research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 3,3′-[(3-fluoro­phenyl)methyl­ene]bis­­(1H-indole-2-carboxyl­ate)

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, and bChemical Engineering Department, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 November 2014; accepted 25 November 2014; online 29 November 2014)

In the title compound, C27H21FN2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.0166 and 0.0086 Å) are approximately perpendic­ular to one another, making a dihedral angle of 87.8 (5)°; the fluorobenzene ring is twisted with respect to the mean planes of the two indole ring systems at 82.7 (5) and 85.5 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the b-axis direction. Weak C—H⋯π inter­actions are observed between neighbouring chains.

1. Chemical context

The indole unit forms the basis for general bis­(indoly)methanes, which are widely present in bioactive metabolites of numerous compounds isolated from natural sources (Poter et al., 1977[Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]; Sundberg, 1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). In addition, bis­(indoly)methanes are important anti­biotics in the field of pharmaceuticals and the precursor of bioactive metabolites of terrestrial and marine origin (Chang et al., 1999[Chang, Y.-C., Riby, J., Chang, G. H. F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]; Ge et al., 1999[Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199-3203.]). The title compound is one of the bis­(indoly)methane derivatives used as a precursor for MRI contrast agents (Ni, 2008[Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96-112.]). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.], 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.], 2014[Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370-372.]; Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]). Now we report herein on another bis­(indoly)methane compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 87.8 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 82.7 (5) and 85.5 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the attached indole ring systems being 9.6 (3) and 9.6 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of N1—H1A⋯O3i [symmetry code: (i) −x, 1 − y, −z] hydrogen bonds link the mol­ecules into inversion dimmers, which are further linked by N2—H2A⋯O2ii [symmetry code: (ii) x, 1 + y, z] hydrogen bonds into supra­molecular chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). Weak C—H⋯π inter­actions are also observed between neighbouring chains (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.06 2.913 (3) 170
N2—H2A⋯O2ii 0.86 2.15 2.948 (3) 155
C6—H6ACg4iii 0.93 2.75 3.645 (4) 162
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) x-1, y, z.
[Figure 2]
Figure 2
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

4. Database survey

Several similar structures have been reported previously, viz. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.]), dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013[Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.]), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014[Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259-261.]) and dimethyl 3,3′-[(3-nitro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014[Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370-372.]). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles being 82.0 (5), 84.5 (5), 79.5 (4) and 89.3 (5)°, respectively.

5. Synthesis and crystallization

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-fluoro­benz­aldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). The yield was 92%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Table 2
Experimental details

Crystal data
Chemical formula C27H21FN2O4
Mr 456.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.6980 (19), 10.119 (2), 12.875 (3)
α, β, γ (°) 89.86 (3), 83.10 (3), 65.45 (3)
V3) 1139.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.972, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 4453, 4183, 2587
Rint 0.036
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.163, 1.00
No. of reflections 4183
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.25
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

The indole unit forms the basis for general bis­(indoly)methanes, which are widely present in bioactive metabolites of numerous compounds isolated from natural sources (Poter et al., 1977; Sundberg, 1996). In addition, bis­(indoly)methanes are important anti­biotics in the field of pharmaceuticals and the precursor of bioactive metabolites of terrestrial and marine origin (Chang et al., 1999; Ge et al., 1999). The title compound is one of the bis­(indoly)methane derivatives used as a precursor for MRI contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012, 2013, 2014; Li et al., 2014). Now we report herein on another bis­(indoly)methane compound.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 87.8 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 82.7 (5) and 85.5 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the attached indole ring systems being 9.6 (3) and 9.6 (4)°.

Supra­molecular features top

In the crystal, pairs of N1—H1A···O3i [symmetry code: (i) -x, 1 - y, -z] hydrogen bonds link the molecules into inversion dimmers, which are further linked by N2—H2A···O2ii [symmetry code: (ii) x, 1 + y, z] hydrogen bonds into supra­molecular chains propagating along the b-axis direction (Table 1 and Fig. 2). Weak C—H···π inter­actions are also observed between neighbouring chains (Table 1).

Database survey top

Several similar structures have been reported previously, viz. di­ethyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), di­methyl 3,3'-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013), di­methyl 3,3'-[(4-chloro­phenyl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014) and di­methyl 3,3'-[(3-nitro­phenyl)­methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles being 82.0 (5), 84.5 (5), 79.5 (4) and 89.3 (5)°, respectively.

Synthesis and crystallization top

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-fluoro­benzaldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). The yield was 92%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Related literature top

For related literature, see: Chang et al. (1999); Ge et al. (1999); Li et al. (2014); Ni (2008); Poter et al. (1977); Sun et al. (2012, 2013, 2014); Sundberg (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title molecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dimethyl 3,3'-[(3-fluorophenyl)methylene]bis(1H-indole-2-carboxylate) top
Crystal data top
C27H21FN2O4Z = 2
Mr = 456.46F(000) = 476
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6980 (19) ÅCell parameters from 25 reflections
b = 10.119 (2) Åθ = 9–13°
c = 12.875 (3) ŵ = 0.10 mm1
α = 89.86 (3)°T = 293 K
β = 83.10 (3)°Block, colorless
γ = 65.45 (3)°0.30 × 0.20 × 0.10 mm
V = 1139.4 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1112
Tmin = 0.972, Tmax = 0.991l = 1515
4453 measured reflections3 standard reflections every 200 reflections
4183 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
4183 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C27H21FN2O4γ = 65.45 (3)°
Mr = 456.46V = 1139.4 (4) Å3
Triclinic, P1Z = 2
a = 9.6980 (19) ÅMo Kα radiation
b = 10.119 (2) ŵ = 0.10 mm1
c = 12.875 (3) ÅT = 293 K
α = 89.86 (3)°0.30 × 0.20 × 0.10 mm
β = 83.10 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2587 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.972, Tmax = 0.9913 standard reflections every 200 reflections
4453 measured reflections intensity decay: 1%
4183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.72 e Å3
4183 reflectionsΔρmin = 0.25 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1052 (3)0.5029 (2)0.13830 (18)0.0445 (6)
H1A0.14080.44960.10900.053*
O10.3009 (2)0.3113 (2)0.08820 (18)0.0586 (6)
C10.2144 (3)0.5855 (3)0.2059 (2)0.0334 (6)
H1B0.28590.53290.14410.040*
O20.1188 (3)0.2409 (2)0.05471 (17)0.0555 (6)
N20.1837 (3)0.9546 (2)0.14191 (17)0.0396 (6)
H2A0.17671.02110.09850.048*
C20.0646 (3)0.5803 (3)0.1908 (2)0.0341 (6)
O30.2455 (2)0.6468 (2)0.02476 (15)0.0486 (5)
C30.0884 (3)0.6830 (3)0.2299 (2)0.0359 (6)
O40.1821 (3)0.8813 (2)0.05567 (15)0.0529 (6)
C40.1512 (3)0.8120 (3)0.2943 (2)0.0439 (7)
H4A0.08800.84850.32070.053*
F0.6593 (3)0.3395 (3)0.38335 (19)0.1028 (8)
C50.3065 (4)0.8827 (3)0.3173 (2)0.0522 (8)
H5B0.34830.96760.36010.063*
C60.4039 (4)0.8314 (3)0.2787 (3)0.0545 (8)
H6A0.50900.88410.29510.065*
C70.3497 (4)0.7059 (3)0.2175 (3)0.0518 (8)
H7A0.41540.67150.19240.062*
C80.1906 (3)0.6313 (3)0.1940 (2)0.0394 (7)
C90.0469 (3)0.4723 (3)0.1365 (2)0.0368 (6)
C100.1559 (4)0.3315 (3)0.0883 (2)0.0416 (7)
C110.4154 (4)0.1713 (4)0.0498 (3)0.0767 (11)
H11A0.51490.16860.05290.115*
H11B0.40490.15370.02150.115*
H11C0.40310.09770.09210.115*
C120.2062 (3)0.7399 (3)0.2047 (2)0.0312 (6)
C130.1975 (3)0.8347 (3)0.2903 (2)0.0331 (6)
C140.2017 (3)0.8230 (3)0.3985 (2)0.0416 (7)
H14A0.21200.73680.42950.050*
C150.1906 (4)0.9398 (3)0.4581 (2)0.0517 (8)
H15A0.19490.93170.52970.062*
C160.1728 (4)1.0709 (3)0.4134 (3)0.0547 (9)
H16A0.16321.14880.45630.066*
C170.1692 (4)1.0876 (3)0.3093 (2)0.0489 (8)
H17A0.15861.17480.27990.059*
C180.1821 (3)0.9681 (3)0.2474 (2)0.0373 (7)
C190.1986 (3)0.8161 (3)0.1163 (2)0.0339 (6)
C200.2100 (3)0.7701 (3)0.0063 (2)0.0376 (7)
C210.1995 (4)0.8471 (4)0.1662 (2)0.0666 (10)
H21A0.17700.93430.20360.100*
H21B0.13030.80530.17970.100*
H21C0.30270.77880.18910.100*
C220.2846 (3)0.5040 (3)0.2992 (2)0.0367 (7)
C230.4402 (3)0.4571 (3)0.3005 (2)0.0449 (7)
H23A0.50000.47460.24490.054*
C240.5055 (4)0.3846 (4)0.3845 (3)0.0548 (8)
C250.4234 (4)0.3559 (4)0.4673 (3)0.0629 (10)
H25A0.47060.30620.52320.076*
C260.2694 (4)0.4020 (4)0.4664 (3)0.0639 (10)
H26A0.21050.38440.52260.077*
C270.2007 (4)0.4745 (3)0.3822 (2)0.0491 (8)
H27A0.09630.50360.38200.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0524 (17)0.0385 (13)0.0546 (15)0.0295 (12)0.0120 (12)0.0062 (11)
O10.0498 (14)0.0351 (11)0.0876 (17)0.0160 (10)0.0029 (12)0.0176 (11)
C10.0389 (16)0.0255 (13)0.0378 (15)0.0145 (12)0.0079 (12)0.0016 (11)
O20.0730 (16)0.0339 (11)0.0677 (14)0.0277 (11)0.0187 (12)0.0071 (10)
N20.0548 (16)0.0283 (11)0.0403 (14)0.0212 (11)0.0092 (11)0.0015 (10)
C20.0378 (16)0.0297 (13)0.0389 (15)0.0173 (12)0.0088 (12)0.0001 (11)
O30.0655 (15)0.0392 (11)0.0468 (12)0.0257 (10)0.0143 (10)0.0053 (9)
C30.0392 (16)0.0349 (14)0.0392 (15)0.0200 (13)0.0086 (12)0.0029 (12)
O40.0744 (16)0.0425 (11)0.0401 (12)0.0228 (11)0.0075 (10)0.0044 (9)
C40.0446 (19)0.0390 (16)0.0507 (18)0.0197 (14)0.0065 (14)0.0108 (14)
F0.0659 (15)0.131 (2)0.0963 (18)0.0211 (15)0.0317 (13)0.0148 (15)
C50.0440 (19)0.0439 (17)0.063 (2)0.0142 (15)0.0002 (15)0.0118 (15)
C60.0383 (19)0.055 (2)0.067 (2)0.0171 (16)0.0064 (16)0.0020 (17)
C70.0432 (19)0.0553 (19)0.067 (2)0.0292 (16)0.0115 (16)0.0039 (16)
C80.0422 (17)0.0407 (16)0.0422 (16)0.0233 (14)0.0094 (13)0.0029 (13)
C90.0433 (17)0.0332 (14)0.0400 (16)0.0205 (13)0.0111 (13)0.0015 (12)
C100.057 (2)0.0320 (14)0.0411 (16)0.0232 (14)0.0096 (14)0.0026 (12)
C110.058 (2)0.047 (2)0.108 (3)0.0091 (18)0.003 (2)0.020 (2)
C120.0289 (14)0.0286 (13)0.0399 (15)0.0149 (11)0.0085 (12)0.0012 (11)
C130.0305 (15)0.0307 (14)0.0413 (16)0.0156 (12)0.0066 (12)0.0027 (12)
C140.0461 (18)0.0370 (15)0.0437 (17)0.0187 (14)0.0076 (13)0.0002 (13)
C150.064 (2)0.0522 (19)0.0421 (17)0.0270 (17)0.0089 (15)0.0080 (15)
C160.067 (2)0.0413 (17)0.055 (2)0.0216 (16)0.0093 (16)0.0156 (15)
C170.056 (2)0.0346 (15)0.058 (2)0.0204 (15)0.0095 (15)0.0068 (14)
C180.0351 (16)0.0317 (14)0.0451 (17)0.0133 (12)0.0080 (13)0.0043 (12)
C190.0376 (16)0.0297 (13)0.0384 (15)0.0174 (12)0.0070 (12)0.0028 (12)
C200.0383 (17)0.0363 (15)0.0414 (16)0.0180 (13)0.0078 (13)0.0015 (13)
C210.088 (3)0.069 (2)0.0409 (19)0.031 (2)0.0089 (18)0.0063 (16)
C220.0415 (17)0.0274 (13)0.0429 (16)0.0155 (12)0.0075 (13)0.0046 (12)
C230.0471 (19)0.0438 (16)0.0451 (18)0.0196 (14)0.0083 (14)0.0030 (14)
C240.0472 (19)0.0567 (19)0.054 (2)0.0121 (16)0.0195 (16)0.0022 (16)
C250.078 (3)0.062 (2)0.048 (2)0.023 (2)0.0242 (19)0.0152 (16)
C260.075 (3)0.072 (2)0.052 (2)0.037 (2)0.0126 (18)0.0107 (18)
C270.0469 (19)0.0564 (19)0.0498 (19)0.0263 (16)0.0105 (15)0.0107 (15)
Geometric parameters (Å, º) top
N1—C81.362 (3)C11—H11A0.9600
N1—C91.373 (4)C11—H11B0.9600
N1—H1A0.8600C11—H11C0.9600
O1—C101.333 (4)C12—C191.365 (4)
O1—C111.431 (4)C12—C131.435 (3)
C1—C21.511 (4)C13—C141.402 (4)
C1—C221.520 (4)C13—C181.413 (4)
C1—C121.532 (3)C14—C151.370 (4)
C1—H1B0.9800C14—H14A0.9300
O2—C101.213 (3)C15—C161.396 (4)
N2—C181.363 (3)C15—H15A0.9300
N2—C191.385 (3)C16—C171.353 (4)
N2—H2A0.8600C16—H16A0.9300
C2—C91.379 (3)C17—C181.403 (4)
C2—C31.440 (4)C17—H17A0.9300
O3—C201.203 (3)C19—C201.469 (4)
C3—C41.409 (4)C21—H21A0.9600
C3—C81.419 (4)C21—H21B0.9600
O4—C201.330 (3)C21—H21C0.9600
O4—C211.439 (3)C22—C271.373 (4)
C4—C51.366 (4)C22—C231.383 (4)
C4—H4A0.9300C23—C241.372 (4)
F—C241.364 (4)C23—H23A0.9300
C5—C61.389 (4)C24—C251.357 (5)
C5—H5B0.9300C25—C261.370 (5)
C6—C71.364 (4)C25—H25A0.9300
C6—H6A0.9300C26—C271.385 (4)
C7—C81.401 (4)C26—H26A0.9300
C7—H7A0.9300C27—H27A0.9300
C9—C101.458 (4)
C8—N1—C9109.0 (2)C13—C12—C1129.4 (2)
C8—N1—H1A125.5C14—C13—C18118.0 (2)
C9—N1—H1A125.5C14—C13—C12135.4 (2)
C10—O1—C11116.3 (2)C18—C13—C12106.6 (2)
C2—C1—C22113.7 (2)C15—C14—C13119.3 (3)
C2—C1—C12112.9 (2)C15—C14—H14A120.4
C22—C1—C12112.7 (2)C13—C14—H14A120.4
C2—C1—H1B105.5C14—C15—C16121.3 (3)
C22—C1—H1B105.5C14—C15—H15A119.4
C12—C1—H1B105.5C16—C15—H15A119.4
C18—N2—C19108.7 (2)C17—C16—C15121.8 (3)
C18—N2—H2A125.7C17—C16—H16A119.1
C19—N2—H2A125.7C15—C16—H16A119.1
C9—C2—C3105.3 (2)C16—C17—C18117.3 (3)
C9—C2—C1126.3 (2)C16—C17—H17A121.3
C3—C2—C1128.5 (2)C18—C17—H17A121.3
C4—C3—C8117.9 (3)N2—C18—C17129.5 (3)
C4—C3—C2134.8 (3)N2—C18—C13108.2 (2)
C8—C3—C2107.3 (2)C17—C18—C13122.3 (3)
C20—O4—C21116.2 (2)C12—C19—N2109.8 (2)
C5—C4—C3118.9 (3)C12—C19—C20130.1 (2)
C5—C4—H4A120.6N2—C19—C20120.1 (2)
C3—C4—H4A120.6O3—C20—O4124.0 (2)
C4—C5—C6121.9 (3)O3—C20—C19124.5 (3)
C4—C5—H5B119.0O4—C20—C19111.4 (2)
C6—C5—H5B119.0O4—C21—H21A109.5
C7—C6—C5121.8 (3)O4—C21—H21B109.5
C7—C6—H6A119.1H21A—C21—H21B109.5
C5—C6—H6A119.1O4—C21—H21C109.5
C6—C7—C8117.0 (3)H21A—C21—H21C109.5
C6—C7—H7A121.5H21B—C21—H21C109.5
C8—C7—H7A121.5C27—C22—C23118.4 (3)
N1—C8—C7129.8 (3)C27—C22—C1123.0 (3)
N1—C8—C3107.7 (2)C23—C22—C1118.5 (3)
C7—C8—C3122.5 (3)C24—C23—C22119.4 (3)
N1—C9—C2110.7 (2)C24—C23—H23A120.3
N1—C9—C10116.5 (2)C22—C23—H23A120.3
C2—C9—C10132.5 (3)C25—C24—F119.4 (3)
O2—C10—O1123.6 (3)C25—C24—C23122.6 (3)
O2—C10—C9123.6 (3)F—C24—C23118.0 (3)
O1—C10—C9112.8 (2)C24—C25—C26118.2 (3)
O1—C11—H11A109.5C24—C25—H25A120.9
O1—C11—H11B109.5C26—C25—H25A120.9
H11A—C11—H11B109.5C25—C26—C27120.4 (3)
O1—C11—H11C109.5C25—C26—H26A119.8
H11A—C11—H11C109.5C27—C26—H26A119.8
H11B—C11—H11C109.5C22—C27—C26121.0 (3)
C19—C12—C13106.8 (2)C22—C27—H27A119.5
C19—C12—C1123.7 (2)C26—C27—H27A119.5
C22—C1—C2—C986.0 (3)C1—C12—C13—C18176.2 (3)
C12—C1—C2—C9143.9 (3)C18—C13—C14—C150.1 (4)
C22—C1—C2—C393.1 (3)C12—C13—C14—C15179.7 (3)
C12—C1—C2—C337.0 (4)C13—C14—C15—C161.0 (5)
C9—C2—C3—C4176.4 (3)C14—C15—C16—C171.5 (5)
C1—C2—C3—C42.8 (5)C15—C16—C17—C180.8 (5)
C9—C2—C3—C81.3 (3)C19—N2—C18—C17180.0 (3)
C1—C2—C3—C8179.4 (2)C19—N2—C18—C130.5 (3)
C8—C3—C4—C51.4 (4)C16—C17—C18—N2179.1 (3)
C2—C3—C4—C5178.9 (3)C16—C17—C18—C130.3 (4)
C3—C4—C5—C60.3 (5)C14—C13—C18—N2178.7 (2)
C4—C5—C6—C71.4 (5)C12—C13—C18—N20.9 (3)
C5—C6—C7—C80.7 (5)C14—C13—C18—C170.8 (4)
C9—N1—C8—C7179.6 (3)C12—C13—C18—C17179.6 (3)
C9—N1—C8—C30.7 (3)C13—C12—C19—N20.7 (3)
C6—C7—C8—N1177.7 (3)C1—C12—C19—N2176.7 (2)
C6—C7—C8—C31.1 (4)C13—C12—C19—C20176.5 (3)
C4—C3—C8—N1176.9 (2)C1—C12—C19—C206.1 (4)
C2—C3—C8—N11.3 (3)C18—N2—C19—C120.1 (3)
C4—C3—C8—C72.1 (4)C18—N2—C19—C20177.4 (2)
C2—C3—C8—C7179.7 (3)C21—O4—C20—O31.2 (4)
C8—N1—C9—C20.2 (3)C21—O4—C20—C19176.3 (3)
C8—N1—C9—C10174.5 (2)C12—C19—C20—O38.5 (5)
C3—C2—C9—N10.9 (3)N2—C19—C20—O3168.5 (3)
C1—C2—C9—N1179.8 (2)C12—C19—C20—O4174.0 (3)
C3—C2—C9—C10172.5 (3)N2—C19—C20—O49.0 (4)
C1—C2—C9—C106.7 (5)C2—C1—C22—C2722.3 (4)
C11—O1—C10—O22.7 (4)C12—C1—C22—C27107.9 (3)
C11—O1—C10—C9175.3 (3)C2—C1—C22—C23157.6 (2)
N1—C9—C10—O23.0 (4)C12—C1—C22—C2372.3 (3)
C2—C9—C10—O2170.1 (3)C27—C22—C23—C240.8 (4)
N1—C9—C10—O1179.0 (2)C1—C22—C23—C24179.4 (2)
C2—C9—C10—O17.9 (4)C22—C23—C24—C250.3 (5)
C2—C1—C12—C1972.7 (3)C22—C23—C24—F179.9 (3)
C22—C1—C12—C19156.8 (2)F—C24—C25—C26179.8 (3)
C2—C1—C12—C13104.0 (3)C23—C24—C25—C260.2 (5)
C22—C1—C12—C1326.5 (4)C24—C25—C26—C270.7 (5)
C19—C12—C13—C14178.6 (3)C23—C22—C27—C261.2 (4)
C1—C12—C13—C144.3 (5)C1—C22—C27—C26178.9 (3)
C19—C12—C13—C181.0 (3)C25—C26—C27—C221.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.062.913 (3)170
N2—H2A···O2ii0.862.152.948 (3)155
C6—H6A···Cg4iii0.932.753.645 (4)162
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.062.913 (3)170
N2—H2A···O2ii0.862.152.948 (3)155
C6—H6A···Cg4iii0.932.753.645 (4)162
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H21FN2O4
Mr456.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6980 (19), 10.119 (2), 12.875 (3)
α, β, γ (°)89.86 (3), 83.10 (3), 65.45 (3)
V3)1139.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.972, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4453, 4183, 2587
Rint0.036
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.163, 1.00
No. of reflections4183
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing College of Chemical Technology, China (grant No. NHKY-2013–02).

References

First citationChang, Y.-C., Riby, J., Chang, G. H. F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGe, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261.  CSD CrossRef IUCr Journals Google Scholar
First citationNi, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPorter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370–372.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516.  CSD CrossRef IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds