metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m401-m402

Crystal structure of poly[[(2,2′-bi­pyridine)manganese(II)]-di-μ-thio­cyanato]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 November 2014; accepted 7 November 2014; online 19 November 2014)

In the crystal structure of the polymeric title compound, [Mn(NCS)2(C10H8N2)]n, the MnII cations are coordinated by one chelating 2,2′-bi­pyridine ligand and four thio­cyanate anions (two N- and two S-coordinating), forming a distorted [MnN4S2] octa­hedron. The asymmetric unit consists of one manganese cation located on a twofold rotation axis and half of a 2,2′-bi­pyridine ligand, the other half being generated by the same twofold rotation axis, as well as one thio­cyanate anion in a general position. The MnII cations are linked by two pairs of μ1,3-bridging thio­cyanate ligands into chains along the c axis; because the N atoms of the 2,2′-bi­pyridine ligands, as well as the N and the S atoms of the thio­cyanate anions, are each cis-coordinating, these chains show a zigzag arrangement.

1. Related literature

For the magnetic properties of the title compound, see: Dockum et al. (1983[Dockum, B. W., Eisman, G. A., Witten, E. H. & Reiff, W. M. (1983). Inorg. Chem. 22, 150-156.]). For general background to this work, see: Näther et al. (2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(NCS)2(C10H8N2)]

  • Mr = 327.28

  • Monoclinic, C 2/c

  • a = 7.6158 (5) Å

  • b = 16.2007 (14) Å

  • c = 10.6784 (7) Å

  • β = 90.129 (8)°

  • V = 1317.51 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 180 K

  • 0.24 × 0.18 × 0.11 mm

2.2. Data collection

  • STOE IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.714, Tmax = 0.825

  • 5163 measured reflections

  • 1424 independent reflections

  • 1208 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.10

  • 1424 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1i 2.1318 (13)
Mn1—N10 2.2433 (12)
Mn1—S1 2.8138 (5)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

MnSO4·H2O was purchased from Merck and 2,2'-bi­pyridine and Ba(NCS)2·3 H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2·3H2O and 9.88 g (58.44 mmol) MnSO4·H2O in 300 ml water at RT for three hours. The white precipitate of BaSO4 was filtered off and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.4 mmol) 70.0 mg Mn(NCS)2 and (0.05 mmol) 7.0 mg 2,2'-bi­pyridine in 1.0 ml aceto­nitrile at RT. After few days, yellow block-shaped crystals of the title compound were obtained.

Refinement top

The H atoms were positioned with idealized geometry and were refined with C—H = 0.93 Å and Ueq(H) = 1.2Ueq(C) using a riding model.

Related literature top

For the magnetic properties of the title compound, see: Dockum et al. (1983). For general background to this work, see: Näther et al. (2013).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The coordination of the MnII atom in the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: i) x,-y+1,z-1/2; ii) -x,-y+1,-z+1; iii) -x,y,-z+1/2.]

The polymeric arrangement of the chains in the crystal structure of the title compound in a view along the a axis. Colour code: Mn orange; N blue; S yellow; C black; H white.
Poly[[(2,2'-bipyridine)manganese(II)]-di-µ-thiocyanato] top
Crystal data top
[Mn(NCS)2(C10H8N2)]F(000) = 660
Mr = 327.28Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5163 reflections
a = 7.6158 (5) Åθ = 3.2–27.0°
b = 16.2007 (14) ŵ = 1.31 mm1
c = 10.6784 (7) ÅT = 180 K
β = 90.129 (8)°Block, yellow
V = 1317.51 (17) Å30.24 × 0.18 × 0.11 mm
Z = 4
Data collection top
STOE IPDS-1
diffractometer
1424 independent reflections
Radiation source: fine-focus sealed tube1208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi scansθmax = 27.0°, θmin = 3.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 99
Tmin = 0.714, Tmax = 0.825k = 2020
5163 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.041P)2 + 0.0505P]
where P = (Fo2 + 2Fc2)/3
1424 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(NCS)2(C10H8N2)]V = 1317.51 (17) Å3
Mr = 327.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.6158 (5) ŵ = 1.31 mm1
b = 16.2007 (14) ÅT = 180 K
c = 10.6784 (7) Å0.24 × 0.18 × 0.11 mm
β = 90.129 (8)°
Data collection top
STOE IPDS-1
diffractometer
1424 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1208 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.825Rint = 0.029
5163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
1424 reflectionsΔρmin = 0.35 e Å3
87 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.589163 (17)0.25000.01511 (12)
S10.26426 (6)0.59114 (3)0.43456 (4)0.02879 (14)
C10.1959 (2)0.53098 (9)0.54809 (13)0.0157 (3)
N10.14566 (19)0.48959 (8)0.62863 (13)0.0191 (3)
N100.15848 (17)0.70040 (7)0.19663 (11)0.0150 (3)
C100.3171 (2)0.69584 (10)0.14411 (14)0.0205 (3)
H100.36500.64400.12870.025*
C110.4133 (2)0.76537 (11)0.11149 (15)0.0246 (4)
H110.52400.76050.07560.029*
C120.3400 (2)0.84198 (11)0.13384 (16)0.0277 (4)
H120.40080.88970.11220.033*
C130.1770 (3)0.84748 (9)0.18819 (16)0.0256 (4)
H130.12670.89880.20370.031*
C140.0878 (2)0.77516 (9)0.21990 (13)0.0175 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0203 (2)0.00785 (16)0.01723 (18)0.0000.00916 (12)0.000
S10.0261 (3)0.0358 (3)0.0244 (2)0.01473 (18)0.00026 (18)0.01435 (16)
C10.0150 (8)0.0134 (6)0.0186 (7)0.0014 (6)0.0007 (5)0.0002 (5)
N10.0218 (7)0.0167 (6)0.0187 (6)0.0016 (5)0.0031 (5)0.0031 (5)
N100.0193 (7)0.0116 (5)0.0141 (6)0.0013 (5)0.0024 (5)0.0023 (4)
C100.0215 (9)0.0203 (7)0.0195 (7)0.0010 (6)0.0016 (6)0.0026 (6)
C110.0196 (9)0.0319 (8)0.0222 (8)0.0067 (7)0.0002 (6)0.0060 (7)
C120.0319 (11)0.0242 (8)0.0269 (9)0.0145 (7)0.0025 (7)0.0075 (6)
C130.0352 (11)0.0140 (7)0.0275 (8)0.0055 (7)0.0005 (7)0.0002 (6)
C140.0254 (9)0.0133 (7)0.0137 (6)0.0011 (6)0.0009 (6)0.0018 (5)
Geometric parameters (Å, º) top
Mn1—N1i2.1318 (13)N10—C141.3485 (18)
Mn1—N1ii2.1318 (13)C10—C111.389 (2)
Mn1—N10iii2.2433 (12)C10—H100.9300
Mn1—N102.2433 (12)C11—C121.382 (3)
Mn1—S1iii2.8138 (5)C11—H110.9300
Mn1—S12.8138 (5)C12—C131.375 (3)
S1—C11.6411 (15)C12—H120.9300
C1—N11.156 (2)C13—C141.396 (2)
N1—Mn1ii2.1318 (13)C13—H130.9300
N10—C101.335 (2)C14—C14iii1.486 (3)
N1i—Mn1—N1ii106.48 (7)C10—N10—C14119.27 (13)
N1i—Mn1—N10iii156.38 (5)C10—N10—Mn1123.37 (11)
N1ii—Mn1—N10iii92.60 (5)C14—N10—Mn1117.36 (10)
N1i—Mn1—N1092.60 (5)N10—C10—C11122.62 (16)
N1ii—Mn1—N10156.38 (5)N10—C10—H10118.7
N10iii—Mn1—N1073.10 (7)C11—C10—H10118.7
N1i—Mn1—S1iii87.33 (4)C12—C11—C10118.14 (16)
N1ii—Mn1—S1iii93.46 (4)C12—C11—H11120.9
N10iii—Mn1—S1iii77.55 (3)C10—C11—H11120.9
N10—Mn1—S1iii101.38 (3)C13—C12—C11119.78 (15)
N1i—Mn1—S193.46 (4)C13—C12—H12120.1
N1ii—Mn1—S187.33 (4)C11—C12—H12120.1
N10iii—Mn1—S1101.38 (3)C12—C13—C14119.23 (15)
N10—Mn1—S177.55 (3)C12—C13—H13120.4
S1iii—Mn1—S1178.69 (2)C14—C13—H13120.4
C1—S1—Mn1106.45 (6)N10—C14—C13120.96 (15)
N1—C1—S1178.83 (15)N10—C14—C14iii116.09 (8)
C1—N1—Mn1ii166.59 (14)C13—C14—C14iii122.95 (10)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1; (iii) x, y, z+1/2.
Selected bond lengths (Å) top
Mn1—N1i2.1318 (13)Mn1—S12.8138 (5)
Mn1—N102.2433 (12)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/5–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDockum, B. W., Eisman, G. A., Witten, E. H. & Reiff, W. M. (1983). Inorg. Chem. 22, 150–156.  CrossRef CAS Web of Science Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m401-m402
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds