.62 (3) | 3.337 (2) | 144 (4) |
O4—H4A···O7iv | 0.839 (10) | 2.39 (3) | 3.041 (4) | 135 (4) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) x, −y, −z+1; (iv) −x+1/2, −y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O5i | 0.837 (10) | 2.13 (4) | 2.683 (4) | 123 (4) |
O1—H1B···O18i | 0.835 (10) | 2.07 (2) | 2.858 (4) | 158 (4) |
O2—H2B···O16ii | 0.837 (10) | 2.096 (14) | 2.923 (4) | 169 (4) |
O2—H2A···O16 | 0.839 (10) | 2.17 (2) | 2.992 (4) | 167 (7) |
O3—H3A···O18iii | 0.838 (10) | 1.961 (12) | 2.793 (4) | 172 (4) |
O3—H3B···O17iv | 0.838 (10) | 2.058 (18) | 2.857 (4) | 159 (4) |
O4—H4B···O21v | 0.839 (10) | 2.15 (2) | 2.953 (4) | 161 (5) |
O4—H4A···O22vi | 0.838 (10) | 2.42 (2) | 3.173 (4) | 150 (4) |
O6—H6A···O14iii | 0.84 (7) | 2.56 (7) | 3.069 (4) | 121 (5) |
O6—H6A···O19vii | 0.84 (7) | 2.19 (7) | 2.964 (4) | 155 (6) |
O6—H6B···O17viii | 0.92 (6) | 2.09 (6) | 2.920 (4) | 150 (5) |
O7—H7A···O20ix | 0.839 (10) | 2.31 (4) | 3.044 (4) | 146 (7) |
O7—H7A···O22vi | 0.839 (10) | 2.44 (7) | 2.902 (4) | 116 (6) |
O7—H7B···O17viii | 0.840 (10) | 2.48 (5) | 2.916 (4) | 114 (4) |
O7—H7B···O20v | 0.840 (10) | 2.247 (17) | 3.071 (4) | 167 (5) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, z+1/2; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+1, −y+2, −z; (vii) −x, −y+1, −z; (viii) x−1, y, z; (ix) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O8i | 0.838 (10) | 2.152 (17) | 2.966 (3) | 164 (4) |
O9—H9B···O8ii | 0.839 (10) | 2.18 (2) | 2.986 (3) | 161 (5) |
O10—H10B···O4iii | 0.838 (10) | 2.039 (19) | 2.858 (3) | 165 (6) |
O10—H10A···O4iv | 0.841 (10) | 2.17 (2) | 2.967 (3) | 157 (5) |
O11—H11B···O9v | 0.838 (10) | 1.992 (16) | 2.809 (3) | 164 (4) |
O11—H11A···O8 | 0.838 (10) | 2.38 (3) | 3.093 (3) | 143 (5) |
O12—H12A···O7vi | 0.840 (10) | 2.23 (2) | 2.986 (3) | 150 (4) |
O12—H12A···O10vii | 0.840 (10) | 2.31 (4) | 2.820 (3) | 120 (3) |
O12—H12B···O4 | 0.839 (10) | 2.060 (17) | 2.875 (3) | 164 (5) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+2; (iii) x, y−1, z; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+2, −z+2; (vi) x, y+1, z; (vii) −x+1, −y+2, −z+1. |
Experimental details
[Sr(ClO4)2(H2O)3] | [Sr(ClO4)2(H2O)4] | [Sr(ClO4)2(H2O)7]·2H2O | |
Crystal data | |||
Mr | 340.57 | 358.58 | 448.66 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 | Orthorhombic, Cmcm |
Temperature (K) | 100 | 150 | 100 |
a, b, c (Å) | 8.9787 (6), 13.4870 (12), 14.7875 (10) | 7.1571 (6), 7.3942 (6), 10.0231 (9) | 18.7808 (15), 6.860 (3), 11.1884 (16) |
α, β, γ (°) | 90, 95.448 (5), 90 | 86.674 (7), 86.291 (7), 72.027 (6) | 90, 90, 90 |
V (Å3) | 1782.6 (2) | 503.09 (8) | 1441.5 (7) |
Z | 8 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 6.70 | 5.94 | 4.20 |
Crystal size (mm) | 0.45 × 0.34 × 0.23 | 0.33 × 0.25 × 0.16 | 0.2 × 0.11 × 0.05 |
Data collection | |||
Diffractometer | Stoe IPDS 2T diffractometer | Stoe IPDS 2T diffractometer | Stoe IPDS 2T diffractometer |
Absorption correction | Integration (Coppens, 1970) | Integration (Coppens, 1970) | Integration (Coppens, 1970) |
Tmin, Tmax | 0.081, 0.212 | 0.187, 0.383 | 0.015, 0.085 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 50555, 4941, 3337 | 10691, 2818, 2650 | 6877, 1087, 993 |
Rint | 0.125 | 0.065 | 0.020 |
(sin θ/λ)max (Å−1) | 0.650 | 0.695 | 0.693 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.046, 1.09 | 0.028, 0.076, 1.10 | 0.048, 0.134, 1.16 |
No. of reflections | 4087 | 2795 | 1087 |
No. of parameters | 297 | 169 | 70 |
No. of restraints | 15 | 12 | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | All H-atom parameters refined | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 0.56, −0.63 | 0.83, −1.15 | 1.27, −2.25 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1–6. Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321–325. Web of Science CrossRef CAS Google Scholar
Gallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873–1876. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E. & Tolbert, M. A. (2011). Earth Planet. Sci. Lett. 312, 371–377. Web of Science CrossRef CAS Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., Catling, D. C., Clark, B. C., Boynton, W. V., Hoffman, J., Deflores, L. P., Gospodinova, K., Kapit, J. & Smith, P. H. (2009). Science, 325, 64–67. PubMed CAS Google Scholar
Hennings, E., Schmidt, H., Köhler, M. & Voigt, W. (2014a). Acta Cryst. E70, 474–476. CSD CrossRef IUCr Journals Google Scholar
Hennings, E., Schmidt, H. & Voigt, W. (2014b). Acta Cryst. E70, 489–493. CSD CrossRef IUCr Journals Google Scholar
Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553–562. CrossRef CAS Web of Science Google Scholar
Kerr, R. A. (2013). Science, 340, 138. Google Scholar
Kim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910–4913. Web of Science CrossRef CAS PubMed Google Scholar
Lilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549–1553. CAS Google Scholar
Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678–685. Web of Science CrossRef Google Scholar
Navarro-González, R. & McKay, C. P. (2011). J. Geophys. Res. 116, 1–6. Google Scholar
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1–11. Google Scholar
Nicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469–4471. CrossRef CAS Web of Science Google Scholar
Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409–413. Web of Science CrossRef CAS Google Scholar
Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515–520. Web of Science CrossRef CAS PubMed Google Scholar
Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579–584. Web of Science CrossRef IUCr Journals Google Scholar
Robertson, K. & Bish, D. (2011). J. Geophys. Res. 116, E07006. Google Scholar
Schuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521–17523. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solovyov, L. A. (2012). Acta Cryst. B68, 89–90. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286–297. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.