research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bromido-fac-tricarbon­yl[5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N,N′]rhenium(I)

aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, and bInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64/13, Kyiv 01601, Ukraine
*Correspondence e-mail: ksenijapiletska@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 November 2014; accepted 23 November 2014; online 29 November 2014)

In the title compound, [ReBr(C13H10N4)(CO)3], the ReI atom has a distorted octa­hedral coordination environment. Two N atoms of the 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole ligand and two of the three carbonyl groups occupy the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in the axial positions. The three carbonyl ligands are arranged in a fac configuration around the ReI atom. Mutual N—H⋯Br hydrogen bonds arrange mol­ecules into centrosymmetric dimers. Additional stabilization within the crystal structure is provided by C—H⋯O and C—H⋯Br hydrogen bonds, as well as by slipped ππ stacking inter­actions [centroid-to-centroid distance = 3.785 (5) Å], defining a three-dimensional network.

1. Chemical context

The coordination chemistry of rhenium and technetium has been well studied over the last half century, particularly in view of the potential applications of their 186/188Re and 99mTc isotopes in therapeutic and diagnostic agents in nuclear medicine (Volkert & Hoffman, 1999[Volkert, W. A. & Hoffman, T. J. (1999). Chem. Rev. 99, 2269-2292.]; Alberto et al., 1999[Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 901, 190-192.]). Complexes of the type [M(CO)3(NN)X] (M = Tc, Re; NN = bidentate nitro­gen donor; X = anionic ligand) have been shown to possess inter­esting photophysical, photochemical and excited-state redox properties (Striplin & Crosby, 2001[Striplin, D. R. & Crosby, G. A. (2001). Coord. Chem. Rev. 211, 163-175.]; Stufkens & Vlcěk, 1998[Stufkens, D. J. & Vlcěk, A. Jr (1998). Coord. Chem. Rev. 177, 127-179.]), making this class of complexes applicable as fluorescent probes, in addition to their potential usage as radio-imaging and therapeutic agents. Moreover, metal carbonyls display intense infrared absorptions in the range 1800 to 2200 cm−1, which is the IR transparency window for biological media (Hildebrandt, 2010[Hildebrandt, P. (2010). Angew. Chem. Int. Ed. 49, 4540-4541.]). In addition to their luminescent properties, the vibrational signature of fac-[Re(CO)3(NN)] is appropriate for IR imaging (Policar et al., 2011[Policar, C., Waern, J. B., Plamont, M. A., Clède, S., Mayet, C., Prazeres, R., Ortega, J.-M., Vessières, A. & Dazzi, A. (2011). Angew. Chem. Int. Ed. 50, 860-864.]; Clède et al., 2012[Clède, S., Lambert, F., Sandt, C., Gueroui, Z., Réfrégiers, M., Plamont, M.-A., Dumas, P., Vessières, A. & Policar, C. (2012). Chem. Commun. 48, 7729-7731.]). They are thus valuable as small mol­ecular units enabling multimodal imaging involving vibrational-based detections (IR, Raman) and fluorescence (Clède et al., 2012[Clède, S., Lambert, F., Sandt, C., Gueroui, Z., Réfrégiers, M., Plamont, M.-A., Dumas, P., Vessières, A. & Policar, C. (2012). Chem. Commun. 48, 7729-7731.]). In [Re(CO)3(NN)X] compounds, the photophysical properties of the complexes are closely dependent on the ligand. When NN is a ligand with low π* orbitals, the corresponding [Re(CO)3(NN)] unit is luminescent (Wrighton & Morse, 1974[Wrighton, M. & Morse, D. L. (1974). J. Am. Chem. Soc. 96, 998-1003.]) and this property has often been used in subcellular bio-imaging (Lo et al., 2012[Lo, K. K.-W., Choi, A. W.-T. & Law, W. H.-T. (2012). Dalton Trans. 41, 6021-6047.]; Baggaley et al., 2012[Baggaley, E., Weinstein, J. A. & Williams, J. A. G. (2012). Coord. Chem. Rev. 256, 1762-1785.]; Xiang et al., 2013[Xiang, H., Cheng, J., Ma, X., Zhou, X. & Chruma, J. J. (2013). Chem. Soc. Rev. 42, 6128-6185.]; Coogan & Fernandez-Moreira, 2014[Coogan, M. P. & Fernandez-Moreira, V. (2014). Chem. Commun. 50, 384-399.]).

In this communication, we report the synthesis and crystal structure analysis of a novel ReI complex which contains the triazole ligand 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole, [Re(CO)3(C13H10N4)Br]. Its luminescent properties will be reported in a forthcoming article.

[Scheme 1]

2. Structural commentary

In the title compound, the ReI atom is in a slightly distorted octa­hedral coordination environment (Fig. 1[link]). The three carbonyl ligands bonded to the ReI atom are arranged in a fac-configuration. The distances of C1, C2, and C3 to the ReI atom are 1.905 (4), 1.915 (4), and 1.922 (6) Å, respectively, and the Re—N bonds lengths are 2.201 (3) and 2.164 (3) Å. The CO ligands are almost linearly coordinated with O—C—Re bond angles of 178.4 (4), 175.6 (3) and 179.0 (4)°. The C—Re—C bond angles between CO carbon atoms are 87.78 (17), 90.4 (2) and 89.18 (19)°, close to ideal values, whereas the cis equatorial bite angle [N1—Re1—N2] is 74.33 (11)°. All other bond lengths and angles are comparable to those found for related ReI complexes (Rajendran et al., 2000[Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016-2017.]).

[Figure 1]
Figure 1
The structure of the title complex, showing the association of mol­ecules into a centrosymmetric dimer by means of mutual hydrogen bonds of the N—H⋯Br and C—H⋯Br types. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z.]

3. Supra­molecular features

The title compound adopts a typical mol­ecular structure. There is only one relatively strong donor (N—H) and one acceptor (Br) site for hydrogen-bonding inter­actions, which arrange mol­ecules into dimers (Table 1[link], Fig. 1[link]). Weak hydrogen bonds of the type C—H⋯O with carbonyl O atoms as acceptor groups play a supporting role in the crystal packing. Nevertheless, these inter­actions demonstrate a clear discrimination of the C—H binding sites that follow a common pattern. The C—H⋯O hydrogen bonds present are provided by the 2- and 4-C—H protons of the pyridine ring, which are the most polarized and acidic. Besides C—H⋯Br inter­actions, weak slipped ππ stacking inter­actions between pyridine and phenyl rings (symmetry code: 1 − x, −y, −z) [with a shortest separation of C6⋯C11(1 − x, −y, −z) = 3.265 (6) Å, a centroid-to-centroid distance of 3.785 (5) Å and an inter­planar angle of 7.1 (3)°] also appear to be involved in the stabilization of the crystal structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br1i 0.87 2.51 3.360 (3) 168
C16—H16⋯Br1i 0.94 2.87 3.784 (4) 165
C6—H6⋯O2ii 0.94 2.38 3.194 (5) 145
C8—H8⋯O1iii 0.94 2.56 3.285 (5) 134
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of the title complex, showing weak hydrogen-bonding inter­actions (indicated by dotted lines) of the type C—H⋯O between carbonyl O atoms and pyridyl C—H groups of the organic ligands. [Symmetry codes: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z; (iii) −x + 1, y, −z + [{1\over 2}].]

4. Synthesis and crystallization

Penta­carbonyl­rhenium(I) bromide (0.1 g, 0.246 mmol) was reacted with 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole (0.1 g, 0.492 mmol) in benzene at 353 K, with stirring, under a steady stream of argon for five h. The dark-yellow solution was removed from the heat and allowed to cool overnight. The yellow product was collected by suction filtration, washed with a 50 ml portion of petroleum ether and dried. Yield = 0.107g, (76.4%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a methanol solution of the complex. IR (KBr, cm−1): νas(CO) 2028 (s), νs(CO) 1912 (s).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned with idealized geometry and were refined with C—H = 0.94, N—H = 0.87 Å and Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula [ReBr(C13H10N4)(CO)3]
Mr 572.39
Crystal system, space group Monoclinic, C2/c
Temperature (K) 213
a, b, c (Å) 20.8082 (15), 7.2521 (4), 24.386 (2)
β (°) 111.599 (7)
V3) 3421.5 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.46
Crystal size (mm) 0.14 × 0.12 × 0.11
 
Data collection
Diffractometer Stoe Imaging plate diffraction system
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2001[Stoe & Cie (2001). X-SHAPE, X-RED and IPDS. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.319, 0.385
No. of measured, independent and observed [I > 2σ(I)] reflections 14578, 4092, 2844
Rint 0.057
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 0.84
No. of reflections 4092
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −1.14
Computer programs: IPDS (Stoe & Cie, 2001[Stoe & Cie (2001). X-SHAPE, X-RED and IPDS. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

The coordination chemistry of rhenium and technetium has been well studied over the last half century, particularly in view of the potential applications of their 186/188Re and 99mTc isotopes in therapeutic and diagnostic agents in nuclear medicine (Volkert & Hoffman, 1999; Alberto et al., 1999). Complexes of the type [M(CO)3(NN)X] (M = Tc, Re; NN = bidentate nitro­gen donor; X = anionic ligand) have been shown to possess inter­esting photophysical, photochemical and excited-state redox properties (Striplin & Crosby, 2001; Stufkens & Vlcěk, (1998), making this class of complexes applicable as fluorescent probes, in addition to their potential usage as radio-imaging and therapeutic agents. Moreover, metal carbonyls display intense infrared absorptions in the range 1800 to 2200 cm-1, which is the IR transparency window for biological media (Hildebrandt, 2010). In addition to their luminescent properties, the vibrational signature of fac-[Re(CO)3(NN)] is appropriate for IR imaging (Policar et al., 2011; Clède et al., 2012). They are thus valuable as small molecular units enabling multimodal imaging involving vibrational-based detections (IR, Raman) and fluorescence (Clède et al., 2012). In [Re(CO)3(NN)X] compounds, the photophysical properties of the complexes are closely dependent on the ligand. When NN is a ligand with low π* orbitals, the corresponding [Re(CO)3(NN)] unit is luminescent (Wrighton & Morse, 1974) and this property has often been used in subcellular bio-imaging (Lo et al., 2012; Baggaley et al., 2012; Xiang et al., 2013; Coogan & Fernandez-Moreira, 2014).

In this communication, we report the synthesis and crystal structure analysis of a novel ReI complex which contains the triazole ligand 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole, [Re(CO)3(C13H10N4)Br]. Its luminescent properties will be reported in a forthcoming article.

Structural commentary top

In the title compound, the ReI atom is in a slightly distorted o­cta­hedral coordination environment (Fig. 1). The three carbonyl ligands bonded to the ReI atom are arranged in a fac-configuration. The distances of C1, C2, and C3 to the ReI atom are 1.905 (4), 1.915 (4), and 1.922 (6) Å, respectively, and the Re—N bonds lengths are 2.201 (3) and 2.164 (3) Å. The CO ligands are almost linearly coordinated with O—C—Re bond angles of 178.4 (4), 175.6 (3) and 179.0 (4)°. The C—Re—C bond angles between CO carbon atoms are 87.78 (17), 90.4 (2) and 89.18 (19)°, close to ideal values, whereas the cis equatorial bite angle [N1—Re1—N2] is 74.33 (11)°. All other bond lengths and angles are comparable to those found for related ReI complexes (Rajendran et al., 2000).

Supra­molecular features top

The title compound adopts a typical molecular structure. There is only one relatively strong donor (N—H) and one acceptor (Br) site for hydrogen-bonding inter­actions, which arrange molecules into dimers (Table 1, Fig. 1). Weak hydrogen bonds of the type C—H···O with carbonyl O atoms as acceptor groups play a supporting role in the crystal packing. Nevertheless, these inter­actions demonstrate a clear discrimination of the C—H binding sites that follow a common pattern. The C—H···O hydrogen bonds present are provided by the 2- and 4-C—H protons of the pyridine ring, which are the most polarized and acidic. Besides C—H···Br inter­actions, weak slipped ππ stacking inter­actions between pyridine and phenyl rings (symmetry code: 1 - x, -y, -z) [with a shortest separation of C6···C11(1 - x, -y, -z) = 3.265 (6), a centroid-to-centroid distance of 3.785 (5) Å and an inter­planar angle of 7.1 (3)°] also appear to be involved in the stabilization of the crystal structure (Fig. 2).

Synthesis and crystallization top

Penta­carbonyl­rhenium(I) bromide (0.1 g, 0.246 mmol) was reacted with 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole (0.1 g, 0.492 mmol) in benzene at 353 K, with stirring, under a steady stream of argon for five hours. The dark-yellow solution was removed from the heat and allowed to cool overnight. The yellow product was collected by suction filtration, washed with a 50 ml portion of petroleum ether and dried. Yield = 0.107g, (76.4 %). Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a methanol solution of the complex. IR (KBr, cm-1): νas(CO) 2028 (s), νs(CO) 1912 (s).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned with idealized geometry and were refined with C—H = 0.94, N—H = 0.87 Å and Uiso(H) = 1.2Ueq(C,N).

Related literature top

For related literature, see: Alberto et al. (1999); Baggaley et al. (2012); Clède et al. (2012); Coogan & Fernandez-Moreira (2014); Hildebrandt (2010); Lo et al. (2012); Policar et al. (2011); Rajendran et al. (2000); Striplin & Crosby (2001); Stufkens & Vlcěk (1998); Volkert & Hoffman (1999); Wrighton & Morse (1974); Xiang et al. (2013).

Computing details top

Data collection: IPDS (Stoe & Cie, 2001); cell refinement: IPDS (Stoe & Cie, 2001); data reduction: IPDS (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
The structure of the title complex, showing the association of molecules into a centrosymmetric dimer by means of mutual hydrogen bonds of the N—H···Br and C—H···Br types. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) -x + 1/2, -y + 1/2, -z.]

The crystal structure of the title complex, showing weak hydrogen-bonding interactions (indicated by dotted lines) of the type C—H···O between carbonyl O atoms and pyridyl C—H groups of the organic ligands. [Symmetry codes: (i) -x + 1/2, -y + 1/2, -z; (iii) -x + 1, y, -z + 1/2.]
Bromido-fac-tricarbonyl[5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N,N']rhenium(I) top
Crystal data top
[ReBr(C13H10N4)(CO)3]F(000) = 2144
Mr = 572.39Dx = 2.222 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.8082 (15) ÅCell parameters from 8000 reflections
b = 7.2521 (4) Åθ = 3.0–28.0°
c = 24.386 (2) ŵ = 9.46 mm1
β = 111.599 (7)°T = 213 K
V = 3421.5 (4) Å3Prism, yellow
Z = 80.14 × 0.12 × 0.11 mm
Data collection top
Stoe Imaging plate diffraction system
diffractometer
2844 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
ϕ oscillation scansθmax = 28.0°, θmin = 3.0°
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2001)
h = 2727
Tmin = 0.319, Tmax = 0.385k = 98
14578 measured reflectionsl = 3232
4092 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0225P)2]
where P = (Fo2 + 2Fc2)/3
4092 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[ReBr(C13H10N4)(CO)3]V = 3421.5 (4) Å3
Mr = 572.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.8082 (15) ŵ = 9.46 mm1
b = 7.2521 (4) ÅT = 213 K
c = 24.386 (2) Å0.14 × 0.12 × 0.11 mm
β = 111.599 (7)°
Data collection top
Stoe Imaging plate diffraction system
diffractometer
4092 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2001)
2844 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.385Rint = 0.057
14578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 0.84Δρmax = 1.03 e Å3
4092 reflectionsΔρmin = 1.14 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.38382 (2)0.25265 (3)0.10559 (2)0.02798 (5)
Br10.32731 (2)0.54427 (7)0.04146 (2)0.03557 (11)
O10.40827 (17)0.4654 (6)0.21974 (13)0.0594 (10)
O20.24980 (15)0.1146 (5)0.11477 (13)0.0516 (10)
O30.4540 (2)0.0838 (7)0.17525 (18)0.0796 (14)
N10.48045 (14)0.3439 (5)0.09681 (13)0.0264 (7)
N20.38108 (14)0.1420 (5)0.02237 (12)0.0244 (7)
N30.33622 (14)0.0546 (5)0.02600 (12)0.0258 (7)
H30.29600.01080.02950.031*
N40.42685 (15)0.1255 (5)0.04749 (13)0.0255 (7)
C10.3988 (2)0.3830 (7)0.17704 (17)0.0372 (12)
C20.2983 (2)0.1674 (7)0.10904 (15)0.0361 (11)
C30.4289 (2)0.0391 (9)0.14970 (19)0.0463 (13)
C40.49040 (18)0.2879 (5)0.04763 (16)0.0246 (9)
C50.54965 (18)0.3314 (7)0.03688 (17)0.0297 (9)
H50.55540.29100.00240.036*
C60.59958 (19)0.4352 (7)0.07811 (18)0.0341 (10)
H60.64070.46530.07250.041*
C70.58898 (19)0.4942 (6)0.12745 (18)0.0347 (10)
H70.62250.56680.15570.042*
C80.5289 (2)0.4467 (7)0.13551 (17)0.0340 (10)
H80.52200.48830.16940.041*
C90.43441 (18)0.1817 (6)0.00714 (16)0.0258 (8)
C100.36475 (18)0.0474 (6)0.06765 (15)0.0246 (8)
C110.33235 (18)0.0329 (6)0.12595 (15)0.0268 (9)
C120.3677 (2)0.0228 (7)0.16469 (17)0.0337 (10)
H120.41040.03890.15340.040*
C130.3397 (3)0.1037 (7)0.21942 (18)0.0426 (12)
H130.36360.09670.24540.051*
C140.2775 (3)0.1946 (7)0.23681 (19)0.0448 (12)
H140.25920.25060.27410.054*
C150.2425 (2)0.2025 (7)0.19894 (19)0.0403 (12)
H150.19980.26360.21060.048*
C160.2693 (2)0.1219 (7)0.14401 (18)0.0369 (11)
H160.24460.12760.11870.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02700 (7)0.03224 (11)0.02386 (7)0.00874 (8)0.00836 (5)0.00069 (8)
Br10.03230 (18)0.0375 (3)0.03867 (19)0.0024 (2)0.01516 (15)0.0035 (2)
O10.068 (2)0.075 (3)0.0338 (16)0.021 (2)0.0179 (15)0.0196 (19)
O20.0364 (15)0.077 (3)0.0440 (17)0.0237 (18)0.0178 (13)0.0038 (18)
O30.081 (3)0.071 (4)0.079 (3)0.009 (3)0.020 (2)0.034 (3)
N10.0216 (14)0.022 (2)0.0309 (15)0.0032 (15)0.0036 (12)0.0023 (15)
N20.0224 (14)0.019 (2)0.0291 (15)0.0061 (14)0.0071 (12)0.0002 (14)
N30.0250 (14)0.023 (2)0.0270 (14)0.0053 (15)0.0074 (11)0.0012 (15)
N40.0240 (14)0.018 (2)0.0350 (16)0.0011 (14)0.0116 (12)0.0018 (15)
C10.032 (2)0.049 (4)0.0275 (19)0.009 (2)0.0074 (15)0.004 (2)
C20.036 (2)0.047 (3)0.0221 (17)0.013 (2)0.0068 (15)0.0053 (19)
C30.041 (2)0.053 (4)0.043 (2)0.007 (3)0.0144 (19)0.017 (3)
C40.0250 (16)0.015 (3)0.0322 (17)0.0002 (15)0.0084 (13)0.0071 (15)
C50.0245 (17)0.023 (3)0.042 (2)0.0009 (18)0.0128 (16)0.009 (2)
C60.0243 (18)0.021 (3)0.052 (2)0.0034 (19)0.0086 (17)0.014 (2)
C70.0268 (18)0.018 (3)0.047 (2)0.0065 (18)0.0005 (16)0.009 (2)
C80.038 (2)0.024 (3)0.0353 (19)0.007 (2)0.0078 (16)0.003 (2)
C90.0266 (17)0.016 (2)0.0354 (19)0.0016 (17)0.0123 (15)0.0062 (17)
C100.0298 (18)0.013 (2)0.0293 (17)0.0031 (17)0.0089 (14)0.0020 (17)
C110.0324 (19)0.018 (3)0.0287 (17)0.0041 (18)0.0099 (15)0.0024 (17)
C120.044 (2)0.022 (3)0.037 (2)0.005 (2)0.0161 (17)0.0047 (19)
C130.065 (3)0.030 (3)0.039 (2)0.012 (2)0.025 (2)0.002 (2)
C140.066 (3)0.030 (3)0.033 (2)0.002 (2)0.012 (2)0.008 (2)
C150.048 (2)0.027 (4)0.041 (2)0.006 (2)0.0107 (19)0.013 (2)
C160.037 (2)0.033 (3)0.042 (2)0.001 (2)0.0155 (18)0.008 (2)
Geometric parameters (Å, º) top
Re1—C11.905 (4)C5—C61.374 (6)
Re1—C21.915 (4)C5—H50.9400
Re1—C31.922 (6)C6—C71.369 (6)
Re1—N22.164 (3)C6—H60.9400
Re1—N12.201 (3)C7—C81.380 (5)
Re1—Br12.6357 (5)C7—H70.9400
O1—C11.153 (5)C8—H80.9400
O2—C21.135 (4)C10—C111.453 (5)
O3—C31.103 (6)C11—C161.380 (6)
N1—C81.327 (5)C11—C121.397 (5)
N1—C41.352 (5)C12—C131.376 (6)
N2—C91.325 (4)C12—H120.9400
N2—N31.361 (4)C13—C141.373 (7)
N3—C101.353 (4)C13—H130.9400
N3—H30.8700C14—C151.371 (6)
N4—C101.328 (5)C14—H140.9400
N4—C91.346 (5)C15—C161.377 (6)
C4—C51.388 (5)C15—H150.9400
C4—C91.442 (5)C16—H160.9400
C1—Re1—C287.78 (17)C7—C6—C5119.4 (3)
C1—Re1—C390.4 (2)C7—C6—H6120.3
C2—Re1—C389.18 (19)C5—C6—H6120.3
C1—Re1—N2168.91 (15)C6—C7—C8119.7 (4)
C2—Re1—N2102.56 (14)C6—C7—H7120.2
C3—Re1—N293.71 (18)C8—C7—H7120.2
C1—Re1—N195.31 (14)N1—C8—C7122.0 (4)
C2—Re1—N1176.88 (13)N1—C8—H8119.0
C3—Re1—N191.22 (15)C7—C8—H8119.0
N2—Re1—N174.33 (11)N2—C9—N4114.0 (3)
C1—Re1—Br191.81 (14)N2—C9—C4118.2 (3)
C2—Re1—Br193.80 (15)N4—C9—C4127.6 (3)
C3—Re1—Br1176.38 (12)N4—C10—N3110.0 (3)
N2—Re1—Br183.63 (9)N4—C10—C11124.8 (3)
N1—Re1—Br185.69 (9)N3—C10—C11125.2 (3)
C8—N1—C4118.4 (3)C16—C11—C12118.9 (4)
C8—N1—Re1125.5 (3)C16—C11—C10122.9 (3)
C4—N1—Re1116.1 (2)C12—C11—C10118.1 (3)
C9—N2—N3103.7 (3)C13—C12—C11119.6 (4)
C9—N2—Re1116.5 (3)C13—C12—H12120.2
N3—N2—Re1139.3 (2)C11—C12—H12120.2
C10—N3—N2108.5 (3)C14—C13—C12121.3 (4)
C10—N3—H3125.7C14—C13—H13119.4
N2—N3—H3125.7C12—C13—H13119.4
C10—N4—C9103.8 (3)C15—C14—C13119.0 (4)
O1—C1—Re1178.4 (4)C15—C14—H14120.5
O2—C2—Re1175.6 (3)C13—C14—H14120.5
O3—C3—Re1179.0 (4)C14—C15—C16120.8 (4)
N1—C4—C5122.4 (4)C14—C15—H15119.6
N1—C4—C9114.8 (3)C16—C15—H15119.6
C5—C4—C9122.8 (3)C15—C16—C11120.4 (4)
C6—C5—C4118.1 (4)C15—C16—H16119.8
C6—C5—H5120.9C11—C16—H16119.8
C4—C5—H5120.9
C9—N2—N3—C100.3 (4)C5—C4—C9—N2177.7 (4)
Re1—N2—N3—C10170.7 (3)N1—C4—C9—N4172.3 (4)
C8—N1—C4—C51.1 (6)C5—C4—C9—N47.0 (7)
Re1—N1—C4—C5178.5 (3)C9—N4—C10—N30.7 (5)
C8—N1—C4—C9178.2 (4)C9—N4—C10—C11179.0 (4)
Re1—N1—C4—C92.2 (4)N2—N3—C10—N40.7 (5)
N1—C4—C5—C60.0 (6)N2—N3—C10—C11179.1 (4)
C9—C4—C5—C6179.3 (4)N4—C10—C11—C16176.3 (4)
C4—C5—C6—C71.0 (6)N3—C10—C11—C164.0 (7)
C5—C6—C7—C80.9 (7)N4—C10—C11—C122.2 (6)
C4—N1—C8—C71.3 (6)N3—C10—C11—C12177.5 (4)
Re1—N1—C8—C7178.3 (3)C16—C11—C12—C131.0 (7)
C6—C7—C8—N10.3 (7)C10—C11—C12—C13177.5 (4)
N3—N2—C9—N40.1 (5)C11—C12—C13—C140.0 (7)
Re1—N2—C9—N4173.6 (3)C12—C13—C14—C150.8 (7)
N3—N2—C9—C4175.8 (3)C13—C14—C15—C160.5 (7)
Re1—N2—C9—C42.3 (5)C14—C15—C16—C110.5 (7)
C10—N4—C9—N20.5 (5)C12—C11—C16—C151.2 (7)
C10—N4—C9—C4174.9 (4)C10—C11—C16—C15177.1 (4)
N1—C4—C9—N23.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br1i0.872.513.360 (3)168
C16—H16···Br1i0.942.873.784 (4)165
C6—H6···O2ii0.942.383.194 (5)145
C8—H8···O1iii0.942.563.285 (5)134
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br1i0.872.513.360 (3)168
C16—H16···Br1i0.942.873.784 (4)165
C6—H6···O2ii0.942.383.194 (5)145
C8—H8···O1iii0.942.563.285 (5)134
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ReBr(C13H10N4)(CO)3]
Mr572.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)213
a, b, c (Å)20.8082 (15), 7.2521 (4), 24.386 (2)
β (°) 111.599 (7)
V3)3421.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)9.46
Crystal size (mm)0.14 × 0.12 × 0.11
Data collection
DiffractometerStoe Imaging plate diffraction system
diffractometer
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2001)
Tmin, Tmax0.319, 0.385
No. of measured, independent and
observed [I > 2σ(I)] reflections
14578, 4092, 2844
Rint0.057
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 0.84
No. of reflections4092
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.14

Computer programs: IPDS (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by the fund `Grant for Science Research' (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We thank the Taurida National V. I. Vernadsky University, Crimea, Ukraine, for providing the ligand.

References

First citationAlberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 901, 190–192.  Google Scholar
First citationBaggaley, E., Weinstein, J. A. & Williams, J. A. G. (2012). Coord. Chem. Rev. 256, 1762–1785.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClède, S., Lambert, F., Sandt, C., Gueroui, Z., Réfrégiers, M., Plamont, M.-A., Dumas, P., Vessières, A. & Policar, C. (2012). Chem. Commun. 48, 7729–7731.  Google Scholar
First citationCoogan, M. P. & Fernandez-Moreira, V. (2014). Chem. Commun. 50, 384–399.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHildebrandt, P. (2010). Angew. Chem. Int. Ed. 49, 4540–4541.  Web of Science CrossRef CAS Google Scholar
First citationLo, K. K.-W., Choi, A. W.-T. & Law, W. H.-T. (2012). Dalton Trans. 41, 6021–6047.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPolicar, C., Waern, J. B., Plamont, M. A., Clède, S., Mayet, C., Prazeres, R., Ortega, J.-M., Vessières, A. & Dazzi, A. (2011). Angew. Chem. Int. Ed. 50, 860–864.  Web of Science CrossRef CAS Google Scholar
First citationRajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016–2017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-SHAPE, X-RED and IPDS. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStriplin, D. R. & Crosby, G. A. (2001). Coord. Chem. Rev. 211, 163–175.  Web of Science CrossRef CAS Google Scholar
First citationStufkens, D. J. & Vlcěk, A. Jr (1998). Coord. Chem. Rev. 177, 127–179.  Web of Science CrossRef CAS Google Scholar
First citationVolkert, W. A. & Hoffman, T. J. (1999). Chem. Rev. 99, 2269–2292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWrighton, M. & Morse, D. L. (1974). J. Am. Chem. Soc. 96, 998–1003.  CrossRef CAS Web of Science Google Scholar
First citationXiang, H., Cheng, J., Ma, X., Zhou, X. & Chruma, J. J. (2013). Chem. Soc. Rev. 42, 6128–6185.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds