organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1248-o1249

Crystal structure of 1-benzyl-3-methyl-1H-imidazolium hexa­fluorido­phosphate

aMississippi State University, Department of Chemistry, 1115 Hand Lab, Box 9573, Mississippi State, MS 39762, USA
*Correspondence e-mail: pch110@msstate.edu

Edited by M. Zeller, Youngstown State University, USA (Received 25 October 2014; accepted 4 November 2014; online 12 November 2014)

In the title salt, C11H13N2+·PF6, the dihedral angle between the planes of the imidazole and benzene rings is 84.72 (4)°. In the crystal, C—H⋯F inter­actions connect the cation and anion pairs into a three-dimensional network. Weak ππ inter­actions are observed between the imidazolium ring and the aromatic benzene ring of an adjacent mol­ecule with C⋯C and C⋯N distances ranging from 3.3714 (16) to 3.4389 (15) Å.

1. Related literature

For related structures containing imidazolium rings bearing N-benzyl groups, see: Haque et al. (2012[Haque, R. A., Zetty, Z. H., Salman, A. W., Fun, H.-K. & Ooi, C. W. (2012). Acta Cryst. E68, o489-o490.]); Jiang (2009[Jiang, P. (2009). Acta Cryst. E65, o2177.]); Lu et al. (2010[Lu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378.]); Pi et al. (2009[Pi, M., Liu, X.-L., Xu, J.-J. & Jin, C.-M. (2009). Acta Cryst. E65, o2386.]). For an overview of applications for ionic liquids, see: Plechkova & Seddon (2008[Plechkova, N. V. & Seddon, K. R. (2008). Chem. Soc. Rev. 37, 123-150.]). For applications of benzyl-containing ionic liquids, see: Mahurin et al. (2011[Mahurin, S. M., Dai, T., Yeary, J. S., Luo, H. & Dai, S. (2011). Ind. Eng. Chem. Res. 50, 14061-14069.]). For the synthesis of the title compound, see: Shkrob et al. (2013[Shkrob, I. A., Marin, T. W., Luo, H. & Dai, S. (2013). J. Phys. Chem. B, 117, 14372-14384.]). For use of imidazolium compounds as carbene precursors, see: Scholl et al. (1999[Scholl, M., Trnka, T. M., Morgan, J. P. & Grubbs, R. H. (1999). Tetrahedron Lett. 40, 2247-2250.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H13N2+·F6P

  • Mr = 318.20

  • Monoclinic, P 21 /c

  • a = 10.4989 (3) Å

  • b = 11.2755 (3) Å

  • c = 11.9769 (3) Å

  • β = 109.926 (1)°

  • V = 1332.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.45 × 0.27 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.991

  • 42589 measured reflections

  • 3188 independent reflections

  • 2746 reflections with I > 2σ(I)

  • Rint = 0.055

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.07

  • 3188 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F3i 0.95 2.23 3.1503 (14) 164
C1—H1⋯F4i 0.95 2.61 3.2860 (14) 129
C3—H3⋯F5ii 0.95 2.30 3.1456 (15) 148
C9—H9⋯F2iii 0.95 2.60 3.2680 (16) 128
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

Ionic liquids are a class of materials which have found a wide range of applications in recent years (Plechkova & Seddon, 2008). In addition to their applications involving ionic liquids, imidazolium based salts are also commonly employed as starting materials for carbene ligands, perhaps most famously for their use in the so called Grubbs catalyst (Scholl et al., 1999). For both ionic liquids and carbene ligands, cationic nitro­gen containing heterocycles are the dominant structural motif, providing an ideal combination of chemical and physical properties useful in both instances. Electronic and structural factors play a large role in the fine tuning of both ionic liquids and carbenes, thus the structure reported herein will provide a useful analysis of this common, yet unreported structure.

The asymmetric unit of the title compound contains one cation-anion pair (Fig. 1). The dihedral angle of the benzene ring and the imidazolium ring is 84.72° (4), see table 1. Crystal packing appears to be stabilized by the presence of several C—H···F inter­actions summarized in table 2 and shown in Figure 2. There are several close contacts between C7 and C8 of the benzene ring and the symmetry generated imidazole ring (symmetry operator 1-x,1/2+y,1.5-z) with C···C and C···N distances ranging from 3.3714 (16) to 3.4389 (15) (for C7···C2 and C8···N1 respectively). These inter­actions likely point towards the presence of a weak, highly slipped and tilted π-π inter­action. No classical centroid-centroid π stacking was observed in the lattice.

Synthesis and crystallization top

The title compound was synthesized according to established literature procedures (Shkrob et al., 2013). Single crystals suitable for diffraction were grown by slow solvent evaporation from an ethano­lic solution of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were included at calculated positions using a riding model, with aromatic, methyl­ene, and methyl C—H bond lengths of 0.95, 0.99 and 0.98Å, respectively. The Uiso(H) values were fixed at 1.5Ueq(C) for methyl H atoms, and 1.2Ueq(C) for all other C atoms.

Related literature top

For related structures containing imidazolium rings bearing N-benzyl groups, see: Haque et al. (2012); Jiang (2009); Lu et al. (2010); Pi et al. (2009). For an overview of applications for ionic liquids, see: Plechkova & Seddon (2008). For applications of benzyl-containing ionic liquids, see: Mahurin et al. (2011). For the synthesis of the title compound, see: Shkrob et al. (2013). For use of imidazolium compounds as carbene precursors, see: Scholl et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids. Nitrogen atoms shown in blue, carbon in grey, fluorine in pink, and phosphorous in green.

Fig. 2. Diagram of the hydrogen bonding observed in the title compound shown as pink dotted lines.
1-Benzyl-3-methyl-1H-imidazolium hexafluoridophosphate top
Crystal data top
C11H13N2+·F6PF(000) = 648
Mr = 318.20Dx = 1.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4989 (3) ÅCell parameters from 9735 reflections
b = 11.2755 (3) Åθ = 2.6–27.9°
c = 11.9769 (3) ŵ = 0.27 mm1
β = 109.926 (1)°T = 100 K
V = 1332.95 (6) Å3Plates, colourless
Z = 40.45 × 0.27 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2746 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.055
combination of ω and ϕ–scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.906, Tmax = 0.991k = 1414
42589 measured reflectionsl = 1515
3188 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.409P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3188 reflectionsΔρmax = 0.27 e Å3
182 parametersΔρmin = 0.42 e Å3
0 restraints
Crystal data top
C11H13N2+·F6PV = 1332.95 (6) Å3
Mr = 318.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4989 (3) ŵ = 0.27 mm1
b = 11.2755 (3) ÅT = 100 K
c = 11.9769 (3) Å0.45 × 0.27 × 0.12 mm
β = 109.926 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3188 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2746 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.991Rint = 0.055
42589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
3188 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71519 (10)0.47646 (9)0.73967 (9)0.0195 (2)
N20.51532 (10)0.53231 (9)0.72989 (9)0.0177 (2)
C10.64714 (12)0.54719 (10)0.78756 (10)0.0188 (2)
H10.68600.59970.85230.023*
C20.62396 (13)0.41476 (11)0.64770 (11)0.0219 (3)
H20.64530.35830.59790.026*
C30.49888 (13)0.44926 (10)0.64138 (11)0.0210 (2)
H30.41540.42170.58660.025*
C40.86303 (13)0.46510 (13)0.77897 (13)0.0296 (3)
H4A0.89570.49420.71650.044*
H4B0.88830.38160.79540.044*
H4C0.90390.51190.85130.044*
C50.40534 (13)0.59543 (11)0.75594 (11)0.0226 (3)
H5A0.44510.65090.82290.027*
H5B0.34910.53730.78030.027*
C60.31700 (12)0.66383 (11)0.64927 (11)0.0190 (2)
C70.36887 (12)0.76192 (10)0.60829 (10)0.0196 (2)
H70.46040.78500.64690.023*
C80.28734 (14)0.82614 (11)0.51126 (11)0.0244 (3)
H80.32300.89330.48410.029*
C90.15414 (15)0.79246 (13)0.45415 (12)0.0303 (3)
H90.09860.83640.38770.036*
C100.10175 (14)0.69493 (14)0.49367 (14)0.0334 (3)
H100.01050.67160.45400.040*
C110.18284 (13)0.63074 (12)0.59182 (13)0.0276 (3)
H110.14640.56440.61940.033*
P10.76866 (3)0.81119 (3)0.62758 (3)0.01967 (10)
F10.71267 (8)0.80793 (7)0.73665 (7)0.0306 (2)
F20.90222 (8)0.74247 (7)0.70492 (7)0.0333 (2)
F30.82307 (9)0.81640 (8)0.51809 (7)0.0363 (2)
F40.63354 (7)0.88092 (7)0.54915 (7)0.02663 (18)
F50.69426 (10)0.68792 (7)0.58054 (8)0.0392 (2)
F60.84023 (8)0.93566 (7)0.67485 (8)0.0310 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0232 (5)0.0161 (5)0.0195 (5)0.0017 (4)0.0076 (4)0.0036 (4)
N20.0232 (5)0.0154 (4)0.0148 (5)0.0016 (4)0.0069 (4)0.0008 (4)
C10.0253 (6)0.0146 (5)0.0157 (5)0.0003 (4)0.0061 (5)0.0018 (4)
C20.0336 (7)0.0163 (5)0.0161 (6)0.0028 (5)0.0089 (5)0.0001 (4)
C30.0293 (6)0.0163 (5)0.0155 (6)0.0010 (5)0.0051 (5)0.0014 (4)
C40.0227 (6)0.0292 (7)0.0372 (8)0.0041 (5)0.0106 (6)0.0070 (6)
C50.0271 (6)0.0219 (6)0.0224 (6)0.0049 (5)0.0132 (5)0.0034 (5)
C60.0215 (6)0.0171 (5)0.0203 (6)0.0023 (4)0.0095 (5)0.0015 (4)
C70.0239 (6)0.0183 (5)0.0178 (6)0.0010 (5)0.0088 (5)0.0033 (5)
C80.0387 (7)0.0165 (6)0.0200 (6)0.0050 (5)0.0127 (6)0.0005 (5)
C90.0345 (7)0.0288 (7)0.0235 (7)0.0145 (6)0.0043 (6)0.0007 (5)
C100.0206 (6)0.0375 (8)0.0368 (8)0.0035 (5)0.0030 (6)0.0075 (6)
C110.0236 (6)0.0239 (6)0.0364 (8)0.0024 (5)0.0115 (6)0.0017 (6)
P10.02424 (17)0.01596 (16)0.01680 (17)0.00009 (11)0.00438 (13)0.00205 (11)
F10.0351 (4)0.0369 (5)0.0204 (4)0.0067 (3)0.0103 (3)0.0022 (3)
F20.0365 (5)0.0288 (4)0.0271 (4)0.0110 (3)0.0013 (3)0.0054 (3)
F30.0406 (5)0.0465 (5)0.0264 (4)0.0185 (4)0.0175 (4)0.0112 (4)
F40.0224 (4)0.0296 (4)0.0265 (4)0.0025 (3)0.0065 (3)0.0077 (3)
F50.0572 (6)0.0205 (4)0.0282 (5)0.0093 (4)0.0007 (4)0.0038 (3)
F60.0262 (4)0.0201 (4)0.0450 (5)0.0052 (3)0.0099 (4)0.0014 (3)
Geometric parameters (Å, º) top
N1—C11.3247 (16)C6—C111.3914 (18)
N1—C21.3768 (16)C7—H70.9500
N1—C41.4660 (16)C7—C81.3891 (17)
N2—C11.3301 (16)C8—H80.9500
N2—C31.3805 (15)C8—C91.384 (2)
N2—C51.4774 (15)C9—H90.9500
C1—H10.9500C9—C101.383 (2)
C2—H20.9500C10—H100.9500
C2—C31.3468 (18)C10—C111.396 (2)
C3—H30.9500C11—H110.9500
C4—H4A0.9800P1—F11.6053 (8)
C4—H4B0.9800P1—F21.5935 (8)
C4—H4C0.9800P1—F31.6000 (8)
C5—H5A0.9900P1—F41.6139 (8)
C5—H5B0.9900P1—F51.5999 (8)
C5—C61.5098 (17)P1—F61.6016 (8)
C6—C71.3939 (17)
C1—N1—C2108.65 (10)C6—C7—H7119.8
C1—N1—C4125.58 (11)C8—C7—C6120.33 (12)
C2—N1—C4125.77 (11)C8—C7—H7119.8
C1—N2—C3108.67 (10)C7—C8—H8120.0
C1—N2—C5125.40 (10)C9—C8—C7120.08 (12)
C3—N2—C5125.93 (11)C9—C8—H8120.0
N1—C1—N2108.57 (10)C8—C9—H9119.9
N1—C1—H1125.7C10—C9—C8120.11 (13)
N2—C1—H1125.7C10—C9—H9119.9
N1—C2—H2126.3C9—C10—H10120.0
C3—C2—N1107.35 (11)C9—C10—C11120.05 (13)
C3—C2—H2126.3C11—C10—H10120.0
N2—C3—H3126.6C6—C11—C10120.10 (13)
C2—C3—N2106.76 (11)C6—C11—H11119.9
C2—C3—H3126.6C10—C11—H11119.9
N1—C4—H4A109.5F1—P1—F489.53 (4)
N1—C4—H4B109.5F2—P1—F190.55 (5)
N1—C4—H4C109.5F2—P1—F390.29 (5)
H4A—C4—H4B109.5F2—P1—F4179.90 (5)
H4A—C4—H4C109.5F2—P1—F590.55 (5)
H4B—C4—H4C109.5F2—P1—F690.39 (4)
N2—C5—H5A109.3F3—P1—F1179.05 (5)
N2—C5—H5B109.3F3—P1—F489.63 (4)
N2—C5—C6111.49 (10)F3—P1—F690.11 (5)
H5A—C5—H5B108.0F5—P1—F189.80 (5)
C6—C5—H5A109.3F5—P1—F390.64 (5)
C6—C5—H5B109.3F5—P1—F489.51 (5)
C7—C6—C5120.15 (11)F5—P1—F6178.80 (5)
C11—C6—C5120.52 (11)F6—P1—F189.44 (4)
C11—C6—C7119.32 (12)F6—P1—F489.56 (4)
N1—C2—C3—N20.15 (13)C5—N2—C1—N1179.75 (10)
N2—C5—C6—C767.85 (14)C5—N2—C3—C2179.52 (11)
N2—C5—C6—C11112.96 (13)C5—C6—C7—C8179.04 (11)
C1—N1—C2—C30.35 (13)C5—C6—C11—C10179.65 (12)
C1—N2—C3—C20.11 (13)C6—C7—C8—C90.45 (18)
C1—N2—C5—C6121.23 (12)C7—C6—C11—C100.45 (19)
C2—N1—C1—N20.42 (13)C7—C8—C9—C100.14 (19)
C3—N2—C1—N10.33 (13)C8—C9—C10—C110.5 (2)
C3—N2—C5—C658.10 (15)C9—C10—C11—C60.8 (2)
C4—N1—C1—N2179.05 (11)C11—C6—C7—C80.16 (18)
C4—N1—C2—C3179.12 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F3i0.952.233.1503 (14)164
C1—H1···F4i0.952.613.2860 (14)129
C3—H3···F5ii0.952.303.1456 (15)148
C9—H9···F2iii0.952.603.2680 (16)128
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F3i0.952.233.1503 (14)163.6
C1—H1···F4i0.952.613.2860 (14)128.7
C3—H3···F5ii0.952.303.1456 (15)147.9
C9—H9···F2iii0.952.603.2680 (16)127.7
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

The authors wish to thank Mississippi State University and the Department of Chemistry for funding.

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaque, R. A., Zetty, Z. H., Salman, A. W., Fun, H.-K. & Ooi, C. W. (2012). Acta Cryst. E68, o489–o490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, P. (2009). Acta Cryst. E65, o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahurin, S. M., Dai, T., Yeary, J. S., Luo, H. & Dai, S. (2011). Ind. Eng. Chem. Res. 50, 14061–14069.  Web of Science CrossRef CAS Google Scholar
First citationPi, M., Liu, X.-L., Xu, J.-J. & Jin, C.-M. (2009). Acta Cryst. E65, o2386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlechkova, N. V. & Seddon, K. R. (2008). Chem. Soc. Rev. 37, 123–150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScholl, M., Trnka, T. M., Morgan, J. P. & Grubbs, R. H. (1999). Tetrahedron Lett. 40, 2247–2250.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShkrob, I. A., Marin, T. W., Luo, H. & Dai, S. (2013). J. Phys. Chem. B, 117, 14372–14384.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1248-o1249
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds