research communications
Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O
aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de
The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (pentaaqua-μ-chlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O)6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O)6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H⋯O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.
1. Chemical context
Zinc chloride solutions, especially at lower temperatures, are helpful in the understanding of the formation of different complex ion species in solution. The solubility of zinc chloride in water has been investigated by several authors in different concentration areas and at different temperatures (Haghighi et al., 2008; Mylius & Dietz, 1905; Jones & Getman, 1904; Chambers & Frazer, 1900; Biltz, 1902; Dietz, 1899; Etard, 1894). In the literature (Mylius & Dietz, 1905), the 4-, 3-, and 2.5-hydrates have been reported at lower temperatures. We have also found the 2.5-hydrate, the trihydrate and the 4.5-hydrate as stable phases along the equilibrium crystallization curves. The 4.5-hydrate crystallizes below 240 K. The of the trihydrate reported herein has also been determined by Wilcox (2009) in his thesis, but was never published. While writing the formula of the trihydrate in a more detailed formula as [Zn(H2O)6][ZnCl4], the analogy to other structures like that of [Mg(H2O)6][SO4] (Zalkin et al., 1964) and [Zn(H2O)6][SO4] (Spiess & Gruehn, 1979) becomes obvious. These structures are very similar in the arrangement of octahedral units and anions in the unit cell.
2. Structural commentary
Within the 2+ cations, as shown in Fig. 1. The Zn1 cation is octahedrally coordinated by five water molecules and one chloride anion. The Zn2 cation is coordinated by four chloride anions, one shared with the Zn1 cation, leading to the formation of isolated [Zn2Cl4(H2O)5] units. Since the bond lengths of the bridging Cl atom of the tetrahedron are shorter than to that of the octahedron, the latter becomes more distorted. The of zinc chloride trihydrate consists of three crystallographically different Zn2+ cations (Fig. 2a). Two (Zn2 and Zn3) are located about an inversion centre and are coordinated octahedrally by six water molecules, forming [Zn(H2O)6]2+ cations. The third one (Zn1) is tetrahedrally coordinated by chlorine anions, [ZnCl4]2−. The polyhedra are not connected by sharing a single atom like in the 2.5-hydrate, but they are linked by hydrogen bonds (Fig. 2b). The octahedra and tetrahedra are arranged in a CsCl-like arrangement with eight tetrahedra located around one octahedron (Fig. 3a). As shown in Fig. 4a, in the of ZnCl2·4.5H2O, two different Zn2+ cations are present. The Zn1 cation is coordinated octahedrally by six water molecules and the Zn2 cation tetrahedrally by four chloride anions. The three remaining water molecules are hydrogen-bonded to a [Zn1(H2O]2+ octahedron (Fig. 4b).
of the 2.5-hydrate, there are two crystallographic different Zn3. Supramolecular features
In the structure of ZnCl2·2.5H2O, all terminal Cl− anions are connected to the octahedral parts of neighbouring [Zn2Cl4(H2O)5] units by three O—H⋯Cl hydrogen bonds per anion (Table 1, Fig. 5). The coordination polyhedra in the trihydrate are arranged in zigzag chains parallel to [001] in the The chains are highlighted in different shades of colors in Fig. 3b. Hydrogen bonds (Table 2) are established within one chain and between neighbouring chains (not shown in the Figure). As can be seen from Fig. 4b, five water molecules in the of ZnCl2·4.5H2O are connected via hydrogen bonds to the [Zn1(H2O]2+ octahedron, three of them at the axial coordination sites and two of them at the equatorial coordination sites. Seven chloride anions from [Zn2Cl4]2− tetrahedra contribute to the second coordination sphere of Zn1. Thus, every coordinating water molecule forms two hydrogen bonds. The structural situation in this salt can be compared with the second coordination shells around magnesium in magnesium halide nonahydrates like MgBr2·9H2O or MgI2·9H2O (Hennings et al., 2013). Each water molecule of the [Mg(H2O)6]2+ octahedra forms two hydrogen bonds, thus six water molecules and six halide atoms are involved in the second shell. However, in case of the magnesium halides each water molecule donates a hydrogen bond towards a halide anion and towards another water molecule. The hydrogen-bond geometry in ZnCl2·4.5H2O is given inTable 3.
|
|
4. Database survey
For crystal structures of other zinc chloride hydrates (ZnCl2·RH2O), see: Follner & Brehler (1970; R = 1.33); Wilcox (2009; R = 3). For crystal structures of anhydrous zinc chloride, see: Brehler (1961); Yakel & Brynestad (1978). For similar structural set-ups in comparison with the 3-hydrate, [Zn(H2O)6][ZnCl4], see: Zalkin et al. (1964; [Mg(H2O)6][SO4]); Spiess & Gruehn (1979; [Zn(H2O)6][SO4]); Agron & Busing (1985; [Mg(H2O)6][Cl2]); Ferrari et al. (1967; [Zn(H2O)6][NO3]2).
5. Synthesis and crystallization
Zinc chloride 2.5 hydrate was crystallized from an aqueous solution of 73.41 wt% ZnCl2 at 280 K after 2 d, zinc chloride trihydrate from an aqueous solution of 69.14 wt% ZnCl2 at 263 K after 2 d and zinc chloride 4.5 hydrate from an aqueous solution of 53.98 wt% ZnCl2 at 223K after 2 d. For preparing these solutions, zinc chloride (Merck, 99%) was used. The content of Zn2+ was analysed by with EDTA. The crystals are stable in their saturated solutions over a period of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis.
6. Refinement
Crystal data, data collection and structure . The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For all three structures, distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively. For ZnCl2·2.5H2O Uiso values were set at 1.2Ueq(O) using a riding-model approximation.
details are summarized in Table 4
|
Supporting information
10.1107/S1600536814024738/wm5081sup1.cif
contains datablocks ZnCl2_2halbH2O_150K, zncl2_3H2O_150K, ZnCl2_4halbH2O_120K. DOI:Structure factors: contains datablock ZnCl2_2halbH2O_150K. DOI: 10.1107/S1600536814024738/wm5081ZnCl2_2halbH2O_150Ksup2.hkl
Structure factors: contains datablock zncl2_3H2O_150K. DOI: 10.1107/S1600536814024738/wm5081zncl2_3H2O_150Ksup3.hkl
Structure factors: contains datablock ZnCl2_4halbH2O_120K. DOI: 10.1107/S1600536814024738/wm5081ZnCl2_4halbH2O_120Ksup4.hkl
Zinc chloride solutions, especially at lower temperatures, are helpful in the understanding of the formation of different complex ion species in solution. The solubility of zinc chloride in water has been investigated by several authors in different concentration areas and at different temperatures (Haghighi et al., 2008; Mylius & Dietz, 1905; Jones & Getman, 1904; Chambers & Frazer, 1900; Biltz, 1902; Dietz, 1899; Etard, 1894). In the literature (Mylius & Dietz, 1905), the 4-, 3-, and 2.5-hydrates have been reported at lower temperatures. We have also found the 2.5-hydrate, the trihydrate and the 4.5-hydrate as stable phases along the equilibrium crystallization curves. The 4.5-hydrate crystallizes below 240 K. The
of the trihydrate reported herein has also been determined by Wilcox (2009) in his thesis, but was never published. While writing the formula of the trihydrate in a more detailed formula as [Zn(H2O)6][ZnCl4], the analogy to other structures like that of [Mg(H2O)6][SO4] (Zalkin et al., 1964) and [Zn(H2O)6][SO4] (Spiess & Gruehn, 1979) becomes obvious. These structures are very similar in the arrangement of octahedral units and anions in the unit cell.Within the
of the 2.5-hydrate, there are two crystallographic different Zn2+ cations, as shown in Fig. 1a. The Zn1 cation is octahedrally coordinated by five water molecules and one chloride anion. The Zn2 cation is coordinated by four chloride anions, one shared with the Zn1 cation, leading to the formation of isolated [Zn2Cl4(H2O)5] units. Since the bond lengths of the bridging Cl atom of the tetrahedron are shorter than to that of the octahedron, the latter becomes more distorted. The of zinc chloride trihydrate consists of three crystallographically different Zn2+ cations (Fig. 2a). Two (Zn2 and Zn3) are located about an inversion centre and are coordinated octahedrally by six water molecules, forming [Zn(H2O)6]2+ cations. The third one is tetrahedrally coordinated by chlorine anions, [ZnCl4]2-. The polyhedra are not connected by sharing a single atom like in the 2.5-hydrate, but they are linked by hydrogen bonds (Fig. 2b). The octahedra and tetrahedra are arranged in a CsCl-like arrangement with eight tetrahedra located around one octahedron (Fig. 3a). As shown in Fig. 4a, in the of ZnCl2·4.5H2O, two different Zn2+ cations are present. The Zn1 cation is coordinated octahedrally by six water molecules and the Zn2 cation tetrahedrally by four chloride anions. The three remaining water molecules are hydrogen-bonded to a [Zn1(H2O]2+ octahedron (Fig. 4b). .In the structure of ZnCl2·2.5H2O, all terminal Cl- anions are connected to the octahedral parts of neighbouring [Zn2Cl4(H2O)5] units by three O—H···Cl hydrogen bonds per anion (Table 1, Fig. 5). The coordination polyhedra in the trihydrate are arranged in zigzag chains parallel to [001] in the
The chains are highlighted in different shades of colors in Fig. 3b. Hydrogen bonds (Table 2) are established within one chain and between neighbouring chains (not shown in the Figure). As can be seen from Fig. 4b, five water molecules in the of ZnCl2·4.5H2O are connected via hydrogen bonds to the [Zn1(H2O]2+ octahedron, three of them at the axial coordination sites and two of them at the equatorial coordination sites. Seven chloride anions from [Zn2Cl4]2- tetrahedra contribute to the second coordination sphere of Zn1. Thus, every coordinating water molecule forms two hydrogen bonds. The structural situation in this salt can be compared with the second coordination shells around magnesium in magnesium halide hydrates like MgBr2·9H2O or MgI2·9H2O (Hennings et al., 2013). Each water molecule of the [Mg(H2O)6]2+ octahedra forms two hydrogen bonds, thus six water molecules and six halide atoms are involved in the second shell. However, in case of the magnesium halides each water molecule donates a hydrogen bond towards a halide anion and towards another water molecule.For crystal structures of other zinc chloride hydrates (ZnCl2·RH2O), see: Follner & Brehler (1970; R = 1.33); Wilcox (2009; R = 3). For crystal structures of anhydrous zinc chloride, see: Brehler (1961); Yakel & Brynestad (1978). For similar structural set-ups in comparison with the 3-hydrate, [Zn(H2O)6][ZnCl4], see: Zalkin et al. (1964; [Mg(H2O)6][SO4]); Spiess & Gruehn (1979; [Zn(H2O)6][SO4]); Agron & Busing (1985; [Mg(H2O)6][Cl2]); Ferrari et al. (1967; [Zn(H2O)6][NO3]).
Zinc chloride 2.5 hydrate was crystallized from an aqueous solution of 73.41 wt% ZnCl2 at 280 K after 2 d, zinc chloride trihydrate from an aqueous solution of 69.14 wt% ZnCl2 at 263 K after 2 d and zinc chloride 4.5 hydrate from an aqueous solution of 53.98 wt% ZnCl2 at 223K after 2 d. For preparing these solutions, zinc chloride (Merck, 99%) was used. The content of Zn2+ was analysed by
with EDTA. The crystals are stable in their saturated solutions over a period of at least four weeks. The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis.Crystal data, data collection and structure
details are summarized in Table 4. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For all three structures, distance restraints were applied for all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å , respectively. For ZnCl2·2.5H2O Uiso values were set at 1.2Ueq(O) using a riding-model approximation.For all compounds, data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).The asymmetric unit of ZnCl2·2.5H2O. Displacement ellipsoids are drawn at the 50% probability level. (a) The molecular units and (b) the in the structure of ZnCl2·3H2O. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z.] (a) Arrangement of [ZnCl4]2--anions and [Zn(H2O)6]2+ cations in a CsCl-like structure and (b) formation of chains by alternation of different coordination polyhedra in ZnCl2·3H2O. Dashed lines indicate hydrogen bonds. Only hydrogen bonds in one chain are shown. (a) The molecular units in the structure of ZnCl2·4.5H2O and (b) formation of a second coordination shell. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. The connection of individual [Zn2Cl4(H2O)5] units through hydrogen bonds (dashed lines) in the structure of ZnCl2·2.5H2O. |
[Zn2Cl4(H2O)5] | F(000) = 712 |
Mr = 362.66 | Dx = 2.297 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2909 (5) Å | Cell parameters from 245 reflections |
b = 9.7971 (5) Å | θ = 3.6–29.1° |
c = 15.0912 (10) Å | µ = 5.57 mm−1 |
β = 103.375 (5)° | T = 150 K |
V = 1048.72 (12) Å3 | Prism, colourless |
Z = 4 | 0.27 × 0.19 × 0.11 mm |
Stoe IPDS 2 diffractometer | 2923 independent reflections |
Radiation source: fine-focus sealed tube | 2222 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.043 |
rotation method scans | θmax = 26.5°, θmin = 2.5° |
Absorption correction: integration (Coppens, 1970) | h = −10→10 |
Tmin = 0.287, Tmax = 0.534 | k = −13→13 |
9997 measured reflections | l = −19→20 |
Refinement on F2 | 15 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Only H-atom coordinates refined |
wR(F2) = 0.035 | w = 1/[σ2(Fo2) + (0.0151P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2171 reflections | Δρmax = 0.44 e Å−3 |
130 parameters | Δρmin = −0.36 e Å−3 |
[Zn2Cl4(H2O)5] | V = 1048.72 (12) Å3 |
Mr = 362.66 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2909 (5) Å | µ = 5.57 mm−1 |
b = 9.7971 (5) Å | T = 150 K |
c = 15.0912 (10) Å | 0.27 × 0.19 × 0.11 mm |
β = 103.375 (5)° |
Stoe IPDS 2 diffractometer | 2923 independent reflections |
Absorption correction: integration (Coppens, 1970) | 2222 reflections with I > 2σ(I) |
Tmin = 0.287, Tmax = 0.534 | Rint = 0.043 |
9997 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 15 restraints |
wR(F2) = 0.035 | Only H-atom coordinates refined |
S = 1.01 | Δρmax = 0.44 e Å−3 |
2171 reflections | Δρmin = −0.36 e Å−3 |
130 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.78704 (3) | 0.77180 (3) | 0.15458 (2) | 0.01517 (6) | |
Zn2 | 0.47584 (3) | 0.76881 (3) | 0.35389 (2) | 0.01443 (6) | |
Cl3 | 0.48529 (7) | 0.77940 (6) | 0.20228 (3) | 0.01632 (11) | |
Cl4 | 0.31569 (9) | 0.95388 (6) | 0.38493 (4) | 0.02143 (13) | |
Cl1 | 0.77848 (8) | 0.75449 (6) | 0.43488 (4) | 0.02454 (13) | |
Cl2 | 0.30975 (10) | 0.57892 (6) | 0.37038 (4) | 0.02560 (14) | |
O3 | 0.6623 (3) | 0.62440 (18) | 0.06100 (13) | 0.0239 (4) | |
H3A | 0.715 (4) | 0.602 (3) | 0.0197 (16) | 0.029* | |
H3B | 0.553 (2) | 0.644 (3) | 0.0340 (19) | 0.029* | |
O2 | 1.0303 (2) | 0.76289 (19) | 0.10641 (13) | 0.0269 (4) | |
H2A | 1.101 (4) | 0.831 (2) | 0.114 (2) | 0.032* | |
H2B | 1.094 (4) | 0.691 (2) | 0.108 (2) | 0.032* | |
O4 | 0.6948 (3) | 0.92487 (18) | 0.06129 (14) | 0.0276 (4) | |
H4A | 0.690 (5) | 1.0064 (14) | 0.076 (2) | 0.033* | |
H4B | 0.724 (5) | 0.921 (3) | 0.0111 (13) | 0.033* | |
O1 | 0.8850 (3) | 0.6172 (2) | 0.24737 (16) | 0.0332 (5) | |
H1A | 0.997 (2) | 0.600 (3) | 0.272 (2) | 0.040* | |
H1B | 0.801 (4) | 0.558 (3) | 0.245 (2) | 0.040* | |
O5 | 0.8963 (3) | 0.9128 (2) | 0.25850 (17) | 0.0381 (5) | |
H5A | 1.002 (3) | 0.948 (3) | 0.268 (3) | 0.046* | |
H5B | 0.874 (5) | 0.891 (4) | 0.3079 (14) | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01214 (12) | 0.01726 (12) | 0.01619 (12) | 0.00135 (11) | 0.00343 (9) | −0.00051 (10) |
Zn2 | 0.01283 (11) | 0.01446 (12) | 0.01622 (12) | −0.00030 (10) | 0.00379 (9) | −0.00026 (10) |
Cl3 | 0.0111 (2) | 0.0235 (3) | 0.0147 (2) | 0.0010 (2) | 0.00364 (18) | −0.0011 (2) |
Cl4 | 0.0257 (3) | 0.0181 (3) | 0.0218 (3) | 0.0061 (2) | 0.0080 (2) | −0.0005 (2) |
Cl1 | 0.0151 (2) | 0.0355 (3) | 0.0205 (3) | 0.0024 (2) | −0.0011 (2) | 0.0020 (2) |
Cl2 | 0.0296 (4) | 0.0200 (3) | 0.0255 (3) | −0.0110 (2) | 0.0030 (3) | 0.0015 (2) |
O3 | 0.0209 (10) | 0.0246 (9) | 0.0287 (10) | −0.0020 (8) | 0.0110 (8) | −0.0088 (7) |
O2 | 0.0163 (8) | 0.0275 (10) | 0.0393 (10) | 0.0031 (8) | 0.0111 (7) | 0.0025 (9) |
O4 | 0.0307 (11) | 0.0200 (9) | 0.0369 (11) | 0.0082 (8) | 0.0173 (9) | 0.0101 (8) |
O1 | 0.0187 (11) | 0.0389 (11) | 0.0425 (12) | 0.0123 (9) | 0.0084 (9) | 0.0253 (10) |
O5 | 0.0176 (11) | 0.0506 (13) | 0.0470 (14) | −0.0106 (9) | 0.0095 (10) | −0.0309 (11) |
Zn1—O4 | 2.0604 (18) | Zn1—Cl3 | 2.4691 (6) |
Zn1—O2 | 2.0681 (17) | Zn2—Cl4 | 2.2635 (6) |
Zn1—O1 | 2.0742 (19) | Zn2—Cl2 | 2.2647 (6) |
Zn1—O3 | 2.0767 (18) | Zn2—Cl1 | 2.2659 (6) |
Zn1—O5 | 2.103 (2) | Zn2—Cl3 | 2.3073 (6) |
O4—Zn1—O2 | 87.79 (8) | O2—Zn1—Cl3 | 176.40 (6) |
O4—Zn1—O1 | 178.76 (8) | O1—Zn1—Cl3 | 90.93 (6) |
O2—Zn1—O1 | 90.97 (8) | O3—Zn1—Cl3 | 86.54 (5) |
O4—Zn1—O3 | 91.09 (8) | O5—Zn1—Cl3 | 88.40 (6) |
O2—Zn1—O3 | 90.45 (8) | Cl4—Zn2—Cl2 | 108.71 (2) |
O1—Zn1—O3 | 88.83 (9) | Cl4—Zn2—Cl1 | 115.00 (3) |
O4—Zn1—O5 | 92.24 (10) | Cl2—Zn2—Cl1 | 111.63 (3) |
O2—Zn1—O5 | 94.72 (8) | Cl4—Zn2—Cl3 | 107.72 (2) |
O1—Zn1—O5 | 87.95 (9) | Cl2—Zn2—Cl3 | 106.58 (2) |
O3—Zn1—O5 | 173.95 (8) | Cl1—Zn2—Cl3 | 106.80 (2) |
O4—Zn1—Cl3 | 90.30 (6) | Zn2—Cl3—Zn1 | 121.38 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl2i | 0.83 (1) | 2.43 (1) | 3.243 (2) | 167 (3) |
O1—H1B···O5ii | 0.84 (1) | 2.02 (1) | 2.853 (3) | 178 (4) |
O2—H2A···Cl2iii | 0.83 (1) | 2.51 (2) | 3.299 (2) | 158 (3) |
O2—H2B···Cl4ii | 0.84 (1) | 2.41 (1) | 3.2212 (19) | 162 (3) |
O3—H3B···Cl1iv | 0.83 (1) | 2.42 (1) | 3.225 (2) | 164 (3) |
O3—H3A···Cl4v | 0.83 (1) | 2.38 (1) | 3.205 (2) | 171 (3) |
O4—H4B···Cl2v | 0.83 (1) | 2.35 (1) | 3.181 (2) | 177 (3) |
O4—H4A···Cl1iii | 0.83 (1) | 2.45 (2) | 3.2349 (19) | 157 (3) |
O5—H5A···Cl4i | 0.83 (1) | 2.55 (2) | 3.233 (2) | 141 (3) |
O5—H5B···Cl1 | 0.83 (1) | 2.56 (1) | 3.359 (3) | 163 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z−1/2. |
[Zn(H2O)6][ZnCl4] | Z = 2 |
Mr = 380.68 | F(000) = 376 |
Triclinic, P1 | Dx = 2.149 Mg m−3 |
a = 6.4339 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.5202 (5) Å | Cell parameters from 16445 reflections |
c = 14.2769 (11) Å | θ = 2.9–29.7° |
α = 90.910 (6)° | µ = 4.98 mm−1 |
β = 99.146 (6)° | T = 150 K |
γ = 95.574 (6)° | Prism, colourless |
V = 588.21 (8) Å3 | 0.60 × 0.42 × 0.16 mm |
Stoe IPDS 2T diffractometer | 3239 independent reflections |
Radiation source: fine-focus sealed tube | 3120 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.091 |
rotation method scans | θmax = 29.5°, θmin = 2.9° |
Absorption correction: integration (Coppens, 1970) | h = −8→8 |
Tmin = 0.093, Tmax = 0.441 | k = −8→8 |
13092 measured reflections | l = 0→19 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0816P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.95 e Å−3 |
3239 reflections | Δρmin = −0.95 e Å−3 |
161 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
18 restraints | Extinction coefficient: 0.027 (3) |
[Zn(H2O)6][ZnCl4] | γ = 95.574 (6)° |
Mr = 380.68 | V = 588.21 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4339 (5) Å | Mo Kα radiation |
b = 6.5202 (5) Å | µ = 4.98 mm−1 |
c = 14.2769 (11) Å | T = 150 K |
α = 90.910 (6)° | 0.60 × 0.42 × 0.16 mm |
β = 99.146 (6)° |
Stoe IPDS 2T diffractometer | 3239 independent reflections |
Absorption correction: integration (Coppens, 1970) | 3120 reflections with I > 2σ(I) |
Tmin = 0.093, Tmax = 0.441 | Rint = 0.091 |
13092 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 18 restraints |
wR(F2) = 0.089 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.95 e Å−3 |
3239 reflections | Δρmin = −0.95 e Å−3 |
161 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.11523 (3) | 0.89978 (3) | 0.24118 (2) | 0.01505 (10) | |
Zn2 | 0.5000 | 0.5000 | 1.0000 | 0.01412 (10) | |
Zn3 | 0.5000 | 0.5000 | 0.5000 | 0.01952 (10) | |
Cl4 | 0.11763 (7) | 0.54937 (6) | 0.21964 (3) | 0.01909 (11) | |
Cl1 | 0.00446 (7) | 0.93575 (7) | 0.38328 (3) | 0.02259 (12) | |
Cl2 | −0.08727 (7) | 1.02596 (6) | 0.11685 (3) | 0.01956 (11) | |
Cl3 | 0.45614 (6) | 1.04172 (7) | 0.25090 (3) | 0.02155 (12) | |
O1 | 0.3849 (2) | 0.5508 (2) | 0.85688 (10) | 0.0202 (3) | |
O3 | 0.2012 (2) | 0.3787 (2) | 1.01476 (10) | 0.0220 (3) | |
O2 | 0.4233 (2) | 0.7893 (2) | 1.04390 (10) | 0.0218 (3) | |
O4 | 0.1902 (3) | 0.4054 (2) | 0.43689 (13) | 0.0338 (4) | |
O5 | 0.4216 (3) | 0.4000 (3) | 0.63059 (11) | 0.0316 (3) | |
O6 | 0.4103 (3) | 0.7891 (2) | 0.53108 (12) | 0.0330 (4) | |
H3A | 0.153 (4) | 0.406 (4) | 1.0635 (14) | 0.027 (7)* | |
H1A | 0.2554 (19) | 0.549 (5) | 0.837 (2) | 0.031 (7)* | |
H5A | 0.324 (6) | 0.304 (6) | 0.631 (5) | 0.099 (19)* | |
H5B | 0.523 (6) | 0.365 (9) | 0.670 (3) | 0.11 (2)* | |
H3B | 0.158 (4) | 0.255 (2) | 1.001 (2) | 0.028 (7)* | |
H4B | 0.150 (6) | 0.2781 (19) | 0.433 (3) | 0.046 (9)* | |
H1B | 0.444 (5) | 0.656 (4) | 0.835 (3) | 0.052 (10)* | |
H6B | 0.430 (6) | 0.842 (5) | 0.5863 (12) | 0.043 (9)* | |
H2B | 0.469 (5) | 0.846 (5) | 1.0973 (12) | 0.033 (8)* | |
H4A | 0.138 (7) | 0.443 (7) | 0.3831 (16) | 0.068 (13)* | |
H2A | 0.326 (5) | 0.848 (6) | 1.012 (3) | 0.067 (12)* | |
H6A | 0.312 (5) | 0.856 (6) | 0.505 (3) | 0.068 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01631 (13) | 0.01664 (13) | 0.01182 (13) | 0.00047 (8) | 0.00172 (8) | 0.00148 (8) |
Zn2 | 0.01421 (15) | 0.01364 (15) | 0.01422 (15) | 0.00026 (10) | 0.00197 (10) | 0.00211 (10) |
Zn3 | 0.02499 (17) | 0.01508 (16) | 0.01623 (16) | 0.00053 (11) | −0.00294 (12) | 0.00295 (11) |
Cl4 | 0.0226 (2) | 0.01568 (19) | 0.0180 (2) | 0.00149 (13) | 0.00074 (14) | 0.00044 (14) |
Cl1 | 0.0276 (2) | 0.0269 (2) | 0.0138 (2) | −0.00023 (16) | 0.00716 (15) | −0.00085 (15) |
Cl2 | 0.0214 (2) | 0.01837 (19) | 0.0172 (2) | 0.00167 (14) | −0.00233 (15) | 0.00332 (14) |
Cl3 | 0.01682 (19) | 0.0240 (2) | 0.0227 (2) | −0.00282 (15) | 0.00277 (15) | 0.00254 (15) |
O1 | 0.0181 (5) | 0.0231 (6) | 0.0185 (6) | 0.0001 (4) | 0.0003 (5) | 0.0057 (5) |
O3 | 0.0204 (6) | 0.0212 (6) | 0.0243 (7) | −0.0047 (5) | 0.0081 (5) | −0.0033 (5) |
O2 | 0.0246 (6) | 0.0193 (6) | 0.0205 (6) | 0.0071 (5) | −0.0021 (5) | −0.0003 (5) |
O4 | 0.0339 (8) | 0.0262 (7) | 0.0336 (8) | −0.0064 (6) | −0.0133 (7) | 0.0092 (6) |
O5 | 0.0396 (8) | 0.0325 (8) | 0.0208 (7) | −0.0004 (6) | 0.0011 (6) | 0.0091 (6) |
O6 | 0.0504 (10) | 0.0230 (7) | 0.0246 (8) | 0.0105 (6) | −0.0011 (7) | 0.0001 (6) |
Zn1—Cl2 | 2.2460 (5) | Zn2—O2 | 2.1066 (13) |
Zn1—Cl1 | 2.2706 (5) | Zn2—O2i | 2.1066 (13) |
Zn1—Cl3 | 2.2785 (5) | Zn3—O4 | 2.0829 (16) |
Zn1—Cl4 | 2.3024 (5) | Zn3—O4ii | 2.0829 (16) |
Zn2—O3 | 2.0506 (13) | Zn3—O6 | 2.0852 (16) |
Zn2—O3i | 2.0506 (13) | Zn3—O6ii | 2.0852 (16) |
Zn2—O1 | 2.1027 (13) | Zn3—O5ii | 2.1045 (16) |
Zn2—O1i | 2.1027 (13) | Zn3—O5 | 2.1045 (16) |
Cl2—Zn1—Cl1 | 115.478 (19) | O1—Zn2—O2i | 87.84 (5) |
Cl2—Zn1—Cl3 | 109.745 (18) | O1i—Zn2—O2i | 92.16 (5) |
Cl1—Zn1—Cl3 | 110.036 (19) | O2—Zn2—O2i | 180.0 |
Cl2—Zn1—Cl4 | 109.947 (18) | O4—Zn3—O4ii | 180.0 |
Cl1—Zn1—Cl4 | 104.334 (18) | O4—Zn3—O6 | 89.91 (7) |
Cl3—Zn1—Cl4 | 106.860 (18) | O4ii—Zn3—O6 | 90.09 (7) |
O3—Zn2—O3i | 180.0 | O4—Zn3—O6ii | 90.09 (7) |
O3—Zn2—O1 | 88.54 (5) | O4ii—Zn3—O6ii | 89.91 (7) |
O3i—Zn2—O1 | 91.46 (5) | O6—Zn3—O6ii | 180.0 |
O3—Zn2—O1i | 91.46 (5) | O4—Zn3—O5ii | 91.29 (7) |
O3i—Zn2—O1i | 88.54 (5) | O4ii—Zn3—O5ii | 88.71 (7) |
O1—Zn2—O1i | 180.00 (3) | O6—Zn3—O5ii | 91.31 (7) |
O3—Zn2—O2 | 88.50 (6) | O6ii—Zn3—O5ii | 88.69 (7) |
O3i—Zn2—O2 | 91.50 (6) | O4—Zn3—O5 | 88.71 (7) |
O1—Zn2—O2 | 92.17 (5) | O4ii—Zn3—O5 | 91.29 (7) |
O1i—Zn2—O2 | 87.83 (5) | O6—Zn3—O5 | 88.69 (7) |
O3—Zn2—O2i | 91.50 (6) | O6ii—Zn3—O5 | 91.31 (7) |
O3i—Zn2—O2i | 88.50 (6) | O5ii—Zn3—O5 | 180.00 (9) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3iii | 0.84 (1) | 2.42 (1) | 3.2520 (14) | 168 (4) |
O1—H1A···Cl4iv | 0.84 (1) | 2.43 (1) | 3.2431 (14) | 166 (3) |
O2—H2A···Cl2v | 0.84 (1) | 2.41 (2) | 3.2260 (14) | 163 (4) |
O2—H2B···Cl3vi | 0.84 (1) | 2.54 (2) | 3.3264 (15) | 157 (3) |
O3—H3B···Cl2iv | 0.84 (1) | 2.42 (2) | 3.1715 (14) | 149 (3) |
O3—H3B···Cl2vii | 0.84 (1) | 2.81 (3) | 3.3159 (14) | 120 (2) |
O3—H3A···Cl4vi | 0.83 (1) | 2.45 (1) | 3.2552 (15) | 162 (3) |
O4—H4A···Cl4 | 0.84 (1) | 2.43 (2) | 3.2307 (18) | 159 (4) |
O4—H4B···Cl1viii | 0.84 (1) | 2.38 (1) | 3.2114 (17) | 167 (4) |
O5—H5B···Cl3ii | 0.84 (1) | 2.91 (5) | 3.4565 (17) | 125 (5) |
O5—H5B···Cl4ii | 0.84 (1) | 2.59 (3) | 3.3527 (18) | 151 (6) |
O5—H5A···Cl1iv | 0.84 (1) | 2.48 (1) | 3.3159 (18) | 170 (5) |
O6—H6A···Cl1 | 0.84 (1) | 2.52 (2) | 3.3142 (18) | 158 (4) |
O6—H6B···Cl3iii | 0.84 (1) | 2.41 (1) | 3.2405 (17) | 169 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+1, −z+1; (v) −x, −y+2, −z+1; (vi) x, y, z+1; (vii) x, y−1, z+1; (viii) x, y−1, z. |
[Zn(H2O)6][ZnCl4]·3H2O | Dx = 1.814 Mg m−3 |
Mr = 434.72 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 33650 reflections |
a = 6.9795 (3) Å | θ = 1.8–29.6° |
b = 12.5421 (6) Å | µ = 3.70 mm−1 |
c = 18.1849 (11) Å | T = 120 K |
V = 1591.86 (14) Å3 | Prism, colourless |
Z = 4 | 1 × 0.75 × 0.09 mm |
F(000) = 872 |
Stoe IPDS 2T diffractometer | 4414 independent reflections |
Radiation source: fine-focus sealed tube | 3955 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.140 |
rotation method scans | θmax = 29.6°, θmin = 2.8° |
Absorption correction: integration (Coppens, 1970) | h = −9→9 |
Tmin = 0.050, Tmax = 0.708 | k = −17→17 |
40776 measured reflections | l = −25→25 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0379P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max = 0.001 |
S = 0.99 | Δρmax = 0.77 e Å−3 |
4414 reflections | Δρmin = −0.64 e Å−3 |
208 parameters | Absolute structure: Flack x determined using 1730 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
27 restraints | Absolute structure parameter: 0.089 (8) |
[Zn(H2O)6][ZnCl4]·3H2O | V = 1591.86 (14) Å3 |
Mr = 434.72 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.9795 (3) Å | µ = 3.70 mm−1 |
b = 12.5421 (6) Å | T = 120 K |
c = 18.1849 (11) Å | 1 × 0.75 × 0.09 mm |
Stoe IPDS 2T diffractometer | 4414 independent reflections |
Absorption correction: integration (Coppens, 1970) | 3955 reflections with I > 2σ(I) |
Tmin = 0.050, Tmax = 0.708 | Rint = 0.140 |
40776 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | All H-atom parameters refined |
wR(F2) = 0.053 | Δρmax = 0.77 e Å−3 |
S = 0.99 | Δρmin = −0.64 e Å−3 |
4414 reflections | Absolute structure: Flack x determined using 1730 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
208 parameters | Absolute structure parameter: 0.089 (8) |
27 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.77065 (5) | 0.00714 (2) | 0.06201 (2) | 0.01250 (7) | |
Zn2 | 0.31706 (5) | 0.03464 (3) | 0.81771 (2) | 0.01309 (7) | |
Cl3 | 0.27768 (11) | −0.08062 (5) | 0.91458 (4) | 0.01637 (13) | |
Cl4 | 0.22957 (11) | −0.06620 (6) | 0.71906 (4) | 0.01873 (14) | |
Cl1 | 0.62302 (10) | 0.09178 (6) | 0.80989 (4) | 0.01949 (14) | |
Cl2 | 0.11859 (11) | 0.17633 (6) | 0.83407 (4) | 0.01869 (14) | |
O5 | 0.7005 (4) | 0.0248 (2) | 0.17173 (12) | 0.0221 (4) | |
O6 | 1.0486 (3) | −0.03761 (19) | 0.08567 (14) | 0.0194 (4) | |
O4 | 0.6863 (4) | −0.15048 (17) | 0.05792 (14) | 0.0230 (5) | |
O7 | 0.8639 (3) | 0.17112 (16) | 0.06267 (13) | 0.0155 (4) | |
O2 | 0.7609 (3) | 0.27476 (16) | 0.93613 (13) | 0.0180 (4) | |
O3 | 0.0251 (4) | 0.25556 (19) | 0.66850 (15) | 0.0233 (5) | |
O1 | 0.6408 (4) | 0.75102 (19) | 0.91896 (15) | 0.0216 (5) | |
O8 | 0.5001 (3) | 0.05893 (19) | 0.03098 (15) | 0.0216 (5) | |
O9 | 0.8442 (3) | −0.00564 (19) | −0.04927 (12) | 0.0193 (4) | |
H6A | 1.106 (7) | −0.008 (3) | 0.1205 (18) | 0.027 (12)* | |
H1A | 0.732 (5) | 0.761 (4) | 0.890 (2) | 0.030 (12)* | |
H4B | 0.681 (8) | −0.188 (3) | 0.0199 (16) | 0.031 (12)* | |
H7A | 0.829 (8) | 0.201 (4) | 0.0235 (16) | 0.033 (13)* | |
H9A | 0.784 (6) | 0.017 (4) | −0.0860 (17) | 0.029 (12)* | |
H5A | 0.747 (7) | −0.006 (4) | 0.2084 (19) | 0.043 (15)* | |
H5B | 0.586 (3) | 0.032 (4) | 0.184 (3) | 0.041 (14)* | |
H8A | 0.433 (6) | 0.015 (3) | 0.008 (2) | 0.031 (13)* | |
H7B | 0.816 (9) | 0.204 (4) | 0.099 (2) | 0.054 (18)* | |
H8B | 0.423 (6) | 0.106 (3) | 0.045 (3) | 0.028 (12)* | |
H6B | 1.069 (8) | −0.1034 (13) | 0.084 (3) | 0.038 (15)* | |
H9B | 0.959 (3) | −0.014 (5) | −0.061 (3) | 0.050 (16)* | |
H4A | 0.629 (7) | −0.181 (4) | 0.092 (2) | 0.035 (14)* | |
H2A | 0.780 (9) | 0.239 (4) | 0.8979 (19) | 0.049 (17)* | |
H3A | 0.046 (8) | 0.228 (4) | 0.7098 (15) | 0.040 (15)* | |
H1B | 0.550 (6) | 0.791 (4) | 0.906 (3) | 0.047 (17)* | |
H2B | 0.645 (3) | 0.292 (4) | 0.939 (4) | 0.050 (17)* | |
H3B | −0.041 (7) | 0.310 (3) | 0.676 (4) | 0.047 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01058 (15) | 0.01326 (13) | 0.01365 (14) | 0.00118 (11) | −0.00037 (11) | 0.00004 (10) |
Zn2 | 0.00971 (15) | 0.01571 (13) | 0.01386 (14) | −0.00083 (11) | −0.00053 (11) | −0.00135 (11) |
Cl3 | 0.0161 (3) | 0.0176 (3) | 0.0154 (3) | −0.0007 (2) | −0.0006 (2) | 0.0012 (2) |
Cl4 | 0.0175 (3) | 0.0241 (3) | 0.0146 (3) | −0.0049 (3) | −0.0008 (3) | −0.0039 (2) |
Cl1 | 0.0108 (3) | 0.0288 (3) | 0.0189 (3) | −0.0047 (2) | 0.0008 (3) | −0.0050 (3) |
Cl2 | 0.0137 (3) | 0.0185 (3) | 0.0239 (4) | 0.0027 (2) | −0.0013 (3) | −0.0032 (2) |
O5 | 0.0198 (11) | 0.0340 (11) | 0.0126 (9) | 0.0063 (10) | 0.0007 (8) | 0.0015 (8) |
O6 | 0.0161 (10) | 0.0193 (10) | 0.0227 (11) | 0.0046 (9) | −0.0063 (8) | −0.0035 (9) |
O4 | 0.0319 (13) | 0.0176 (10) | 0.0195 (11) | −0.0053 (9) | 0.0026 (11) | −0.0007 (8) |
O7 | 0.0147 (10) | 0.0154 (9) | 0.0164 (10) | 0.0004 (7) | 0.0007 (8) | −0.0009 (8) |
O2 | 0.0170 (11) | 0.0175 (9) | 0.0194 (10) | −0.0004 (8) | 0.0005 (9) | −0.0012 (8) |
O3 | 0.0220 (12) | 0.0236 (11) | 0.0245 (13) | 0.0060 (9) | −0.0043 (10) | −0.0005 (9) |
O1 | 0.0189 (12) | 0.0199 (10) | 0.0260 (12) | −0.0012 (9) | 0.0012 (9) | −0.0014 (9) |
O8 | 0.0122 (10) | 0.0244 (11) | 0.0281 (13) | 0.0056 (8) | −0.0062 (9) | −0.0088 (9) |
O9 | 0.0157 (10) | 0.0294 (11) | 0.0127 (9) | 0.0038 (9) | 0.0025 (8) | 0.0012 (8) |
Zn1—O4 | 2.064 (2) | Zn1—O7 | 2.157 (2) |
Zn1—O6 | 2.065 (2) | Zn2—Cl1 | 2.2570 (8) |
Zn1—O5 | 2.066 (2) | Zn2—Cl2 | 2.2728 (8) |
Zn1—O8 | 2.075 (2) | Zn2—Cl4 | 2.2783 (8) |
Zn1—O9 | 2.094 (2) | Zn2—Cl3 | 2.2953 (8) |
O4—Zn1—O6 | 90.86 (10) | O6—Zn1—O7 | 88.54 (9) |
O4—Zn1—O5 | 94.02 (10) | O5—Zn1—O7 | 87.92 (10) |
O6—Zn1—O5 | 92.91 (10) | O8—Zn1—O7 | 88.72 (9) |
O4—Zn1—O8 | 91.75 (10) | O9—Zn1—O7 | 90.25 (9) |
O6—Zn1—O8 | 175.34 (10) | Cl1—Zn2—Cl2 | 109.67 (3) |
O5—Zn1—O8 | 90.76 (10) | Cl1—Zn2—Cl4 | 112.35 (3) |
O4—Zn1—O9 | 87.81 (10) | Cl2—Zn2—Cl4 | 111.95 (3) |
O6—Zn1—O9 | 87.15 (9) | Cl1—Zn2—Cl3 | 111.20 (3) |
O5—Zn1—O9 | 178.17 (10) | Cl2—Zn2—Cl3 | 108.60 (3) |
O8—Zn1—O9 | 89.09 (10) | Cl4—Zn2—Cl3 | 102.86 (3) |
O4—Zn1—O7 | 178.00 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3i | 0.84 (1) | 2.50 (2) | 3.300 (3) | 161 (6) |
O1—H1A···O3ii | 0.84 (1) | 2.00 (2) | 2.823 (4) | 167 (5) |
O2—H2B···O7iii | 0.84 (1) | 2.02 (2) | 2.853 (3) | 176 (6) |
O2—H2A···Cl2iv | 0.83 (1) | 2.75 (5) | 3.347 (2) | 130 (5) |
O2—H2A···Cl1 | 0.83 (1) | 2.68 (4) | 3.386 (2) | 143 (6) |
O2—H2A···Cl2iv | 0.83 (1) | 2.75 (5) | 3.347 (2) | 130 (5) |
O2—H2B···O7iii | 0.84 (1) | 2.02 (2) | 2.853 (3) | 176 (6) |
O3—H3A···Cl2 | 0.84 (1) | 2.41 (2) | 3.237 (3) | 171 (5) |
O3—H3B···Cl3v | 0.84 (1) | 2.71 (5) | 3.312 (3) | 130 (5) |
O3—H3B···Cl4v | 0.84 (1) | 2.79 (4) | 3.512 (3) | 146 (6) |
O4—H4B···O1vi | 0.84 (1) | 2.01 (2) | 2.831 (4) | 167 (5) |
O4—H4A···O3vii | 0.84 (1) | 1.99 (2) | 2.821 (4) | 175 (6) |
O5—H5A···Cl1viii | 0.84 (1) | 2.32 (1) | 3.157 (2) | 180 (6) |
O5—H5B···Cl4vii | 0.84 (1) | 2.33 (2) | 3.165 (3) | 175 (5) |
O6—H6A···Cl4viii | 0.84 (1) | 2.32 (1) | 3.159 (2) | 177 (4) |
O6—H6B···O1ix | 0.84 (1) | 1.92 (2) | 2.754 (3) | 175 (6) |
O7—H7A···O2x | 0.84 (1) | 1.90 (1) | 2.739 (3) | 176 (5) |
O7—H7B···Cl2ix | 0.84 (1) | 2.38 (3) | 3.181 (2) | 160 (6) |
O8—H8A···Cl3x | 0.84 (1) | 2.34 (2) | 3.155 (3) | 164 (5) |
O8—H8B···O2iii | 0.84 (1) | 1.91 (2) | 2.738 (3) | 170 (5) |
O9—H9A···Cl1x | 0.84 (1) | 2.39 (1) | 3.230 (2) | 176 (4) |
O9—H9B···Cl3xi | 0.84 (1) | 2.42 (2) | 3.236 (2) | 167 (5) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+3/2; (iii) x−1/2, −y+1/2, −z+1; (iv) x+1, y, z; (v) −x, y+1/2, −z+3/2; (vi) x, y−1, z−1; (vii) −x+1/2, −y, z−1/2; (viii) −x+3/2, −y, z−1/2; (ix) x+1/2, −y+1/2, −z+1; (x) x, y, z−1; (xi) x+1, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl2i | 0.832 (10) | 2.426 (13) | 3.243 (2) | 167 (3) |
O1—H1B···O5ii | 0.835 (10) | 2.018 (11) | 2.853 (3) | 178 (4) |
O2—H2A···Cl2iii | 0.834 (10) | 2.511 (15) | 3.299 (2) | 158 (3) |
O2—H2B···Cl4ii | 0.840 (10) | 2.414 (14) | 3.2212 (19) | 162 (3) |
O3—H3B···Cl1iv | 0.830 (10) | 2.418 (13) | 3.225 (2) | 164 (3) |
O3—H3A···Cl4v | 0.832 (10) | 2.381 (11) | 3.205 (2) | 171 (3) |
O4—H4B···Cl2v | 0.833 (10) | 2.349 (10) | 3.181 (2) | 177 (3) |
O4—H4A···Cl1iii | 0.833 (10) | 2.450 (16) | 3.2349 (19) | 157 (3) |
O5—H5A···Cl4i | 0.829 (10) | 2.55 (2) | 3.233 (2) | 141 (3) |
O5—H5B···Cl1 | 0.827 (10) | 2.560 (14) | 3.359 (3) | 163 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3i | 0.843 (10) | 2.423 (13) | 3.2520 (14) | 168 (4) |
O1—H1A···Cl4ii | 0.836 (10) | 2.427 (12) | 3.2431 (14) | 166 (3) |
O2—H2A···Cl2iii | 0.840 (10) | 2.412 (16) | 3.2260 (14) | 163 (4) |
O2—H2B···Cl3iv | 0.837 (10) | 2.538 (15) | 3.3264 (15) | 157 (3) |
O3—H3B···Cl2ii | 0.840 (10) | 2.422 (18) | 3.1715 (14) | 149 (3) |
O3—H3B···Cl2v | 0.840 (10) | 2.81 (3) | 3.3159 (14) | 120 (2) |
O3—H3A···Cl4iv | 0.831 (10) | 2.454 (13) | 3.2552 (15) | 162 (3) |
O4—H4A···Cl4 | 0.838 (10) | 2.432 (19) | 3.2307 (18) | 159 (4) |
O4—H4B···Cl1vi | 0.843 (10) | 2.385 (13) | 3.2114 (17) | 167 (4) |
O5—H5B···Cl3vii | 0.838 (10) | 2.91 (5) | 3.4565 (17) | 125 (5) |
O5—H5B···Cl4vii | 0.838 (10) | 2.59 (3) | 3.3527 (18) | 151 (6) |
O5—H5A···Cl1ii | 0.842 (10) | 2.483 (14) | 3.3159 (18) | 170 (5) |
O6—H6A···Cl1 | 0.843 (10) | 2.52 (2) | 3.3142 (18) | 158 (4) |
O6—H6B···Cl3i | 0.841 (10) | 2.410 (12) | 3.2405 (17) | 169 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+2, −z+1; (iv) x, y, z+1; (v) x, y−1, z+1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···Cl3i | 0.838 (14) | 2.50 (2) | 3.300 (3) | 161 (6) |
O1—H1A···O3ii | 0.839 (14) | 2.000 (17) | 2.823 (4) | 167 (5) |
O2—H2B···O7iii | 0.838 (14) | 2.017 (15) | 2.853 (3) | 176 (6) |
O2—H2A···Cl2iv | 0.834 (13) | 2.75 (5) | 3.347 (2) | 130 (5) |
O2—H2A···Cl1 | 0.834 (13) | 2.68 (4) | 3.386 (2) | 143 (6) |
O2—H2A···Cl2iv | 0.834 (13) | 2.75 (5) | 3.347 (2) | 130 (5) |
O2—H2B···O7iii | 0.838 (14) | 2.017 (15) | 2.853 (3) | 176 (6) |
O3—H3A···Cl2 | 0.839 (13) | 2.406 (16) | 3.237 (3) | 171 (5) |
O3—H3B···Cl3v | 0.835 (13) | 2.71 (5) | 3.312 (3) | 130 (5) |
O3—H3B···Cl4v | 0.835 (13) | 2.79 (4) | 3.512 (3) | 146 (6) |
O4—H4B···O1vi | 0.837 (13) | 2.008 (18) | 2.831 (4) | 167 (5) |
O4—H4A···O3vii | 0.838 (13) | 1.985 (15) | 2.821 (4) | 175 (6) |
O5—H5A···Cl1viii | 0.838 (13) | 2.319 (14) | 3.157 (2) | 180 (6) |
O5—H5B···Cl4vii | 0.838 (13) | 2.330 (15) | 3.165 (3) | 175 (5) |
O6—H6A···Cl4viii | 0.841 (13) | 2.319 (14) | 3.159 (2) | 177 (4) |
O6—H6B···O1ix | 0.837 (13) | 1.920 (15) | 2.754 (3) | 175 (6) |
O7—H7A···O2x | 0.839 (13) | 1.901 (14) | 2.739 (3) | 176 (5) |
O7—H7B···Cl2ix | 0.840 (13) | 2.38 (3) | 3.181 (2) | 160 (6) |
O8—H8A···Cl3x | 0.841 (13) | 2.339 (19) | 3.155 (3) | 164 (5) |
O8—H8B···O2iii | 0.839 (13) | 1.907 (16) | 2.738 (3) | 170 (5) |
O9—H9A···Cl1x | 0.840 (13) | 2.392 (14) | 3.230 (2) | 176 (4) |
O9—H9B···Cl3xi | 0.838 (13) | 2.415 (19) | 3.236 (2) | 167 (5) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+3/2; (iii) x−1/2, −y+1/2, −z+1; (iv) x+1, y, z; (v) −x, y+1/2, −z+3/2; (vi) x, y−1, z−1; (vii) −x+1/2, −y, z−1/2; (viii) −x+3/2, −y, z−1/2; (ix) x+1/2, −y+1/2, −z+1; (x) x, y, z−1; (xi) x+1, y, z−1. |
Experimental details
[Zn2Cl4(H2O)5] | [Zn(H2O)6][ZnCl4] | [Zn(H2O)6][ZnCl4]·3H2O | |
Crystal data | |||
Mr | 362.66 | 380.68 | 434.72 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 | Orthorhombic, P212121 |
Temperature (K) | 150 | 150 | 120 |
a, b, c (Å) | 7.2909 (5), 9.7971 (5), 15.0912 (10) | 6.4339 (5), 6.5202 (5), 14.2769 (11) | 6.9795 (3), 12.5421 (6), 18.1849 (11) |
α, β, γ (°) | 90, 103.375 (5), 90 | 90.910 (6), 99.146 (6), 95.574 (6) | 90, 90, 90 |
V (Å3) | 1048.72 (12) | 588.21 (8) | 1591.86 (14) |
Z | 4 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 5.57 | 4.98 | 3.70 |
Crystal size (mm) | 0.27 × 0.19 × 0.11 | 0.60 × 0.42 × 0.16 | 1 × 0.75 × 0.09 |
Data collection | |||
Diffractometer | Stoe IPDS 2 diffractometer | Stoe IPDS 2T diffractometer | Stoe IPDS 2T diffractometer |
Absorption correction | Integration (Coppens, 1970) | Integration (Coppens, 1970) | Integration (Coppens, 1970) |
Tmin, Tmax | 0.287, 0.534 | 0.093, 0.441 | 0.050, 0.708 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9997, 2923, 2222 | 13092, 3239, 3120 | 40776, 4414, 3955 |
Rint | 0.043 | 0.091 | 0.140 |
(sin θ/λ)max (Å−1) | 0.628 | 0.693 | 0.694 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.035, 1.01 | 0.029, 0.089, 1.02 | 0.021, 0.053, 0.99 |
No. of reflections | 2171 | 3239 | 4414 |
No. of parameters | 130 | 161 | 208 |
No. of restraints | 15 | 18 | 27 |
H-atom treatment | Only H-atom coordinates refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.44, −0.36 | 0.95, −0.95 | 0.77, −0.64 |
Absolute structure | ? | ? | Flack x determined using 1730 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Absolute structure parameter | ? | ? | 0.089 (8) |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
References
Agron, P. A. & Busing, W. R. (1985). Acta Cryst. C41, 8–10. CrossRef CAS Web of Science IUCr Journals Google Scholar
Biltz, W. (1902). Z. Phys. Chem. 40, 185–221. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brehler, B. (1961). Z. Kristallogr. 115, 373–402. CrossRef CAS Google Scholar
Chambers, V. J. & Frazer, F. C. J. (1900). Am. Chem. J. 23, 512–520. Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Dietz, R. (1899). Z. Anorg. Chem. 20, 240–263. CrossRef Google Scholar
Etard, A. (1894). Ann. Chim. Phys. 7, 503–574. Google Scholar
Ferrari, A., Braibanti, A., Lanfredi, A. M. M. & Tiripicchio, A. (1967). Acta Cryst. 22, 240–246. CrossRef IUCr Journals Web of Science Google Scholar
Follner, H. & Brehler, B. (1970). Acta Cryst. B26, 1679–1682. CrossRef IUCr Journals Web of Science Google Scholar
Haghighi, H., Chapoy, A. & Tohidi, B. (2008). Ind. Eng. Chem. Res. 47, 3983–3989. Web of Science CrossRef CAS Google Scholar
Hennings, E., Schmidt, H. & Voigt, W. (2013). Acta Cryst. C69, 1292–1300. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jones, H. C. & Getman, F. H. (1904). Z. Phys. Chem. 49, 385–455. Google Scholar
Mylius, F. & Dietz, R. (1905). Z. Anorg. Chem. 44, 209–220. CrossRef CAS Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spiess, M. & Gruehn, R. (1979). Z. Anorg. Allg. Chem. 456, 222–240. CrossRef CAS Web of Science Google Scholar
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilcox, R. J. (2009). PhD thesis, North Carolina State University, Raleigh, USA. Google Scholar
Yakel, H. L. & Brynestad, J. (1978). Inorg. Chem. 17, 3294–3296. CrossRef CAS Web of Science Google Scholar
Zalkin, A., Ruben, H. & Templeton, D. H. (1964). Acta Cryst. 17, 235–240. CrossRef IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.