organic compounds
of (2-benzyloxypyrimidin-5-yl)boronic acid
aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: kdurka@ch.pw.edu.pl
The boronic acid group in the title compound, C11H11BN2O3, adopts a syn–anti conformation and is almost coplanar with the aromatic rings , making a dihedralangle of 3.8 (2)°. In the crystal, adjacent molecules are linked via pairs of O—H⋯O interactions, forming centrosymmetric dimers with an R22(8) motif, which have recently been shown to be energetically very favorable (Durka et al., 2012, 2014). The hydroxy groups in an anti conformation are engaged in lateral hydrogen-bonding interactions with N atoms from neighbouring molecules, leading to the formation of chains along [001]. O⋯B [3.136 (2) Å] and C(π)⋯B [3.393 (2) Å] stacking interactions in turn link parallel chains of centrosymmetric dimers into layers parallel to (010).
CCDC reference: 937427
1. Related literature
For general background to the structures of ); Luliński et al. (2007); Maly et al. (2006); Shimpi et al. (2007). For the characterization of related pyrymidylboronic acids, see: Clapham et al. (2007); Liao et al. (1964); Peters et al. (1990); Saygili et al. (2004).
see, for example: Hall (20112. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 937427
10.1107/S1600536814024519/zl2604sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024519/zl2604Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814024519/zl2604Isup3.mol
Supporting information file. DOI: 10.1107/S1600536814024519/zl2604Isup4.cml
Heterocyclic
have been intensively studied in the recent years. They have found numerous application as Suzuki-Miyaura cross-coupling partners. However, pyrimidylboronic acids have been largely neglected, although some derivatives were synthesized (Clapham et al., 2007; Liao et al., 1964; Peters et al., 1990; Saygili et al., 2004). In this manuscript we focus our attention on a pyrimidine boronic acid derivative containing a benzyloxy group at the 2nd position.The molecular structure of 1 shows that the B(OH)2 group adopts the usual syn-anti conformation. The entire molecule including both aromatic rings and boronic group remains essentially planar (Figure 1). On the first level of material organization, centrosymmetric O—H···O hydrogen-bonded dimers are formed. They are linked via lateral hydrogen-bonding interactions with nitrogen atoms from neighbouring molecules. It results in the formation of molecular chains propagated along the [001] direction (Figure 2). Molecules from adjacent chains interact by weak O···B and C(π)···B stacking interactions, which link parallel oriented chains into 2D layers. These contacts are additionally supported by weak C—H···N interactions between the methylene group and one of the N atoms of the pyrimidyl ring, and also by C—H···O interactions formed between the C(pyrimidyl)—H group and an oxygen atom from the B(OH)2 group. The supramolecular architecture extends further due to weak C—H···C(π) contacts leading to a three-dimensional network.
The title compound was received from Aldrich. Crystals suitable for single-crystal X-ray
were grown by cooling a solution of the boronic acid (0.2 g) in acetone (4 ml).Crystal data, data collection and structure
details are summarized in Table 1. All CH (methylene, phenyl) hydrogen atoms were placed in calculated positions with C—H distances of 0.95Å (phenyl) and 0.99Å (methylene). They were included in the in riding-motion approximation with Uiso(phenyl H)=1.2Ueq(C), and Uiso(methyl H) = 1.5Ueq(C). The positions of OH hydrogen atoms were refined with Uiso(hydroxy H) = 1.5Ueq(C).Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Labelling of atoms and estimation of their atomic thermal motion as Anisotropic Displacement Parameters (ADPs, 50% probability level) for 1. The molecular chains in 1. Hydrogen bonds are shown as red, dashed lines. Aromatic and aliphatic hydrogen atoms are omitted for clarity. Structural graph displaying the intermolecular O···B, C(π)···B (blue), C—H···N (orange) and O—H···O, O—H···N (red) interactions. |
C11H11BN2O3 | F(000) = 480 |
Mr = 230.03 | Dx = 1.485 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.498 (1) Å | Cell parameters from 4979 reflections |
b = 30.4320 (17) Å | θ = 2.0–34.4° |
c = 6.7086 (19) Å | µ = 0.11 mm−1 |
β = 113.54 (4)° | T = 100 K |
V = 1029.0 (4) Å3 | Unspecified, colourless |
Z = 4 | 0.20 × 0.15 × 0.15 mm |
Kuma KM-4 CCD diffractometer | 4167 independent reflections |
Radiation source: fine-focus sealed tube | 2975 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scan | θmax = 34.5°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | h = −8→8 |
Tmin = 0.993, Tmax = 1.000 | k = −48→47 |
18472 measured reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4141P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4167 reflections | Δρmax = 0.57 e Å−3 |
160 parameters | Δρmin = −0.30 e Å−3 |
C11H11BN2O3 | V = 1029.0 (4) Å3 |
Mr = 230.03 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.498 (1) Å | µ = 0.11 mm−1 |
b = 30.4320 (17) Å | T = 100 K |
c = 6.7086 (19) Å | 0.20 × 0.15 × 0.15 mm |
β = 113.54 (4)° |
Kuma KM-4 CCD diffractometer | 4167 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 2975 reflections with I > 2σ(I) |
Tmin = 0.993, Tmax = 1.000 | Rint = 0.044 |
18472 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.57 e Å−3 |
4167 reflections | Δρmin = −0.30 e Å−3 |
160 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7668 (2) | 0.09979 (4) | 0.33931 (19) | 0.0119 (2) | |
C2 | 0.4044 (2) | 0.05846 (4) | 0.16000 (19) | 0.0129 (2) | |
H2 | 0.2541 | 0.0426 | 0.1570 | 0.016* | |
C3 | 0.4464 (2) | 0.06065 (4) | −0.03164 (19) | 0.0120 (2) | |
C4 | 0.6720 (2) | 0.08390 (4) | −0.01318 (19) | 0.0135 (2) | |
H4 | 0.7143 | 0.0856 | −0.1371 | 0.016* | |
C5 | 1.1273 (2) | 0.14700 (4) | 0.5176 (2) | 0.0144 (2) | |
H5A | 1.0515 | 0.1694 | 0.4023 | 0.017* | |
H5B | 1.2516 | 0.1286 | 0.4803 | 0.017* | |
C6 | 1.2746 (2) | 0.16928 (4) | 0.73226 (19) | 0.0119 (2) | |
C7 | 1.1923 (2) | 0.16861 (4) | 0.9030 (2) | 0.0152 (2) | |
H7 | 1.0405 | 0.1521 | 0.8908 | 0.018* | |
C8 | 1.3326 (3) | 0.19224 (4) | 1.0918 (2) | 0.0178 (2) | |
H8 | 1.2757 | 0.1916 | 1.2081 | 0.021* | |
C9 | 1.5544 (3) | 0.21671 (4) | 1.1128 (2) | 0.0170 (2) | |
H9 | 1.6466 | 0.2333 | 1.2410 | 0.020* | |
C10 | 1.6401 (3) | 0.21665 (4) | 0.9434 (2) | 0.0161 (2) | |
H10 | 1.7933 | 0.2329 | 0.9567 | 0.019* | |
C11 | 1.5022 (2) | 0.19294 (4) | 0.7556 (2) | 0.0143 (2) | |
H11 | 1.5630 | 0.1928 | 0.6415 | 0.017* | |
B1 | 0.2490 (3) | 0.03690 (4) | −0.2435 (2) | 0.0129 (2) | |
N1 | 0.5624 (2) | 0.07726 (3) | 0.34800 (16) | 0.0133 (2) | |
N2 | 0.8334 (2) | 0.10406 (4) | 0.16971 (17) | 0.0137 (2) | |
O1 | 0.28595 (18) | 0.03484 (3) | −0.43207 (14) | 0.01608 (19) | |
O2 | 0.03654 (19) | 0.01745 (3) | −0.22897 (15) | 0.0177 (2) | |
O3 | 0.91719 (17) | 0.11992 (3) | 0.52723 (14) | 0.01468 (18) | |
H1A | 0.416 (3) | 0.0477 (6) | −0.445 (3) | 0.022* | |
H2A | −0.068 (3) | 0.0034 (6) | −0.340 (3) | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0114 (5) | 0.0120 (5) | 0.0124 (5) | −0.0016 (4) | 0.0048 (4) | −0.0011 (4) |
C2 | 0.0135 (5) | 0.0138 (5) | 0.0122 (5) | −0.0028 (4) | 0.0059 (4) | −0.0002 (4) |
C3 | 0.0129 (5) | 0.0125 (5) | 0.0112 (5) | −0.0013 (4) | 0.0054 (4) | −0.0001 (4) |
C4 | 0.0150 (5) | 0.0157 (5) | 0.0119 (5) | −0.0016 (4) | 0.0074 (4) | −0.0008 (4) |
C5 | 0.0134 (5) | 0.0163 (5) | 0.0144 (5) | −0.0052 (4) | 0.0066 (4) | −0.0024 (4) |
C6 | 0.0112 (5) | 0.0111 (5) | 0.0128 (5) | −0.0006 (4) | 0.0039 (4) | −0.0003 (4) |
C7 | 0.0145 (5) | 0.0163 (5) | 0.0159 (5) | −0.0030 (4) | 0.0073 (5) | −0.0007 (4) |
C8 | 0.0201 (6) | 0.0202 (6) | 0.0149 (5) | −0.0038 (5) | 0.0088 (5) | −0.0018 (5) |
C9 | 0.0167 (6) | 0.0169 (6) | 0.0152 (5) | −0.0021 (4) | 0.0040 (5) | −0.0029 (4) |
C10 | 0.0121 (5) | 0.0165 (6) | 0.0183 (6) | −0.0027 (4) | 0.0046 (5) | −0.0012 (4) |
C11 | 0.0136 (5) | 0.0149 (5) | 0.0153 (5) | −0.0008 (4) | 0.0067 (4) | 0.0002 (4) |
B1 | 0.0134 (6) | 0.0125 (6) | 0.0133 (6) | 0.0003 (4) | 0.0060 (5) | 0.0019 (5) |
N1 | 0.0130 (5) | 0.0154 (5) | 0.0119 (4) | −0.0033 (4) | 0.0054 (4) | −0.0013 (4) |
N2 | 0.0141 (5) | 0.0157 (5) | 0.0125 (4) | −0.0035 (4) | 0.0064 (4) | −0.0016 (4) |
O1 | 0.0171 (4) | 0.0204 (4) | 0.0126 (4) | −0.0069 (3) | 0.0079 (3) | −0.0029 (3) |
O2 | 0.0179 (4) | 0.0240 (5) | 0.0124 (4) | −0.0093 (4) | 0.0071 (3) | −0.0041 (4) |
O3 | 0.0148 (4) | 0.0175 (4) | 0.0121 (4) | −0.0069 (3) | 0.0057 (3) | −0.0036 (3) |
C1—N2 | 1.3336 (15) | C6—C11 | 1.3972 (16) |
C1—N1 | 1.3375 (15) | C7—C8 | 1.3912 (18) |
C1—O3 | 1.3474 (15) | C7—H7 | 0.9500 |
C2—N1 | 1.3407 (16) | C8—C9 | 1.3870 (18) |
C2—C3 | 1.3957 (17) | C8—H8 | 0.9500 |
C2—H2 | 0.9500 | C9—C10 | 1.3933 (19) |
C3—C4 | 1.3898 (16) | C9—H9 | 0.9500 |
C3—B1 | 1.5775 (19) | C10—C11 | 1.3856 (18) |
C4—N2 | 1.3415 (16) | C10—H10 | 0.9500 |
C4—H4 | 0.9500 | C11—H11 | 0.9500 |
C5—O3 | 1.4412 (14) | B1—O2 | 1.3475 (16) |
C5—C6 | 1.5028 (18) | B1—O1 | 1.3602 (16) |
C5—H5A | 0.9900 | O1—H1A | 0.849 (18) |
C5—H5B | 0.9900 | O2—H2A | 0.852 (19) |
C6—C7 | 1.3898 (17) | ||
N2—C1—N1 | 127.51 (11) | C6—C7—H7 | 120.1 |
N2—C1—O3 | 118.63 (10) | C8—C7—H7 | 120.1 |
N1—C1—O3 | 113.86 (10) | C9—C8—C7 | 121.03 (12) |
N1—C2—C3 | 124.24 (11) | C9—C8—H8 | 119.5 |
N1—C2—H2 | 117.9 | C7—C8—H8 | 119.5 |
C3—C2—H2 | 117.9 | C8—C9—C10 | 119.09 (12) |
C4—C3—C2 | 114.36 (11) | C8—C9—H9 | 120.5 |
C4—C3—B1 | 125.58 (11) | C10—C9—H9 | 120.5 |
C2—C3—B1 | 120.05 (10) | C11—C10—C9 | 120.12 (12) |
N2—C4—C3 | 123.72 (11) | C11—C10—H10 | 119.9 |
N2—C4—H4 | 118.1 | C9—C10—H10 | 119.9 |
C3—C4—H4 | 118.1 | C10—C11—C6 | 120.71 (12) |
O3—C5—C6 | 110.46 (10) | C10—C11—H11 | 119.6 |
O3—C5—H5A | 109.6 | C6—C11—H11 | 119.6 |
C6—C5—H5A | 109.6 | O2—B1—O1 | 120.19 (12) |
O3—C5—H5B | 109.6 | O2—B1—C3 | 116.12 (11) |
C6—C5—H5B | 109.6 | O1—B1—C3 | 123.67 (11) |
H5A—C5—H5B | 108.1 | C1—N1—C2 | 114.70 (10) |
C7—C6—C11 | 119.14 (11) | C1—N2—C4 | 115.40 (10) |
C7—C6—C5 | 123.72 (11) | B1—O1—H1A | 121.3 (12) |
C11—C6—C5 | 117.11 (11) | B1—O2—H2A | 117.4 (12) |
C6—C7—C8 | 119.86 (11) | C1—O3—C5 | 114.90 (9) |
N1—C2—C3—C4 | 0.78 (18) | C4—C3—B1—O2 | −177.72 (12) |
N1—C2—C3—B1 | 179.43 (11) | C2—C3—B1—O2 | 3.78 (17) |
C2—C3—C4—N2 | −2.18 (18) | C4—C3—B1—O1 | 3.3 (2) |
B1—C3—C4—N2 | 179.25 (12) | C2—C3—B1—O1 | −175.21 (12) |
O3—C5—C6—C7 | −8.77 (17) | N2—C1—N1—C2 | −2.59 (19) |
O3—C5—C6—C11 | 173.27 (10) | O3—C1—N1—C2 | 177.44 (10) |
C11—C6—C7—C8 | 1.58 (19) | C3—C2—N1—C1 | 1.38 (18) |
C5—C6—C7—C8 | −176.34 (12) | N1—C1—N2—C4 | 1.33 (19) |
C6—C7—C8—C9 | 0.2 (2) | O3—C1—N2—C4 | −178.69 (11) |
C7—C8—C9—C10 | −1.5 (2) | C3—C4—N2—C1 | 1.25 (18) |
C8—C9—C10—C11 | 0.98 (19) | N2—C1—O3—C5 | 4.30 (16) |
C9—C10—C11—C6 | 0.78 (19) | N1—C1—O3—C5 | −175.72 (10) |
C7—C6—C11—C10 | −2.06 (18) | C6—C5—O3—C1 | 177.64 (10) |
C5—C6—C11—C10 | 176.00 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.60 | 3.5104 (15) | 161 |
O2—H2A···O1ii | 0.852 (19) | 1.915 (19) | 2.7615 (16) | 172.7 (17) |
O1—H1A···N1iii | 0.849 (18) | 2.067 (18) | 2.8188 (15) | 147.2 (16) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z−1; (iii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.60 | 3.5104 (15) | 161.4 |
O2—H2A···O1ii | 0.852 (19) | 1.915 (19) | 2.7615 (16) | 172.7 (17) |
O1—H1A···N1iii | 0.849 (18) | 2.067 (18) | 2.8188 (15) | 147.2 (16) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z−1; (iii) x, y, z−1. |
Acknowledgements
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Co. through donation of chemicals and equipment, and by the Warsaw University of Technology.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Santa Clara, USA. Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clapham, K. M., Smith, A. E., Batsanov, A. S., McIntyre, L., Pountney, A., Bryce, M. R. & Tarbit, B. (2007). Eur. J. Org. Chem. pp. 5712–5716. Web of Science CSD CrossRef Google Scholar
Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734. Web of Science CSD CrossRef CAS Google Scholar
Durka, K., Luliński, S., Jarzembska, K. N., Smętek, J., Serwatowski, J. & Woźniak, K. (2014). Acta Cryst. B70, 157–171. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hall, D. G. (2011). Boronic Acids, pp. 3–8. Weinheim: Wiley-VCH. Google Scholar
Liao, T. K., Podrebarac, E. G. & Cheng, C. C. (1964). J. Am. Chem. Soc. 86, 1869–1870. CrossRef CAS Web of Science Google Scholar
Luliński, S., Madura, I., Serwatowski, J., Szatyłowicz, H. & Zachara, J. (2007). New J. Chem. 31, 144–15. Google Scholar
Maly, K. E., Maris, T. & Wuest, J. D. (2006). CrystEngComm, 8, 33–35. CAS Google Scholar
Peters, D., Hörnfeldt, A. B. & Gronowitz, S. (1990). J. Heterocycl. Chem. 27, 2165–2173. CrossRef CAS Google Scholar
Saygili, N., Batsanov, A. S. & Bryce, M. R. (2004). Org. Biomol. Chem. 2, 852–857. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.