organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1273-o1274

Crystal structure of 2,2,3,3-tetra­methyl-1,1,1,4,4,4-hexa­phenyl­tetra­germane

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and bMoscow State University (Baku Branch), AZ1144 Universitet st. 1, Khojasan, Binagadi, Baku, Azerbaijan
*Correspondence e-mail: yurislovo@yandex.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 October 2014; accepted 14 November 2014; online 21 November 2014)

The mol­ecule of the title compound, C40H42Ge4, lies with its central Ge—Ge bond on an inversion centre giving rise to a zigzag backbone of four tetra­hedrally coordinated Ge atoms. The symmetrically independent Ge—Ge bonds are slightly shorter than in other organo­tetra­germanes whereas the Ge—CPh (Ph = phen­yl) and Ge—CMe (Me = meth­yl) distances have their usual values. In the crystal, (010) layers of Ph6Me4Ge4 mol­ecules with a parallel orientation of the Ge4 backbone exist, held together by van der Waals forces only. Main bond lengths in organo-substituted oligogermanes are compared.

1. Related literature

A search for `organic electronics' materials in systems of conjugated C—C bonds (Kobayashi et al., 2011[Kobayashi, H., Kobayashi, A. & Tajima, H. (2011). Chem. Asian J. 6, 1688-1704.]) was recently extended to organometallic mol­ecules containing chains of atoms such as Ge, Si, or Sn (Marschner & Hlina, 2013[Marschner, C. & Hlina, J. (2013). In Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. Poeppelmeier, pp. 83-117. Amsterdam: Elsevier.]). The established routines used to obtain oligogermanes via hydro­germolysis or the reaction of germyllithium reagents with germanium halogenides (Amadoruge & Weinert, 2008[Amadoruge, M. L. & Weinert, C. S. (2008). Chem. Rev. 108, 4253-4294.]) may give rise to unexpected by-products due to side reactions. As a part of our studies of the chemistry of oligogermanium compounds (Zaitsev et al., 2012[Zaitsev, K. V., Kapranov, A. A., Oprunenko, Y. F., Churakov, A. V., Howard, J. F. K., Tarasevich, B. N., Karlov, S. S. & Zaitseva, G. S. (2012). J. Organomet. Chem. 700, 207-213.], 2013[Zaitsev, K. V., Kapranov, A. A., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Y. F., Tarasevich, B. N., Zaitseva, G. S. & Karlov, S. S. (2013). Organometallics, 32, 6500-6510.], 2014[Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605-6609.]), the title compound was obtained as a by-product. For related crystal structures of organo­tetra­germanes, see: Roller et al. (1986[Roller, S., Simon, D. & Dräger, M. (1986). J. Organomet. Chem. 301, 27-40.]); Dräger & Simon (1986[Dräger, M. & Simon, D. (1986). J. Organomet. Chem. 306, 183-192.]); Wagner et al. (2009[Wagner, H., Baumgartner, J., Müller, T. & Marschner, C. (2009). J. Am. Chem. Soc. 131, 5022-5023.]); Amadoruge et al. (2010[Amadoruge, M. L., Short, E. K., Moore, C., Rheingold, A. L. & Weinert, C. S. (2010). J. Organomet. Chem. 695, 1813-1823.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C40H42Ge4

  • Mr = 813.10

  • Monoclinic, P 21 /c

  • a = 9.6402 (5) Å

  • b = 13.6386 (6) Å

  • c = 14.0503 (7) Å

  • β = 104.560 (1)°

  • V = 1787.99 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 120 K

  • 0.55 × 0.53 × 0.11 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.391, Tmax = 0.701

  • 22283 measured reflections

  • 5210 independent reflections

  • 4222 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.05

  • 5210 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Main bond lengths (Å) in organo-substituted oligogermanes

Me is CH3, Ms is Me3Si and Tol is p-C6H4Me.

Compound Ge—Geperiph Ge—Gecentral Ge—CPh Ge—CMe
Ph3GeMe2GeGeMe2GePh3a 2.4361 (3) 2.4276 (4) 1.961 1.965
Ms3GeMe2GeGeMe2GeMs3b 2.441 2.442 1.967
Tol3GeGePh2GePh2GeTol3c 2.443 2.457 1.973
Ph3GeGePh2GePh2GePh3d 2.464 2.461 1.969
Ph3GeGeMe2GePh3e 2.429 1.957 1.944
References: (a) This work; (b) Wagner et al. (2009[Wagner, H., Baumgartner, J., Müller, T. & Marschner, C. (2009). J. Am. Chem. Soc. 131, 5022-5023.]); (c) Amadoruge et al. (2010[Amadoruge, M. L., Short, E. K., Moore, C., Rheingold, A. L. & Weinert, C. S. (2010). J. Organomet. Chem. 695, 1813-1823.]); (d) Roller et al. (1986[Roller, S., Simon, D. & Dräger, M. (1986). J. Organomet. Chem. 301, 27-40.]); (e) Dräger & Simon (1986[Dräger, M. & Simon, D. (1986). J. Organomet. Chem. 306, 183-192.]).

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

A search for `organic electronics' materials in systems of conjugated C—C bonds (Kobayashi et al., 2011) was recently extended to organometallic molecules containing chains of atoms such as Ge, Si, or Sn (Marschner & Hlina, 2013). The established routines used to obtain oligogermanes via hydrogermolysis or the reaction of germyllithium reagents with germanium halogenides (Amadoruge & Weinert, 2008) may give rise to unexpected by-products due to side reactions. As a part of our studies of the chemistry of oligogermanium compounds (Zaitsev et al., 2012, 2013, 2014), the title compound was obtained as a by-product. For related crystal structures of organotetragermanes, see: Roller et al. (1986); Dräger & Simon (1986); Wagner et al. (2009); Amadoruge et al. (2010).

Experimental top

The title compound was obtained in trace amounts from the reaction of two equivalents of Ph3GeLi (generated in situ from Ph3GeH and n-BuLi at room temperature in Et2O) with Me2GeCl2 in diethyl ether. The main compound isolated from the mother liquor is the known trigermane Ph3GeGeMe2GePh3 (Dräger & Simon, 1986). Solvent-free crystals of the title compound suitable for X-Ray analysis were recrystallized from toluene at room temperature.

Refinement top

The positions of hydrogen atoms were revealed in difference Fourier maps. For the refinement, they were positioned with idealized geometry and were refined with C—H = 0.95 Å and Ueq(H) = 1.2 Ueq(C) for H atoms attached to aromatic carbon atoms and with C—H = 0.98 Å and Ueq(H) = 1.5Ueq(C) for methyl H atoms. The latter were also allowed for free rotation.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
A view of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. [Symmetry operator (A) -x +1, -y+1, -z+1.]
2,2,3,3-Tetramethyl-1,1,1,4,4,4-hexaphenyltetragermane top
Crystal data top
C40H42Ge4F(000) = 820
Mr = 813.10Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7722 reflections
a = 9.6402 (5) Åθ = 2.2–32.5°
b = 13.6386 (6) ŵ = 3.36 mm1
c = 14.0503 (7) ÅT = 120 K
β = 104.560 (1)°Prism, colourless
V = 1787.99 (15) Å30.55 × 0.53 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5210 independent reflections
Radiation source: fine-focus sealed tube4222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.391, Tmax = 0.701k = 1919
22283 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.6663P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5210 reflectionsΔρmax = 0.62 e Å3
202 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (3)
Crystal data top
C40H42Ge4V = 1787.99 (15) Å3
Mr = 813.10Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6402 (5) ŵ = 3.36 mm1
b = 13.6386 (6) ÅT = 120 K
c = 14.0503 (7) Å0.55 × 0.53 × 0.11 mm
β = 104.560 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4222 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.701Rint = 0.039
22283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
5210 reflectionsΔρmin = 0.39 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.44925 (2)0.553177 (15)0.551768 (15)0.01582 (6)
Ge20.35670 (2)0.459956 (15)0.670324 (16)0.01586 (6)
C10.5900 (3)0.65022 (16)0.61880 (17)0.0266 (5)
H1A0.63110.68370.57050.040*
H1B0.66650.61720.66750.040*
H1C0.54300.69830.65200.040*
C20.2832 (2)0.62288 (17)0.47117 (16)0.0264 (5)
H2A0.31530.66980.42840.040*
H2B0.23400.65800.51400.040*
H2C0.21710.57570.43080.040*
C30.2686 (2)0.33907 (14)0.60806 (14)0.0175 (4)
C40.1389 (2)0.34120 (15)0.53599 (16)0.0224 (4)
H4A0.08860.40140.52080.027*
C50.0824 (2)0.25622 (17)0.48630 (17)0.0264 (5)
H5A0.00560.25880.43720.032*
C60.1544 (2)0.16757 (16)0.50815 (17)0.0256 (5)
H6A0.11550.10970.47420.031*
C70.2829 (2)0.16369 (15)0.57958 (16)0.0236 (4)
H7A0.33200.10310.59490.028*
C80.3399 (2)0.24892 (15)0.62893 (15)0.0201 (4)
H8A0.42850.24590.67750.024*
C90.5064 (2)0.42690 (14)0.78825 (15)0.0170 (4)
C100.4757 (2)0.41586 (16)0.87949 (16)0.0227 (4)
H10A0.37980.42340.88440.027*
C110.5827 (3)0.39404 (16)0.96343 (16)0.0255 (5)
H11A0.55930.38611.02470.031*
C120.7234 (2)0.38385 (15)0.95799 (16)0.0249 (5)
H12A0.79680.37011.01550.030*
C130.7560 (2)0.39384 (16)0.86836 (16)0.0244 (5)
H13A0.85210.38590.86410.029*
C140.6489 (2)0.41554 (15)0.78413 (16)0.0204 (4)
H14A0.67300.42270.72300.024*
C150.2120 (2)0.53782 (15)0.71306 (15)0.0182 (4)
C160.2365 (2)0.63689 (15)0.73511 (16)0.0222 (4)
H16A0.32240.66640.72760.027*
C170.1380 (2)0.69347 (16)0.76790 (16)0.0245 (5)
H17A0.15770.76060.78350.029*
C180.0110 (2)0.65232 (17)0.77794 (16)0.0259 (5)
H18A0.05740.69110.79920.031*
C190.0148 (3)0.55397 (17)0.7565 (2)0.0317 (5)
H19A0.10110.52500.76390.038*
C200.0841 (2)0.49707 (16)0.72433 (18)0.0266 (5)
H20A0.06450.42970.70980.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.01786 (11)0.01507 (10)0.01456 (11)0.00087 (7)0.00413 (8)0.00019 (8)
Ge20.01524 (11)0.01695 (11)0.01510 (11)0.00037 (8)0.00329 (8)0.00050 (8)
C10.0321 (13)0.0246 (11)0.0233 (11)0.0078 (9)0.0076 (9)0.0030 (9)
C20.0299 (12)0.0282 (11)0.0200 (11)0.0107 (9)0.0043 (9)0.0031 (9)
C30.0166 (10)0.0214 (10)0.0148 (9)0.0012 (7)0.0046 (8)0.0004 (7)
C40.0214 (11)0.0225 (10)0.0217 (11)0.0004 (8)0.0022 (8)0.0021 (8)
C50.0223 (11)0.0319 (12)0.0225 (11)0.0049 (9)0.0011 (9)0.0019 (9)
C60.0258 (12)0.0261 (11)0.0259 (12)0.0071 (9)0.0084 (9)0.0065 (9)
C70.0257 (11)0.0202 (10)0.0261 (12)0.0005 (8)0.0086 (9)0.0013 (8)
C80.0188 (10)0.0232 (10)0.0182 (10)0.0003 (8)0.0045 (8)0.0028 (8)
C90.0187 (10)0.0144 (9)0.0169 (10)0.0015 (7)0.0027 (8)0.0004 (7)
C100.0221 (11)0.0240 (10)0.0226 (11)0.0007 (8)0.0068 (9)0.0019 (8)
C110.0320 (12)0.0276 (11)0.0166 (10)0.0007 (9)0.0056 (9)0.0048 (8)
C120.0293 (12)0.0216 (10)0.0198 (11)0.0020 (8)0.0011 (9)0.0023 (8)
C130.0209 (11)0.0254 (11)0.0258 (12)0.0037 (8)0.0035 (9)0.0027 (9)
C140.0203 (10)0.0236 (10)0.0179 (10)0.0026 (8)0.0060 (8)0.0011 (8)
C150.0172 (9)0.0225 (10)0.0146 (9)0.0008 (8)0.0031 (7)0.0026 (8)
C160.0193 (10)0.0243 (10)0.0227 (11)0.0040 (8)0.0051 (8)0.0038 (8)
C170.0266 (12)0.0243 (10)0.0219 (11)0.0004 (9)0.0048 (9)0.0047 (8)
C180.0255 (12)0.0315 (12)0.0225 (11)0.0071 (9)0.0096 (9)0.0010 (9)
C190.0214 (11)0.0352 (13)0.0427 (15)0.0027 (9)0.0162 (10)0.0027 (11)
C200.0243 (12)0.0235 (11)0.0345 (13)0.0027 (9)0.0117 (10)0.0006 (9)
Geometric parameters (Å, º) top
Ge1—C21.959 (2)C8—H8A0.9500
Ge1—C11.959 (2)C9—C101.394 (3)
Ge1—Ge1i2.4276 (4)C9—C141.398 (3)
Ge1—Ge22.4361 (3)C10—C111.390 (3)
Ge2—C91.957 (2)C10—H10A0.9500
Ge2—C31.957 (2)C11—C121.384 (3)
Ge2—C151.963 (2)C11—H11A0.9500
C1—H1A0.9800C12—C131.379 (3)
C1—H1B0.9800C12—H12A0.9500
C1—H1C0.9800C13—C141.393 (3)
C2—H2A0.9800C13—H13A0.9500
C2—H2B0.9800C14—H14A0.9500
C2—H2C0.9800C15—C161.393 (3)
C3—C41.398 (3)C15—C201.397 (3)
C3—C81.403 (3)C16—C171.390 (3)
C4—C51.391 (3)C16—H16A0.9500
C4—H4A0.9500C17—C181.386 (3)
C5—C61.389 (3)C17—H17A0.9500
C5—H5A0.9500C18—C191.383 (3)
C6—C71.386 (3)C18—H18A0.9500
C6—H6A0.9500C19—C201.391 (3)
C7—C81.394 (3)C19—H19A0.9500
C7—H7A0.9500C20—H20A0.9500
C2—Ge1—C1108.47 (10)C7—C8—C3121.03 (19)
C2—Ge1—Ge1i109.73 (7)C7—C8—H8A119.5
C1—Ge1—Ge1i110.91 (7)C3—C8—H8A119.5
C2—Ge1—Ge2105.19 (7)C10—C9—C14117.63 (19)
C1—Ge1—Ge2110.63 (7)C10—C9—Ge2121.46 (16)
Ge1i—Ge1—Ge2111.715 (14)C14—C9—Ge2120.90 (15)
C9—Ge2—C3109.21 (8)C11—C10—C9121.3 (2)
C9—Ge2—C15107.16 (9)C11—C10—H10A119.3
C3—Ge2—C15109.31 (8)C9—C10—H10A119.3
C9—Ge2—Ge1112.36 (6)C12—C11—C10120.2 (2)
C3—Ge2—Ge1109.04 (6)C12—C11—H11A119.9
C15—Ge2—Ge1109.71 (6)C10—C11—H11A119.9
Ge1—C1—H1A109.5C13—C12—C11119.5 (2)
Ge1—C1—H1B109.5C13—C12—H12A120.3
H1A—C1—H1B109.5C11—C12—H12A120.3
Ge1—C1—H1C109.5C12—C13—C14120.4 (2)
H1A—C1—H1C109.5C12—C13—H13A119.8
H1B—C1—H1C109.5C14—C13—H13A119.8
Ge1—C2—H2A109.5C13—C14—C9121.0 (2)
Ge1—C2—H2B109.5C13—C14—H14A119.5
H2A—C2—H2B109.5C9—C14—H14A119.5
Ge1—C2—H2C109.5C16—C15—C20117.75 (19)
H2A—C2—H2C109.5C16—C15—Ge2119.92 (15)
H2B—C2—H2C109.5C20—C15—Ge2122.31 (16)
C4—C3—C8118.14 (19)C17—C16—C15121.4 (2)
C4—C3—Ge2120.99 (15)C17—C16—H16A119.3
C8—C3—Ge2120.67 (15)C15—C16—H16A119.3
C5—C4—C3120.8 (2)C18—C17—C16120.3 (2)
C5—C4—H4A119.6C18—C17—H17A119.9
C3—C4—H4A119.6C16—C17—H17A119.9
C6—C5—C4120.2 (2)C19—C18—C17119.1 (2)
C6—C5—H5A119.9C19—C18—H18A120.5
C4—C5—H5A119.9C17—C18—H18A120.5
C7—C6—C5119.9 (2)C18—C19—C20120.7 (2)
C7—C6—H6A120.0C18—C19—H19A119.6
C5—C6—H6A120.0C20—C19—H19A119.6
C6—C7—C8119.9 (2)C19—C20—C15120.8 (2)
C6—C7—H7A120.1C19—C20—H20A119.6
C8—C7—H7A120.1C15—C20—H20A119.6
Symmetry code: (i) x+1, y+1, z+1.
Main bond lengths (Å) in organo-substituted oligogermanes top
Me is CH3, Ms is Me3Si and Tol is p-C6H4Me.
CompoundGe—GeperiphGe—GecentralGe—CPhGe—CMe
Ph3GeMe2GeGeMe2GePh3a2.4361 (3)2.4276 (4)1.9611.965
Ms3GeMe2GeGeMe2GeMs3b2.4412.4421.967
Tol3GeGePh2GePh2GeTol3c2.4432.4571.973
Ph3GeGePh2GePh2GePh3d2.4642.4611.969
Ph3GeGeMe2GePh3e2.4291.9571.944
References: (a) This work; (b) Wagner et al. (2009); (c) Amadoruge et al. (2010); (d) Roller et al. (1986); (e) Dräger & Simon (1986).
 

Acknowledgements

This work was partially supported by a grant from the President of the Russian Federation to support the research of young Russian scientists and PhDs (MK-1790.2014.3)

References

First citationAmadoruge, M. L., Short, E. K., Moore, C., Rheingold, A. L. & Weinert, C. S. (2010). J. Organomet. Chem. 695, 1813–1823.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmadoruge, M. L. & Weinert, C. S. (2008). Chem. Rev. 108, 4253–4294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDräger, M. & Simon, D. (1986). J. Organomet. Chem. 306, 183–192.  Google Scholar
First citationKobayashi, H., Kobayashi, A. & Tajima, H. (2011). Chem. Asian J. 6, 1688–1704.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarschner, C. & Hlina, J. (2013). In Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. Poeppelmeier, pp. 83–117. Amsterdam: Elsevier.  Google Scholar
First citationRoller, S., Simon, D. & Dräger, M. (1986). J. Organomet. Chem. 301, 27–40.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, H., Baumgartner, J., Müller, T. & Marschner, C. (2009). J. Am. Chem. Soc. 131, 5022–5023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZaitsev, K. V., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZaitsev, K. V., Kapranov, A. A., Churakov, A. V., Poleshchuk, O. K., Oprunenko, Y. F., Tarasevich, B. N., Zaitseva, G. S. & Karlov, S. S. (2013). Organometallics, 32, 6500–6510.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaitsev, K. V., Kapranov, A. A., Oprunenko, Y. F., Churakov, A. V., Howard, J. F. K., Tarasevich, B. N., Karlov, S. S. & Zaitseva, G. S. (2012). J. Organomet. Chem. 700, 207–213.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1273-o1274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds