research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Unexpected formation and crystal structure of tetra­kis­(1H-pyrazole-κN2)­palladium(II) dichloride

aChemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and bInstitut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 October 2014; accepted 10 November 2014; online 15 November 2014)

The title salt, [Pd(C3H4N2)4]Cl2, was obtained unexpectedly by the reaction of palladium(II) dichloride with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris­(pyrazol­yl)ethane in methanol solution. The Pd2+ cation is located on an inversion centre and has a square-planar coordination sphere defined by four N atoms of four neutral pyrazole ligands. The average Pd—N distance is 2.000 (2) Å. The two chloride anions are not coordinating to Pd2+. They are connected to the complex cations through N—H⋯Cl hydrogen bonds. In addition, C—H⋯Cl hydrogen bonds are observed, leading to a three-dimensional linkage of cations and anions.

1. Chemical context

Transition metal complexes containing pyrazole or substituted pyrazoles as ligands are of current inter­est due to their supra­molecular arrangements (Lumme et al., 1988[Lumme, P. O., Lindell, E. & Mutikainen, I. (1988). Acta Cryst. C44, 967-970.]; Takahashi et al., 2006[Takahashi, P. M., Melo, L. P., Frem, R. C. G., Netto, A. V. G., Mauro, A. E., Santos, R. H. A. & Ferreira, J. G. (2006). J. Mol. Struct. 783, 161-167.]; Casarin et al., 2007[Casarin, M., Cingolani, A., Di Nicola, C., Falcomer, D., Monari, M., Pandolfo, L. & Pettinari, C. (2007). Cryst. Growth Des. 7, 676-685.]; Alsalme et al., 2013[Alsalme, A., Al-Farhan, K., Ghazzali, M., Khair, M., Khan, R. A. & Reedijk, J. (2013). Inorg. Chim. Acta, 407, 7-10.]). In the course of an investigation on the coordination chemistry of various azolyl-nitro­chloro­alkanes (Zapol'skii & Kaufmann, 2008[Zapol'skii, V. & Kaufmann, D. (2008). Technische Universität Clausthal. Unpublished work.]), we have previously studied the reaction of copper(II) perchlorate hexa­hydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris­(pyrazol­yl)ethane, Cl(NO2)CH—C(C3H3N2)3 (Fig. 1[link]) in methanol solution (Edelmann et al., 2008[Edelmann, F. T., Kaufmann, D. E., Blaurock, S., Wagner, T. & Zapol'skii, V. (2008). Acta Cryst. E64, m1315.]). Quite unexpectedly, a complete degradation of the starting material took place during the course of this reaction. As a result, the dark-blue compound trans-bis­(perchlorato)-tetra­kis(pyrazole)copper(II), [Cu(C3H4N2)4(ClO4)2], was isolated. The formation of free pyrazole could only be explained by a solvolytic degradation of the starting material. This degradation must have taken place to a large extent as the isolated yield was 64% (Edelmann et al., 2008[Edelmann, F. T., Kaufmann, D. E., Blaurock, S., Wagner, T. & Zapol'skii, V. (2008). Acta Cryst. E64, m1315.]).

[Figure 1]
Figure 1
Structure diagram of the starting material 1-chloro-1-nitro-2,2,2-tris(pyrazol­yl)ethane.

We have now carried out a closely related reaction of 1-chloro-1-nitro-2,2,2-tris­(pyrazol­yl)ethane with palladium(II) dichloride in methanol solution. Structure determination of the yellow reaction product using X-ray analysis surprisingly again revealed the presence of a homoleptic pyrazole complex. The structure of the resultant title compound, [Pd(C3H4N2)4]Cl2 is presented here. An elemental analysis of the title compound was also in very good agreement with the composition C12H16Cl2PdN8. In this case, too, the yield was fairly high (56%), indicating a far-reaching decomposition of the starting material. Apparently, the ligand degradation of azolyl-nitro­chloro­alkanes in the presence of transition metal salts is a more common phenomenon than originally anti­ci­pated.

[Scheme 1]

2. Structural commentary

In the crystal structure of the title compound, the Pd2+ ion is located on an inversion centre and is bonded to four neutral pyrazole ligands within a square-planar coordination environment (Fig. 2[link]). The average Pd—N distance in the [Pd(pyrazole)4]2+ cation is 2.000 (2) Å. This is exactly the same value as found for the Cu—N distance in trans-bis­(perchlorato)-tetra­kis­(pyrazole)­copper(II) [2.000 (1) Å; Edelmann et al., 2008[Edelmann, F. T., Kaufmann, D. E., Blaurock, S., Wagner, T. & Zapol'skii, V. (2008). Acta Cryst. E64, m1315.]]. The two chloride anions are not coordinating to the Pd2+ cation. This is in marked contrast to the analogous copper(II) complex [Cu(pyrazole)4Cl2] (Xing et al., 2006[Xing, Y.-H., Han, J., Zhang, B.-L., Zhang, X.-J., Zhang, Y.-H. & Zhou, G.-H. (2006). Acta Cryst. E62, m3354-m3356.]), in which the Cu2+ ion is six-coordinated by four N atoms from four pyrazole ligands and two Cl ions. The same octa­hedral coordination has also been reported for the manganese(II) analog [Mn(pyrazole)4Cl2] (Lumme, 1985[Lumme, P. O. (1985). Thermochim. Acta, 86, 101-108.]).

[Figure 2]
Figure 2
The coordination sphere of Pd2+ and the Cl counter-ions in the title compound. Displacement ellipsoids represent the 50% probability level. [Symmetry code (A): −x + [{1\over 2}], −y + [{1\over 2}], −z.]

3. Supra­molecular features

In the title compound, the crystal packing is stabilized by two N—H⋯Cl hydrogen bonds (Table 1[link]) between the complex cations and the Cl counter-anions (Fig. 3[link]). Weaker C—H⋯Cl hydrogen bonds are also observed, stabilizing a three-dimensional network. The crystal structures of the formally analogous complexes [M(pyrazole)4Cl2] show related features. In the structures with M = Mn and Cu and an octa­hedral coordination of the metal cation, the crystal structures likewise exhibit N—H⋯Cl and C—H⋯Cl hydrogen bonds which, in combination, yield three-dimensional networks.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl 0.87 (2) 2.50 (3) 3.254 (3) 145 (3)
N4—H4N⋯Cl 0.88 (2) 2.33 (2) 3.147 (3) 156 (4)
C1—H1⋯Cli 0.95 2.75 3.625 (4) 153
C4—H4⋯Clii 0.95 2.73 3.656 (4) 164
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
A packing diagram of the title compound. Dashed lines indicate N—H⋯Cl hydrogen-bonding inter­actions.

4. Relation with other compounds

Various closely related homoleptic metal–pyrazole complexes are known from the literature (Misra et al., 1998[Misra, B. N., Kripal, R. & Narayan, A. (1998). Indian J. Pure Appl. Phys. 36, 412-414.]; Reedijk, 1969[Reedijk, J. (1969). Recl Trav. Chim. Pays Bas, 88, 1451-1470.]; Sastry et al., 1986[Sastry, B. A., Balaiah, B., Reddy, K. V. G., Madhu, B., Ponticelli, G., Massacssi, M. & Puggioni, G. (1986). Indian J. Pure Appl. Phys. 24, 460-462.]). Analogous complexes of composition [M(pyrazole)4Cl2] have previously been reported for M = Mn, Fe, Co, Ni, and Cu (Daugherty & Swisher, 1968[Daugherty, N. A. & Swisher, J. H. (1968). Inorg. Chem. 7, 1651-1653.]; Bagley et al., 1970[Bagley, M. J., Nicholls, D. & Warburton, B. A. (1970). J. Chem. Soc. A, pp. 2694-2697.]; Nicholls & Warburton, 1970[Nicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871-3874.], 1971[Nicholls, D. & Warburton, B. A. (1971). J. Inorg. Nucl. Chem. 33, 1041-1045.]; Lumme, 1985[Lumme, P. O. (1985). Thermochim. Acta, 86, 101-108.]; Sun et al., 2001[Sun, Y.-J., Cheng, P., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2001). J. Mol. Struct. 597, 191-198.]; Xing et al., 2006[Xing, Y.-H., Han, J., Zhang, B.-L., Zhang, X.-J., Zhang, Y.-H. & Zhou, G.-H. (2006). Acta Cryst. E62, m3354-m3356.]). Generally, these compounds are prepared in a more straightforward manner by treatment of the transition metal dichlorides with four equivalents of pyrazole in suitable solvents such as methanol. While the analogous nickel(II) complex has been studied frequently (Daugherty & Swisher, 1968[Daugherty, N. A. & Swisher, J. H. (1968). Inorg. Chem. 7, 1651-1653.]; Nicholls & Warburton, 1970[Nicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871-3874.]), to the best of our knowledge neither the title compound nor the platinum homologue [Pt(pyrazole)4]Cl2 have ever been reported.

5. Synthesis and crystallization

Solid palladium(II) dichloride (0.28 g, 1.6 mmol) was added to a solution of 1-chloro-1-nitro-2,2,2-tris­(pyrazol­yl)ethane (0.50 g, 1.6 mmol) in methanol (100 ml). After stirring for 48 h at room temperature, a small amount of unreacted PdCl2 was removed by filtration. Crystallization from the clear filtrate at 276–279 K for 14 d afforded bright-yellow crystals of the title compound. Yield: 0.4 g (56%). Analysis calculated for C12H16Cl2PdN8: C 32.06%; H 3.59%; N 24.92%; Cl 15.77%; found: C 31.55%; H 3.38%; N 25.13%; Cl 15.25%. IR (KBr): 3090vs, 2977vs, 2371m, 1798w, 1772w, 1632w, 1518m, 1487m, 1472s, 1401m, 1367s, 1312m, 1264m, 1251m, 1209w, 1181vs, 1169m, 1139s, 1123s, 1078vs, 1052vs, 983m, 956m, 913m, 908m, 899m, 886m, 878m, 779vs, 739s, 615s, 606s cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms attached to carbon were included using a riding model, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). The hydrogen atoms attached to nitro­gen were refined with a restrained distance N—H = 0.88 (2) Å and with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula [Pd(C12H16N8)]Cl2
Mr 449.63
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 13.797 (3), 9.6560 (19), 14.174 (3)
β (°) 117.80 (3)
V3) 1670.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.44
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.562, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 7700, 2253, 2030
Rint 0.054
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.12
No. of reflections 2253
No. of parameters 112
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.79, −1.73
Computer programs: X-AREA and X-RED32 (Stoe, 2008[Stoe (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97, SHELXL97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Transition metal complexes containing pyrazole or substituted pyrazoles as ligands are of current inter­est due to their supra­molecular arrangements (Lumme et al., 1988; Takahashi et al., 2006; Casarin et al., 2007; Alsalme et al., 2013). In the course of an investigation on the coordination chemistry of various azolyl-nitro­chloro­alkanes (Zapol'skii & Kaufmann, 2008), we have previously studied the reaction of copper(II) perchlorate hexahydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris­(pyrazolyl)ethane, Cl(NO2)CH—C(C3H3N2)3 (Fig. 1) in methanol solution (Edelmann et al., 2008). Quite unexpectedly, a complete degradation of the starting material took place during the course of this reaction. As a result, the dark-blue compound trans-bis­(perchlorato)-tetra­kis(pyrazole)­copper(II), [Cu(C3H4N2)4(ClO4)2], was isolated. The formation of free pyrazole could only be explained by a solvolytic degradation of the starting material. This degradation must have taken place to a large extent as the isolated yield was 64% (Edelmann et al., 2008).

We have now carried out a closely related reaction of 1-chloro-1-nitro-2,2,2-tris­(pyrazolyl)ethane with palladium(II) dichloride in methanol solution. Structure determination of the yellow reaction product using X-ray analysis surprisingly again revealed the presence of a homoleptic pyrazole complex. The structure of the resultant title compound, [Pd(C3H4N2)4]Cl2 is presented here. An elemental analysis of the title compound was also in very good agreement with the composition C12H16Cl2PdN8. In this case, too, the yield was fairly high (56%), indicating a far-reaching decomposition of the starting material. Apparently, the ligand degradation of azolyl-nitro­chloro­alkanes in the presence of transition metal salts is a more common phenomenon than originally anti­cipated.

Structural commentary top

In the crystal structure of the title compound, the Pd2+ ion is located on an inversion centre and is bonded to four neutral pyrazole ligands within a square-planar coordination environment (Fig. 2). The average Pd—N distance in the [Pd(pyrazole)4]2+ cation is 2.000 (2) Å. This is exactly the same value as found for the Cu—N distance in trans-bis­(perchlorato)-tetra­kis(pyrazole)­copper(II) (2.000 (1) Å; Edelmann et al., 2008). The two chloride anions are not coordinating to the Pd2+ cation. This is in marked contrast to the analogous copper(II) complex [Cu(pyrazole)4Cl2] (Xing et al., 2006) in which the Cu2+ ion is six-coordinated by four N-atoms from four pyrazole ligands and two Cl- ions. The same o­cta­hedral coordination has also been reported for the manganese(II) analog [Mn(pyrazole)4Cl2] (Lumme, 1985).

Supra­molecular features top

In the title compound, the crystal packing is stabilized by two N—H···Cl hydrogen bonds (Table 1) between the complex cations and the Cl- counter anions (Fig. 3). Weaker C—H···Cl hydrogen bonds are also observed, stabilizing a three-dimensional network. The crystal structures of the formally analogous complexes [M(pyrazole)4Cl2] show related features. In the structures with M = Mn and Cu and an o­cta­hedral coordination of the metal, the crystal structures likewise exhibit N—H···Cl and C—H···Cl hydrogen bonds which, in combination, yield three-dimensional networks.

Relation with other compounds top

Various closely related homoleptic metal pyrazole complexes are known from the literature (Misra et al., 1998; Reedijk, 1969; Sastry et al., 1986). Analogous complexes of composition [M(pyrazole)4Cl2] have previously been reported for M = Mn, Fe, Co, Ni, and Cu (Daugherty & Swisher, 1968; Bagley et al., 1970; Nicholls & Warburton, 1970, 1971; Lumme, 1985; Sun et al., 2001; Xing et al., 2006). Generally, these compounds are prepared in a more straightforward manner by treatment of the transition metal dichlorides with four equivalents of pyrazole in suitable solvents such as methanol. While the analogous nickel(II) complex has been studied frequently (Daugherty & Swisher, 1968; Nicholls & Warburton, 1970), to the best of our knowledge neither the title compound nor the platinum homologue [Pt(pyrazole)4]Cl2 have ever been reported.

Synthesis and crystallization top

Solid palladium(II) dichloride (0.28 g, 1.6 mmol) was added to a solution of 1-chloro-1-nitro-2,2,2-tris­(pyrazolyl)ethane (0.50 g, 1.6 mmol) in methanol (100 ml). After stirring for 48 h at room temperature, a small amount of unreacted PdCl2 was removed by filtration. Crystallization from the clear filtrate at 276–279 K for 14 d afforded bright-yellow crystals of the title compound. Yield: 0.4 g (56%). Analysis calculated for C12H16Cl2PdN8: C 32.06%; H 3.59%; N 24.92%; Cl 15.77%; found: C 31.55%; H 3.38%; N 25.13%; Cl 15.25%. IR (KBr): 3090vs, 2977vs, 2371m, 1798w, 1772w, 1632w, 1518m, 1487m, 1472s, 1401m, 1367s, 1312m, 1264m, 1251m, 1209w, 1181vs, 1169m, 1139s, 1123s, 1078vs, 1052vs, 983m, 956m, 913m, 908m, 899m, 886m, 878m, 779vs, 739s, 615s, 606s cm-1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms attached to carbon were included using a riding model, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). The hydrogen atoms attached to nitro­gen were refined with a restrained distance N—H = 0.88 (2) Å and with Uiso(H) = 1.2Ueq(N).

Related literature top

For representative supramolecular structures of transition metal pyrazole complexes, see: Lumme et al. (1988); Takahashi et al. (2006); Casarin et al. (2007); Alsalme et al. (2013). For similar reactions, see: Edelmann et al. (2008); Zapol'skii & Kaufmann (2008). For other homoleptic transition metal pyrazole complexes, see: Misra et al. (1998); Reedijk (1969); Sastry et al. (1986). For analogous [M(pyrazole)4]Cl2 complexes with M = Mn, Fe, Co, Ni, Cu, see: Daugherty & Swisher (1968); Bagley et al. (1970); Nicholls & Warburton (1970, 1971); Lumme (1985); Sun et al. (2001); Xing et al. (2006).

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-RED32 (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Structure diagram of the starting material 1-chloro-1-nitro-2,2,2-tris(pyrazolyl)ethane.

The coordination sphere of Pd2+ and the Cl- counter-ions in the title compound. Displacement ellipsoids represent the 50% probability level. [Symmetry code (A): -x + 1/2, -y + 1/2, -z.]

A packing diagram of the title compound. Dashed lines indicate N—H···Cl hydrogen-bonding interactions.
Tetrakis(1H-pyrazole-κN2)palladium(II) dichloride top
Crystal data top
[Pd(C12H16N8)]Cl2F(000) = 896
Mr = 449.63449.6
Monoclinic, C2/cDx = 1.788 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.797 (3) ÅCell parameters from 15423 reflections
b = 9.6560 (19) Åθ = 2.7–29.6°
c = 14.174 (3) ŵ = 1.44 mm1
β = 117.80 (3)°T = 150 K
V = 1670.4 (6) Å3Prism, yellow
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Stoe IPDS-2T
diffractometer
2253 independent reflections
Radiation source: fine-focus sealed tube2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.7°
ω–scansh = 1818
Absorption correction: multi-scan
(Blessing, 1995)
k = 1313
Tmin = 0.562, Tmax = 0.750l = 1719
7700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.049P)2 + 4.2172P]
where P = (Fo2 + 2Fc2)/3
2253 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 1.79 e Å3
2 restraintsΔρmin = 1.73 e Å3
Crystal data top
[Pd(C12H16N8)]Cl2V = 1670.4 (6) Å3
Mr = 449.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.797 (3) ŵ = 1.44 mm1
b = 9.6560 (19) ÅT = 150 K
c = 14.174 (3) Å0.40 × 0.40 × 0.20 mm
β = 117.80 (3)°
Data collection top
Stoe IPDS-2T
diffractometer
2253 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2030 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.750Rint = 0.054
7700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.79 e Å3
2253 reflectionsΔρmin = 1.73 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.25000.25000.00000.01539 (11)
Cl0.09118 (6)0.02409 (9)0.06859 (6)0.02881 (17)
N10.2363 (2)0.2373 (2)0.1343 (2)0.0190 (5)
N20.1606 (2)0.1607 (3)0.1453 (2)0.0225 (5)
H2N0.116 (3)0.109 (4)0.093 (2)0.027*
N30.36913 (18)0.1080 (3)0.05645 (18)0.0189 (4)
N40.3490 (2)0.0279 (3)0.0486 (2)0.0234 (5)
H4N0.2803 (18)0.054 (5)0.015 (2)0.028*
C10.1706 (3)0.1749 (3)0.2435 (2)0.0269 (6)
H10.12680.13110.27020.032*
C20.2560 (3)0.2644 (3)0.2984 (3)0.0284 (7)
H20.28320.29440.37020.034*
C30.2943 (2)0.3019 (3)0.2264 (2)0.0234 (5)
H30.35290.36420.24120.028*
C40.4419 (3)0.0999 (4)0.0945 (3)0.0302 (6)
H40.44840.19790.09860.036*
C50.5262 (3)0.0071 (4)0.1346 (3)0.0316 (7)
H50.60230.02710.17210.038*
C60.4771 (2)0.1239 (3)0.1089 (2)0.0267 (6)
H60.51480.20990.12630.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01373 (15)0.01505 (16)0.01795 (15)0.00207 (9)0.00784 (11)0.00096 (9)
Cl0.0255 (3)0.0302 (4)0.0336 (3)0.0083 (3)0.0162 (3)0.0104 (3)
N10.0183 (10)0.0186 (12)0.0216 (10)0.0018 (8)0.0105 (9)0.0021 (8)
N20.0227 (11)0.0210 (12)0.0275 (11)0.0027 (9)0.0149 (9)0.0005 (9)
N30.0160 (10)0.0175 (11)0.0222 (10)0.0035 (8)0.0080 (8)0.0017 (8)
N40.0199 (10)0.0173 (11)0.0329 (12)0.0025 (9)0.0122 (9)0.0016 (10)
C10.0286 (14)0.0259 (16)0.0322 (14)0.0049 (12)0.0192 (12)0.0057 (12)
C20.0299 (15)0.0337 (18)0.0213 (13)0.0118 (12)0.0117 (12)0.0023 (11)
C30.0202 (12)0.0248 (14)0.0218 (12)0.0037 (11)0.0069 (10)0.0016 (11)
C40.0303 (14)0.0252 (16)0.0391 (16)0.0093 (12)0.0195 (13)0.0067 (13)
C50.0216 (13)0.0325 (18)0.0392 (16)0.0134 (12)0.0128 (12)0.0094 (13)
C60.0158 (11)0.0238 (15)0.0342 (15)0.0005 (10)0.0063 (11)0.0009 (12)
Geometric parameters (Å, º) top
Pd—N31.999 (2)N4—H4N0.875 (19)
Pd—N3i1.999 (2)C1—C21.372 (5)
Pd—N1i2.002 (3)C1—H10.9500
Pd—N12.002 (3)C2—C31.399 (4)
N1—C31.327 (4)C2—H20.9500
N1—N21.347 (3)C3—H30.9500
N2—C11.340 (4)C4—C51.365 (5)
N2—H2N0.869 (18)C4—H40.9500
N3—C61.327 (4)C5—C61.400 (4)
N3—N41.336 (3)C5—H50.9500
N4—C41.332 (4)C6—H60.9500
N3—Pd—N3i180.00 (11)N2—C1—C2107.4 (3)
N3—Pd—N1i89.89 (10)N2—C1—H1126.3
N3i—Pd—N1i90.11 (10)C2—C1—H1126.3
N3—Pd—N190.11 (10)C1—C2—C3105.4 (3)
N3i—Pd—N189.89 (10)C1—C2—H2127.3
N1i—Pd—N1180.0 (2)C3—C2—H2127.3
C3—N1—N2106.7 (2)N1—C3—C2109.7 (3)
C3—N1—Pd128.7 (2)N1—C3—H3125.2
N2—N1—Pd124.51 (19)C2—C3—H3125.2
C1—N2—N1110.8 (3)N4—C4—C5107.4 (3)
C1—N2—H2N130 (3)N4—C4—H4126.3
N1—N2—H2N119 (3)C5—C4—H4126.3
C6—N3—N4107.2 (2)C4—C5—C6105.7 (3)
C6—N3—Pd130.1 (2)C4—C5—H5127.2
N4—N3—Pd122.71 (18)C6—C5—H5127.2
C4—N4—N3110.9 (3)N3—C6—C5108.8 (3)
C4—N4—H4N132 (3)N3—C6—H6125.6
N3—N4—H4N117 (3)C5—C6—H6125.6
N3—Pd—N1—C384.2 (3)N1—Pd—N3—N483.8 (2)
N3i—Pd—N1—C395.8 (3)C6—N3—N4—C40.4 (3)
N1i—Pd—N1—C3138 (100)Pd—N3—N4—C4178.5 (2)
N3—Pd—N1—N297.9 (2)N1—N2—C1—C20.1 (3)
N3i—Pd—N1—N282.1 (2)N2—C1—C2—C30.4 (3)
N1i—Pd—N1—N240 (100)N2—N1—C3—C20.9 (3)
C3—N1—N2—C10.6 (3)Pd—N1—C3—C2179.0 (2)
Pd—N1—N2—C1178.9 (2)C1—C2—C3—N10.8 (3)
N3i—Pd—N3—C6127 (100)N3—N4—C4—C50.4 (4)
N1i—Pd—N3—C686.1 (3)N4—C4—C5—C60.3 (4)
N1—Pd—N3—C693.9 (3)N4—N3—C6—C50.2 (4)
N3i—Pd—N3—N455 (100)Pd—N3—C6—C5178.1 (2)
N1i—Pd—N3—N496.2 (2)C4—C5—C6—N30.1 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl0.87 (2)2.50 (3)3.254 (3)145 (3)
N4—H4N···Cl0.88 (2)2.33 (2)3.147 (3)156 (4)
C1—H1···Clii0.952.753.625 (4)153
C4—H4···Cliii0.952.733.656 (4)164
Symmetry codes: (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl0.869 (18)2.50 (3)3.254 (3)145 (3)
N4—H4N···Cl0.875 (19)2.33 (2)3.147 (3)156 (4)
C1—H1···Cli0.952.753.625 (4)153
C4—H4···Clii0.952.733.656 (4)164
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Pd(C12H16N8)]Cl2
Mr449.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)13.797 (3), 9.6560 (19), 14.174 (3)
β (°) 117.80 (3)
V3)1670.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerStoe IPDS2T
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.562, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
7700, 2253, 2030
Rint0.054
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.12
No. of reflections2253
No. of parameters112
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.79, 1.73

Computer programs: X-AREA (Stoe, 2008), X-RED32 (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationAlsalme, A., Al-Farhan, K., Ghazzali, M., Khair, M., Khan, R. A. & Reedijk, J. (2013). Inorg. Chim. Acta, 407, 7–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationBagley, M. J., Nicholls, D. & Warburton, B. A. (1970). J. Chem. Soc. A, pp. 2694–2697.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCasarin, M., Cingolani, A., Di Nicola, C., Falcomer, D., Monari, M., Pandolfo, L. & Pettinari, C. (2007). Cryst. Growth Des. 7, 676–685.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaugherty, N. A. & Swisher, J. H. (1968). Inorg. Chem. 7, 1651–1653.  CrossRef CAS Web of Science Google Scholar
First citationEdelmann, F. T., Kaufmann, D. E., Blaurock, S., Wagner, T. & Zapol'skii, V. (2008). Acta Cryst. E64, m1315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P. O. (1985). Thermochim. Acta, 86, 101–108.  CrossRef CAS Web of Science Google Scholar
First citationLumme, P. O., Lindell, E. & Mutikainen, I. (1988). Acta Cryst. C44, 967–970.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMisra, B. N., Kripal, R. & Narayan, A. (1998). Indian J. Pure Appl. Phys. 36, 412–414.  CAS Google Scholar
First citationNicholls, D. & Warburton, B. A. (1970). J. Inorg. Nucl. Chem. 32, 3871–3874.  CrossRef CAS Web of Science Google Scholar
First citationNicholls, D. & Warburton, B. A. (1971). J. Inorg. Nucl. Chem. 33, 1041–1045.  CrossRef CAS Web of Science Google Scholar
First citationReedijk, J. (1969). Recl Trav. Chim. Pays Bas, 88, 1451–1470.  CrossRef CAS Google Scholar
First citationSastry, B. A., Balaiah, B., Reddy, K. V. G., Madhu, B., Ponticelli, G., Massacssi, M. & Puggioni, G. (1986). Indian J. Pure Appl. Phys. 24, 460–462.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, Y.-J., Cheng, P., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Shen, P.-W. (2001). J. Mol. Struct. 597, 191–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakahashi, P. M., Melo, L. P., Frem, R. C. G., Netto, A. V. G., Mauro, A. E., Santos, R. H. A. & Ferreira, J. G. (2006). J. Mol. Struct. 783, 161–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationXing, Y.-H., Han, J., Zhang, B.-L., Zhang, X.-J., Zhang, Y.-H. & Zhou, G.-H. (2006). Acta Cryst. E62, m3354–m3356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZapol'skii, V. & Kaufmann, D. (2008). Technische Universität Clausthal. Unpublished work.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds