research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three lead(II) acetate-bridged di­amino­benzene coordination polymers

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by M. Zeller, Youngstown State University, USA (Received 12 November 2014; accepted 19 November 2014; online 21 November 2014)

Poly[tris­(acetato-κ2O,O′)(μ2-acetato-κ3O,O′:O)tetra­kis­(μ3-acetato-κ4O,O′:O:O′)bis­(benzene-1,2-di­amine-κN)tetra­lead(II)], [Pb4(CH3COO)8(C6H8N2)2]n, (I), poly[(acetato-κ2O,O′)(μ3-acetato-κ4O,O′:O:O′)(4-chloro­benzene-1,2-diamine-κN)lead(II)], [Pb(CH3COO)2(C6H7ClN2)]n, (II), and poly[(κ2O,O′)(μ3-acetato-κ4O,O′:O:O′)(3,4-di­amino­benzo­nitrile-κN)lead(II)], [Pb(CH3COO)2(C7H7N3)]n, (III), have polymeric structures in which monomeric units are joined by bridging acetate ligands. All of the PbII ions exhibit hemidirected coordination. The repeating unit in (I) is composed of four PbII ions having O6, O6N, O7 and O6N coordination spheres, respectively, where N represents a monodentate benzene-1,2-di­amine ligand and O acetate O atoms. Chains along [010] are joined by bridging acetate ligands to form planes parallel to (10-1). (II) and (III) are isotypic and have one PbII ion in the asymmetric unit that has an O6N coordination sphere. Pb2O2 units result from a symmetry-imposed inversion center. Polymeric chains parallel to [100] exhibit hydrogen bonding between the amine and acetate ligands. In (III), additional hydrogen bonds between cyano groups and non-coordinating amines join the chains by forming R22(14) rings.

1. Chemical context

Metal–organic frameworks (MOFs) are of inherent inter­est in areas such as gas storage, catalysis, chemical sensors and mol­ecular separation (Dey et al., 2014[Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3-10.]; Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]; Farha & Hupp, 2010[Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166-1175.]). Recently, we reported the synthesis and structural characterization of two zinc MOFs possessing bridging acetate ligands and monodentate chloro- or cyano-substituted o-phenyl­enedi­amine ligands (Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]). These complexes possess a ladder–chain structure with an ethanol mol­ecule that occupies a void with a volume of approximately 224 Å3. The results presented here expand the structural study to PbII analogues.

PbII compounds often exhibit a distorted coordination sphere or open coordination site that has been attributed to stereoactive `lone-pair' electrons (Morsali, 2004[Morsali, A. (2004). Z. Naturforsch. Teil B, 59, 1039-1044.]; Wang & Liebau, 2007[Wang, X. & Liebau, F. (2007). Acta Cryst. B63, 216-228.]; Park & Barbier, 2001[Park, H. & Barbier, J. (2001). Acta Cryst. E57, i82-i84.]). Indeed, hemidirected geometry is favored over halodirected geometry for PbII when hard ligands are present, which corresponds to a greater ionic character in the metal–ligand bonding (Shimoni-Livny et al., 1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]), or when one or more of the ligands is anionic (Esteban-Gómez et al., 2006[Esteban-Gómez, D., Platas-Iglesias, C., Enriquez-Pérez, T. & Avecilla, F. (2006). Inorg. Chem. 45, 5407-5416.]). However, hemidirected lead(II) complexes in a soft sulfur-rich environment are also known (Imran et al., 2014[Imran, M., Mix, A., Neumann, B., Stammler, H.-G., Monkowius, U., Gründlinger, P. & Mitzel, N. W. (2014). Dalton Trans. doi: 10.1039/c4dt01406e]). The results of a reduced variational space (RVS) analysis suggest that more sterically crowded, hemidirected structures are stabilized by polarization of the lead(II) ion induced by the ligand arrangement (Devereux et al., 2011[Devereux, M., van Severen, M.-C., Parisel, O., Piquemal, J.-P. & Gresh, N. (2011). J. Chem. Theory Comput. 7, 138-147.]). The possibility of a distorted coordination sphere enhancing the volume of void space between chains found in coordination polymers provided the impetus for the synthesis and structural characterization of the compounds reported herein.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the three acetate coordination modes displayed by (I)[link], (II)[link], and (III)[link]. The three modes will be referred to hereafter as types (a), (b) and (c). As seen in Fig. 2[link], the asymmetric unit of (I)[link] has four symmetry-independent Pb atoms. The Pb atoms are linked by bridging acetate ligands of type (b) to form a ladder-chain parallel to [010]. Each is also coordinated to a bidentate acetate ligand of type (a) and Pb2 and Pb4 have an amine nitro­gen in their coordination spheres. Finally, atoms Pb3 and Pb4 are linked by an acetato ligand of type (c). The two benzene-1,2-di­amine ligands are approximately coplanar. The angle formed by the benzene mean planes is 6.1 (4)°, with N1, N2, N3 and N4 being 0.051 (16), 0.013 (19), 0.074 (16), and 0.034 (16) Å from their respective planes.

[Figure 1]
Figure 1
The three acetate coordination modes observed in (I)[link], (II)[link], and (III)[link], showing (a) acetato-κ2O,O′, (b) μ3-acetato-κ4O,O′:O:O′, and (c) μ2-acetato-κ3O,O′:O.
[Figure 2]
Figure 2
The atom-labeling scheme for (I)[link]. Anisotropic displacement parameters are drawn at the 50% probability level.

The asymmetric unit of (I)[link] possesses pseudo-translational symmetry as a result of the similarity in the coordination geometries exhibited by Pb1 and Pb3 and by Pb2 and Pb4. Pb1⋯Pb3 = 7.4548 (10) Å and Pb2⋯Pb4 = 7.5372 (10) Å, approximately half of the Pb1⋯Pb4i = 14.989 (2) Å distance (see Table 1[link] for symmetry codes). Fig. 3[link] shows a representation of (I)[link] in which the two pseudo-translationally related halves of the asymmetric unit are color coded. Primary differences in the two halves involve the orientation of the two non-coordinating amine groups, one less acetate type (c) on Pb1 than on Pb3, and a type (c) acetate ligand on Pb2 replaced by a type (a) acetate ligand on Pb4.

Table 1
Selected bond lengths (Å) for (I)[link]

Pb1—O2 2.380 (6) Pb3—O12 2.509 (7)
Pb1—O3 2.474 (7) Pb3—O10 2.590 (6)
Pb1—O4 2.576 (7) Pb3—O9 2.604 (7)
Pb1—O1 2.636 (7) Pb3—O7ii 2.675 (7)
Pb1—O5 2.667 (6) Pb3—O13 2.688 (6)
Pb1—O3i 2.792 (7) Pb3—O6 2.696 (7)
Pb2—O8 2.448 (8) Pb4—O16 2.427 (7)
Pb2—O6 2.470 (7) Pb4—O13 2.482 (7)
Pb2—O5 2.485 (6) Pb4—O14 2.563 (7)
Pb2—O9 2.654 (7) Pb4—O14iii 2.609 (7)
Pb2—O4 2.696 (6) Pb4—O15 2.713 (7)
Pb2—O7 2.747 (8) Pb4—O10 2.901 (6)
Pb2—N1 2.797 (9) Pb4—N3 2.862 (10)
Pb3—O11 2.443 (7)    
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.
[Figure 3]
Figure 3
A view of (I)[link] in which the two halves of the asymmetric unit related by the pseudo-translation are color coded. H atoms have been omitted for clarity.

(II) and (III)[link] are isotypic if the nitrile function in (III) is considered as a large one-atomic group and replaces the Cl atom in (II). Fig. 4[link] shows the atom-labeling scheme for (II)[link] and Fig. 5[link] shows the atom-labeling scheme for (III)[link]. Each Pb atom has two bidentate acetate ligands, one of type (a) and one of type (b). The type (b) ligands result in chains parallel to [100], with Pb2O2 cores related by inversion centers. The substituted benzene-1,2-di­amine ligands are essentially planar. For (II)[link], N1 and N2 are below the plane by 0.056 (14) and 0.066 (18) Å, respectively, and Cl1 is 0.020 (14) Å above the plane. In (III)[link], N1 and N2 are 0.073 (17) and 0.05 (2) Å out of the plane. The C7—N3—C4 angle is 177.7 (16)° and N3 is 0.12 (2) Å out of the plane.

[Figure 4]
Figure 4
The atom-labeling scheme for (II)[link]. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry identifiers: (i) −x + 1, −y, −z + 1; (ii) −x + 2, −y, −z + 1.]
[Figure 5]
Figure 5
The atom-labeling scheme for (III)[link]. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry identifiers: (i) −x + 1, −y, −z + 1; (ii) −x + 2, −y, −z + 1.]

The coordination spheres are O6, O6N, O7, and O6N for Pb1, Pb2, Pb3, and Pb4, respectively, for (I)[link], and O6N for (II)[link] and (III)[link]. Representations of the coordination spheres are shown in Fig. 6[link] and pertinent bond distances are found in Tables 1[link], 2[link] and 3[link]. The coordination is clearly hemidirected for each Pb and the Pb—O bond lengths are asymmetrical, as is often found for hemidirected compounds (Shimoni-Livny et al., 1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]). The average Pb—O bond lengths are 2.60 (13), 2.59 (11), and 2.58 (12) Å for (I)[link], (II)[link] and (III)[link], respectively, or 2.59 (12) Å overall, and range from 2.380 (6) to 2.901 (6) Å. The average Pb—N bond length for the three compounds is 2.84 (5) Å. In all cases, the Pb—O(N) bond lengths are longer for those ligand atoms adjacent to the open coordination site. This is consistent with structural results for other hemidirected coordination modes involving O- and N-donor atoms (cf. Shimoni-Livny et al., 1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]; Morsali et al., 2005[Morsali, A., Mahjoub, A. R., Soltanian, M. J. & Pour, P. E. (2005). Z. Naturforsch. Teil B, 60, 300-304.]; Esteban-Gómez et al., 2006[Esteban-Gómez, D., Platas-Iglesias, C., Enriquez-Pérez, T. & Avecilla, F. (2006). Inorg. Chem. 45, 5407-5416.]; Morsali, 2004[Morsali, A. (2004). Z. Naturforsch. Teil B, 59, 1039-1044.]).

Table 2
Selected bond lengths (Å) for (II)[link]

Pb1—O1 2.467 (6) Pb1—O2 2.678 (7)
Pb1—O3 2.504 (6) Pb1—O3ii 2.734 (6)
Pb1—O4 2.512 (6) Pb1—N1 2.800 (8)
Pb1—O4i 2.632 (6)    
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.

Table 3
Selected bond lengths (Å) for (III)[link]

Pb1—O3 2.431 (7) Pb1—O4 2.667 (8)
Pb1—O2 2.485 (8) Pb1—O1ii 2.727 (7)
Pb1—O1 2.505 (7) Pb1—N1 2.906 (10)
Pb1—O2i 2.635 (7)    
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 6]
Figure 6
Representation of the PbII coordination environments observed in (I)[link], (II)[link], and (III)[link]. Symmetry identifiers are those used in Tables 1[link], 2[link] and 3[link].

3. Supra­molecular features

The one-dimensional asymmetric unit chain of (I)[link] propagates via inversion centers and is extended into two dimensions via an acetate ligand of type (c) that bridges Pb2 and Pb3iii, as shown in Fig. 7[link], where the symmetry designators are defined. The result is an extended structure composed of planes parallel to (10[\overline{1}]). N—H⋯O and N—H⋯N hydrogen bonding is observed along the chains parallel to [010] (see Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 (2) 2.20 (3) 3.061 (11) 163 (7)
N1—H1B⋯O11 0.88 (2) 2.25 (4) 3.079 (11) 156 (8)
N2—H2A⋯O11 0.90 (2) 2.38 (5) 3.238 (13) 159 (11)
N2—H2B⋯N4 0.90 (2) 2.57 (5) 3.229 (14) 131 (5)
N3—H3A⋯O12 0.87 (2) 2.32 (4) 3.151 (11) 160 (8)
N3—H3B⋯O16iii 0.88 (2) 2.33 (4) 3.145 (11) 154 (7)
N4—H4B⋯O10 0.88 (2) 2.38 (4) 3.236 (12) 163 (10)
Symmetry code: (iii) -x+2, -y, -z+1.
[Figure 7]
Figure 7
Packing diagram for (I)[link], showing the linked chains. Hydrogen bonds are represented by dashed lines. H atoms not involved in the hydrogen-bonding network are not shown. [Symmetry identifiers: (i) −x + 2, −y + 1, −z + 1; (ii) x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (iii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + [{5\over 2}], y + [{1\over 2}], −z + [{3\over 2}].]

In compounds (II)[link] and (III)[link], chains parallel to [100] are observed. An extensive N—H⋯O hydrogen-bonding network is found along the chains (see Tables 5[link] and 6[link]). For (III)[link], the nitrile group affords the opportunity for additional hydrogen bonding. As seen in Fig. 8[link], this results in R22(14) rings involving N—H⋯N≡C hydrogen bonds between adjacent chains.

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2ii 0.88 (2) 2.38 (3) 3.261 (11) 172 (9)
N1—H1B⋯O1i 0.88 (2) 2.39 (5) 3.201 (10) 153 (8)
N2—H2A⋯O1i 0.87 (2) 2.19 (6) 2.998 (11) 155 (13)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4ii 0.88 (2) 2.46 (4) 3.310 (14) 164 (12)
N1—H1B⋯O3i 0.87 (2) 2.40 (8) 3.139 (12) 143 (11)
N2—H2A⋯O3i 0.88 (2) 2.25 (9) 3.044 (14) 150 (16)
N2—H2B⋯N3iii 0.88 (2) 2.62 (11) 3.355 (18) 142 (14)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+2.
[Figure 8]
Figure 8
Packing diagram for (III)[link], showing the chains joined by N—H⋯N≡C hydrogen bonds. Hydrogen bonds are represented by by dashed lines. H atoms not involved in the hydrogen-bonding network are not shown. [Symmetry identifiers: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z + 1; (iii) x + 1, y − 1, z − 1; (iv) −x + 2, −y, −z; (v) x, y − 1, z − 1.]

Based on calculations performed with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), no solvent-accessible voids are found in (I)[link], (II)[link], or (III)[link].

4. Database survey

Numerous examples of polymeric lead(II) compounds with bridging carboxyl­ate ligands possessing a range of coordination modes have been reported (for examples, see Lyczko & Bak, 2008[Lyczko, K. & Bak, J. (2008). Acta Cryst. E64, m1341-m1342.]; Dai et al., 2009[Dai, J., Yang, J. & An, X. (2009). Acta Cryst. E65, m709-m710.]; Mohammadnezhad et al., 2010[Mohammadnezhad, G., Ghanbarpour, A. R., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m963.]; Yilmaz et al., 2003[Yilmaz, V. T., Hamamci, S., Andac, O. & Guven, K. (2003). Z. Anorg. Allg. Chem. 629, 172-176.]; Foreman et al., 2001[Foreman, M. R. S. J., Plater, M. J. & Skakle, J. M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897-1903.]). A zinc metal organic framework with bridging acetate ligands and a monodentate 4-chloro­benzene-1,2-di­amine ligand has been reported (Geiger & Parsons, 2014[Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.]).

5. Synthesis and crystallization

5.1. Preparation of (I)

Benzene-1,2-di­amine (0.109 g, 0.93 mmol) was stirred into a solution of lead(II) acetate trihydrate (0.175 g, 0.46 mmol) in ethanol (10 ml). The solution was heated to a gentle reflux for 2 h and then cooled to room temperature. The solvent was reduced in volume by slow evaporation. After 5 d, crystals suitable for X-ray analysis had formed. Further solvent reduction resulted in precipitation of excess di­amine, so the overall yield was not determined. Selected IR bands (diamond anvil, cm−1): 3353 (br), 1505 (s), 1932 (s), 1284 (s) 1045 (w), 1018 (w), 939 (w).

5.2. Preparation of (II)

4-Chloro­benzene-1,2-di­amine (0.106 g, 0.75 mmol) was dissolved in boiling ethanol (10 ml) and lead(II) acetate trihydrate (0.134 g, 0.35 mmol) was added with stirring. The resulting solution was refluxed for 4 h, removed from the heat and the solvent was allowed to slowly evaporate. The residue obtained was dissolved in hot methanol and passed through a 45 µm pore filter. Crystals suitable for X-ray analysis were obtained after slow evaporation of the solvent. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm−1): 3334 (br), 1537 (s), 1393 (s), 1337 (s), 1018 (s).

5.3. Preparation of (III)

To a solution of lead(II) acetate trihydrate (0.149 g, 0.39 mmol) in ethanol (10 ml) was added 3,4-di­amino­benzo­nitrile (0.104 g, 0.75 mmol). The resulting solution was stirred at a gentle reflux for 1 h. The solvent was allowed to slowly evaporate over a period of 3 d, resulting in crystals suitable for X-ray analysis. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm−1): 3432 (w), 3316 (w), 2213 (s), 1581 (s), 1557 (s), 1394 (s), 1301 (s), 1020 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. All H atoms were observed in difference Fourier maps. C-bonded H atoms were refined using a riding model, with C—H = 0.98 Å for the methyl groups and 0.95 Å for the aromatic ring. The C—H hydrogen isotropic displacement parameters were fixed using the approximation Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the aromatic H atoms. The atomic coordinates for the amine H atoms were refined using an N—H bond-distance restraint of 0.88 (2) Å and the H-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(N). Late in the refinement, a correction for extinction was applied for each of the structures. For (I)[link], the highest residual electron-density peak is 0.94 Å from Pb2 and the deepest hole is 1.20 Å from Pb3. The highest residual electron-density peak is 0.89 Å and the deepest hole is 0.91 Å from Pb1 in (II)[link]. For (III)[link], the highest residual electron-density peak and the deepest hole are 0.92 Å and 0.82 Å, respectively, from Pb1.

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Pb4(C2H3O2)8(C6H8N2)2] [Pb(C2H3O2)2(C6H7ClN2)] [Pb(C2H3O2)2(C7H7N3)]
Mr 1517.40 467.86 458.43
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 200 200 200
a, b, c (Å) 11.1447 (14), 29.694 (4), 11.8597 (14) 7.3623 (10), 7.6177 (10), 13.1413 (17) 7.3724 (8), 7.6349 (8), 13.4069 (15)
α, β, γ (°) 90, 103.941 (4), 90 89.762 (4), 76.405 (4), 66.691 (4) 88.839 (3), 78.330 (3), 66.035 (3)
V3) 3809.1 (8) 654.63 (15) 673.71 (13)
Z 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 17.70 13.10 12.54
Crystal size (mm) 0.50 × 0.30 × 0.10 0.30 × 0.10 × 0.10 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Bruker SMART X2S benchtop Bruker SMART X2S benchtop Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.12, 0.27 0.11, 0.35 0.12, 0.57
No. of measured, independent and observed [I > 2σ(I)] reflections 26670, 7708, 5239 6572, 2572, 2262 8223, 2819, 2498
Rint 0.080 0.057 0.053
(sin θ/λ)max−1) 0.624 0.625 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 0.96 0.038, 0.100, 1.04 0.041, 0.145, 1.14
No. of reflections 7708 2572 2819
No. of parameters 502 178 187
No. of restraints 122 6 96
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.12, −1.97 3.38, −3.08 3.41, −2.68
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Metal–organic frameworks (MOFs) are of inherent inter­est in areas such as gas storage, catalysis, chemical sensors and molecular separation (Dey et al., 2014; Kreno et al., 2012; Farha & Hupp, 2010). Recently, we reported the synthesis and structural characterization of two zinc MOFs possessing bridging acetate ligands and monodentate chloro- or cyano-substituted o-phenyl­enedi­amine ligands (Geiger & Parsons, 2014). These complexes possess a ladder–chain structure with an ethanol molecule that occupies a void with a volume of approximately 224 Å3. The results presented here expand the structural study to PbII analogues.

PbII compounds often exhibit a distorted coordination sphere or open coordination site that has been attributed to stereoactive `lone-pair' electrons (Morsali, 2004; Wang & Liebau, 2007; Park & Barbier, 2001). Indeed, hemidirected geometry is favored over halodirected geometry for PbII when hard ligands are present, which corresponds to a greater ionic character in the metal–ligand bonding (Shimoni-Livny et al., 1998), or when one or more of the ligands is anionic (Esteban-Gómez et al., 2006). However, hemidirected lead(II) complexes in a soft sulfur-rich environment are also known (Imran et al., 2014). The results of a reduced variational space (RVS) analysis suggest that more sterically crowded, hemidirected structures are stabilized by polarization of the lead(II) ion induced by the ligand arrangement (Devereux et al., 2011). The possibility of a distorted coordination sphere enhancing the volume of void space between chains found in coordination polymers provided the impetus for the synthesis and structural characterization of the compounds reported herein.

Structural commentary top

Fig. 1 shows the three acetate coordination modes displayed by (I), (II), and (III). The three modes will be referred to hereafter as types (a), (b) and (c). As seen in Fig. 2, the asymmetric unit of (I) has four symmetry-independent Pb atoms. The Pb atoms are linked by bridging acetate ligands of type (b) to form a ladder-chain parallel to [010]. Each is also coordinated to a bidentate acetate ligand of type (a) and Pb2 and Pb4 have an amine nitro­gen in their coordination spheres. Finally, atoms Pb3 and Pb4 are linked by an acetato ligand of type (c). The two benzene-1,2-di­amine ligands in the asymmetric unit are approximately coplanar. The angle formed by the benzene mean planes is 6.1 (4)°, with N1, N2, N3 and N4 being 0.051 (16), 0.013 (19), 0.074 (16), and 0.034 (16) Å from their respective planes.

The asymmetric unit of (I) possesses pseudo-translational symmetry as a result of the similarity in the coordination geometries exhibited by Pb1 and Pb3 and by Pb2 and Pb4. Pb1···Pb3 = 7.4548 (10) Å and Pb2···Pb4 = 7.5372 (10) Å, approximately half of the Pb1···Pb4i = 14.989 (2) Å distance (see Table 1 for symmetry codes). Fig. 3 shows a representation of (I) in which the two pseudo-translationally related halves of the asymmetric unit are color coded. Primary differences in the two halves involve the orientation of the two uncoordinated amine groups, one less acetate type (c) on Pb1 than on Pb3, and a type (c) acetate ligand on Pb2 replaced by a type (a) acetate ligand on Pb4.

(II) and (III) are isomorphous. Fig. 4 shows the atom-labeling scheme for (II) and Fig. 5 shows the atom-labeling scheme for (III). Each Pb atom has two bidentate acetate ligands, one of type (a) and one of type (b). The type (b) ligands result in chains parallel to [100], with Pb2O2 cores related by inversion centers. The substituted benzene-1,2-di­amine ligands are essentially planar. For (II), N1 and N2 are below the plane by 0.056 (14) and 0.066 (18) Å, respectively, and Cl1 is 0.020 (14) Å above the plane. In (III), N1 and N2 are 0.073 (17) and 0.05 (2) Å out of the plane. The C7—N3—C4 angle is 177.7 (16)° and N3 is 0.12 (2) Å out of the plane.

The coordination spheres are O6, O6N, O7, and O6N for Pb1, Pb2, Pb3, and Pb4, respectively, for (I), and O6N for (II) and (III). Representations of the coordination spheres are shown in Fig. 3 and pertinent bond distances are found in Tables 1, 2 and 3. The coordination is clearly hemidirected for each Pb and the Pb—O bond distances are asymmetrical, as is often found for hemidirected compounds (Shimoni-Livny et al., 1998). The average Pb—O bond distances are 2.60 (13), 2.59 (11), and 2.58 (12) Å for (I), (II) and (III), respectively, or 2.59 (12) Å overall, and range from 2.380 (6) to 2.901 (6) Å. The Pb—N bond distance averaged over the three compounds is 2.84 (5) Å. In all cases, the Pb—O(N) bond distances are longer for those ligand atoms adjacent to the open coordination site. This is consistent with structural results for other hemidirected coordination modes involving O- and N-donor atoms (cf. Shimoni-Livny et al., 1998; Morsali et al., 2005; Esteban-Gómez et al., 2006; Morsali , 2004).

Supra­molecular features top

The one-dimensional asymmetric unit chain of (I) propagates via inversion centers and is extended into two dimensions via an acetate ligand of type (c) that bridges Pb2 and Pb3iii, as shown in Fig. 6, where the symmetry designators are defined. The result is an extended structure composed of planes parallel to (202). N—H···O and N—H···N hydrogen bonding is observed along the chains parallel to [010] (see Table 4).

In compounds (II) and (III), chains parallel to [100] are observed. An extensive N—H···O hydrogen-bonding network is found along the chains (see Tables 5 and 6). For (III), the nitrile group affords the opportunity for additional hydrogen bonding. As seen in Fig. 7, this results in R22(14) rings involving N—H···NC hydrogen bonds between adjacent chains.

Based on calculations performed with PLATON (Spek, 2009), no solvent-accessible voids are found in (I), (II), or (III).

Database survey top

Numerous examples of polymeric lead(II) compounds with bridging carboxyl­ate ligands possessing a range of coordination modes have been reported (for examples, see Lyczko & Bak, 2008; Dai et al., 2009; Mohammadnezhad et al., 2010; Yilmaz et al., 2003; Foreman et al., 2001). A zinc metal organic framework with bridging acetate ligands and a monodentate 4-chloro­benzene-1,2-di­amine ligand has been reported (Geiger & Parsons, 2014).

Synthesis and crystallization top

Preparation of (I) top

Benzene-1,2-di­amine (0.109 g, 0.93 mmol) was stirred into a solution of lead(II) acetate trihydrate (0.175 g, 0.46 mmol) in ethanol (10 ml). The solution was heated to a gentle reflux for 2 h and then cooled to room temperature. The solvent was reduced in volume by slow evaporation. After 5 d, crystals suitable for X-ray analysis had formed. Further solvent reduction resulted in precipitation of excess di­amine, so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3353 (br), 1505 (s), 1932 (s), 1284 (s) 1045 (w), 1018 (w), 939 (w).

Preparation of (II) top

4-Chloro­benzene-1,2-di­amine (0.106 g, 0.75 mmol) was dissolved in boiling ethanol (10 ml) and lead(II) acetate trihydrate (0.134 g, 0.35 mmol) was added with stirring. The resulting solution was refluxed for 4 h, removed from the heat and the solvent was allowed to slowly evaporate. The residue obtained was dissolved in hot methanol and passed through a 45 µm pore filter. Crystals suitable for X-ray analysis were obtained after slow evaporation of the solvent. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3334 (br), 1537 (s), 1393 (s), 1337 (s), 1018 (s).

Preparation of (III) top

To a solution of lead(II) acetate trihydrate (0.149 g, 0.39 mmol) in ethanol (10 ml) were added 3,4-di­amino­benzo­nitrile (0.104 g, 0.75 mmol). The resulting solution was stirred at a gentle reflux for 1 h. The solvent was allowed to slowly evaporate over a period of 3 d, resulting in crystals suitable for X-ray analysis. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3432 (w), 3316 (w), 2213 (s), 1581 (s), 1557 (s), 1394 (s), 1301 (s), 1020 (s).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 7. All H atoms were observed in difference Fourier maps. C-bonded H atoms were refined using a riding model, with C—H = 0.98 Å for the methyl groups and 0.95 Å for the aromatic ring. The C—H hydrogen isotropic displacement parameters were fixed using the approximation Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the aromatic H atoms. The atomic coordinates for the amine H atoms were refined using an N—H bond-distance restraint of 0.88 (2) Å and the H-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(N). Late in the refinement, a correction for extinction was applied for each of the structures. For (I), the highest residual electron-density peak is 0.94 Å from Pb2 and the deepest hole is 1.20 Å from Pb3. The highest residual electron-density peak is 0.89 Å and the deepest hole is 0.91 Å from Pb1 in (II). For (III), the highest residual electron-density peak and the deepest hole are 0.92 Å and 0.82 Å, respectively, from Pb1.

Related literature top

For related literature, see: Dai et al. (2009); Devereux et al. (2011); Dey et al. (2014); Esteban-Gómez, Platas-Iglesias, Enriquez-Pérez & Avecilla (2006); Farha & Hupp (2010); Foreman et al. (2001); Geiger & Parsons (2014); Imran et al. (2014); Kreno et al. (2012); Lyczko & Bak (2008); Mohammadnezhad et al. (2010); Morsali (2004); Morsali et al. (2005); Park & Barbier (2001); Shimoni-Livny, Glusker & Bock (1998); Spek (2009); Wang & Liebau (2007); Yilmaz et al. (2003).

Structure description top

Metal–organic frameworks (MOFs) are of inherent inter­est in areas such as gas storage, catalysis, chemical sensors and molecular separation (Dey et al., 2014; Kreno et al., 2012; Farha & Hupp, 2010). Recently, we reported the synthesis and structural characterization of two zinc MOFs possessing bridging acetate ligands and monodentate chloro- or cyano-substituted o-phenyl­enedi­amine ligands (Geiger & Parsons, 2014). These complexes possess a ladder–chain structure with an ethanol molecule that occupies a void with a volume of approximately 224 Å3. The results presented here expand the structural study to PbII analogues.

PbII compounds often exhibit a distorted coordination sphere or open coordination site that has been attributed to stereoactive `lone-pair' electrons (Morsali, 2004; Wang & Liebau, 2007; Park & Barbier, 2001). Indeed, hemidirected geometry is favored over halodirected geometry for PbII when hard ligands are present, which corresponds to a greater ionic character in the metal–ligand bonding (Shimoni-Livny et al., 1998), or when one or more of the ligands is anionic (Esteban-Gómez et al., 2006). However, hemidirected lead(II) complexes in a soft sulfur-rich environment are also known (Imran et al., 2014). The results of a reduced variational space (RVS) analysis suggest that more sterically crowded, hemidirected structures are stabilized by polarization of the lead(II) ion induced by the ligand arrangement (Devereux et al., 2011). The possibility of a distorted coordination sphere enhancing the volume of void space between chains found in coordination polymers provided the impetus for the synthesis and structural characterization of the compounds reported herein.

Fig. 1 shows the three acetate coordination modes displayed by (I), (II), and (III). The three modes will be referred to hereafter as types (a), (b) and (c). As seen in Fig. 2, the asymmetric unit of (I) has four symmetry-independent Pb atoms. The Pb atoms are linked by bridging acetate ligands of type (b) to form a ladder-chain parallel to [010]. Each is also coordinated to a bidentate acetate ligand of type (a) and Pb2 and Pb4 have an amine nitro­gen in their coordination spheres. Finally, atoms Pb3 and Pb4 are linked by an acetato ligand of type (c). The two benzene-1,2-di­amine ligands in the asymmetric unit are approximately coplanar. The angle formed by the benzene mean planes is 6.1 (4)°, with N1, N2, N3 and N4 being 0.051 (16), 0.013 (19), 0.074 (16), and 0.034 (16) Å from their respective planes.

The asymmetric unit of (I) possesses pseudo-translational symmetry as a result of the similarity in the coordination geometries exhibited by Pb1 and Pb3 and by Pb2 and Pb4. Pb1···Pb3 = 7.4548 (10) Å and Pb2···Pb4 = 7.5372 (10) Å, approximately half of the Pb1···Pb4i = 14.989 (2) Å distance (see Table 1 for symmetry codes). Fig. 3 shows a representation of (I) in which the two pseudo-translationally related halves of the asymmetric unit are color coded. Primary differences in the two halves involve the orientation of the two uncoordinated amine groups, one less acetate type (c) on Pb1 than on Pb3, and a type (c) acetate ligand on Pb2 replaced by a type (a) acetate ligand on Pb4.

(II) and (III) are isomorphous. Fig. 4 shows the atom-labeling scheme for (II) and Fig. 5 shows the atom-labeling scheme for (III). Each Pb atom has two bidentate acetate ligands, one of type (a) and one of type (b). The type (b) ligands result in chains parallel to [100], with Pb2O2 cores related by inversion centers. The substituted benzene-1,2-di­amine ligands are essentially planar. For (II), N1 and N2 are below the plane by 0.056 (14) and 0.066 (18) Å, respectively, and Cl1 is 0.020 (14) Å above the plane. In (III), N1 and N2 are 0.073 (17) and 0.05 (2) Å out of the plane. The C7—N3—C4 angle is 177.7 (16)° and N3 is 0.12 (2) Å out of the plane.

The coordination spheres are O6, O6N, O7, and O6N for Pb1, Pb2, Pb3, and Pb4, respectively, for (I), and O6N for (II) and (III). Representations of the coordination spheres are shown in Fig. 3 and pertinent bond distances are found in Tables 1, 2 and 3. The coordination is clearly hemidirected for each Pb and the Pb—O bond distances are asymmetrical, as is often found for hemidirected compounds (Shimoni-Livny et al., 1998). The average Pb—O bond distances are 2.60 (13), 2.59 (11), and 2.58 (12) Å for (I), (II) and (III), respectively, or 2.59 (12) Å overall, and range from 2.380 (6) to 2.901 (6) Å. The Pb—N bond distance averaged over the three compounds is 2.84 (5) Å. In all cases, the Pb—O(N) bond distances are longer for those ligand atoms adjacent to the open coordination site. This is consistent with structural results for other hemidirected coordination modes involving O- and N-donor atoms (cf. Shimoni-Livny et al., 1998; Morsali et al., 2005; Esteban-Gómez et al., 2006; Morsali , 2004).

The one-dimensional asymmetric unit chain of (I) propagates via inversion centers and is extended into two dimensions via an acetate ligand of type (c) that bridges Pb2 and Pb3iii, as shown in Fig. 6, where the symmetry designators are defined. The result is an extended structure composed of planes parallel to (202). N—H···O and N—H···N hydrogen bonding is observed along the chains parallel to [010] (see Table 4).

In compounds (II) and (III), chains parallel to [100] are observed. An extensive N—H···O hydrogen-bonding network is found along the chains (see Tables 5 and 6). For (III), the nitrile group affords the opportunity for additional hydrogen bonding. As seen in Fig. 7, this results in R22(14) rings involving N—H···NC hydrogen bonds between adjacent chains.

Based on calculations performed with PLATON (Spek, 2009), no solvent-accessible voids are found in (I), (II), or (III).

Numerous examples of polymeric lead(II) compounds with bridging carboxyl­ate ligands possessing a range of coordination modes have been reported (for examples, see Lyczko & Bak, 2008; Dai et al., 2009; Mohammadnezhad et al., 2010; Yilmaz et al., 2003; Foreman et al., 2001). A zinc metal organic framework with bridging acetate ligands and a monodentate 4-chloro­benzene-1,2-di­amine ligand has been reported (Geiger & Parsons, 2014).

Benzene-1,2-di­amine (0.109 g, 0.93 mmol) was stirred into a solution of lead(II) acetate trihydrate (0.175 g, 0.46 mmol) in ethanol (10 ml). The solution was heated to a gentle reflux for 2 h and then cooled to room temperature. The solvent was reduced in volume by slow evaporation. After 5 d, crystals suitable for X-ray analysis had formed. Further solvent reduction resulted in precipitation of excess di­amine, so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3353 (br), 1505 (s), 1932 (s), 1284 (s) 1045 (w), 1018 (w), 939 (w).

4-Chloro­benzene-1,2-di­amine (0.106 g, 0.75 mmol) was dissolved in boiling ethanol (10 ml) and lead(II) acetate trihydrate (0.134 g, 0.35 mmol) was added with stirring. The resulting solution was refluxed for 4 h, removed from the heat and the solvent was allowed to slowly evaporate. The residue obtained was dissolved in hot methanol and passed through a 45 µm pore filter. Crystals suitable for X-ray analysis were obtained after slow evaporation of the solvent. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3334 (br), 1537 (s), 1393 (s), 1337 (s), 1018 (s).

To a solution of lead(II) acetate trihydrate (0.149 g, 0.39 mmol) in ethanol (10 ml) were added 3,4-di­amino­benzo­nitrile (0.104 g, 0.75 mmol). The resulting solution was stirred at a gentle reflux for 1 h. The solvent was allowed to slowly evaporate over a period of 3 d, resulting in crystals suitable for X-ray analysis. Further solvent reduction resulted in precipitation of excess di­amine and so the overall yield was not determined. Selected IR bands (diamond anvil, cm-1): 3432 (w), 3316 (w), 2213 (s), 1581 (s), 1557 (s), 1394 (s), 1301 (s), 1020 (s).

For related literature, see: Dai et al. (2009); Devereux et al. (2011); Dey et al. (2014); Esteban-Gómez, Platas-Iglesias, Enriquez-Pérez & Avecilla (2006); Farha & Hupp (2010); Foreman et al. (2001); Geiger & Parsons (2014); Imran et al. (2014); Kreno et al. (2012); Lyczko & Bak (2008); Mohammadnezhad et al. (2010); Morsali (2004); Morsali et al. (2005); Park & Barbier (2001); Shimoni-Livny, Glusker & Bock (1998); Spek (2009); Wang & Liebau (2007); Yilmaz et al. (2003).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 7. All H atoms were observed in difference Fourier maps. C-bonded H atoms were refined using a riding model, with C—H = 0.98 Å for the methyl groups and 0.95 Å for the aromatic ring. The C—H hydrogen isotropic displacement parameters were fixed using the approximation Uiso(H) = 1.5Ueq(C) for the methyl H atoms and 1.2Ueq(C) for the aromatic H atoms. The atomic coordinates for the amine H atoms were refined using an N—H bond-distance restraint of 0.88 (2) Å and the H-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(N). Late in the refinement, a correction for extinction was applied for each of the structures. For (I), the highest residual electron-density peak is 0.94 Å from Pb2 and the deepest hole is 1.20 Å from Pb3. The highest residual electron-density peak is 0.89 Å and the deepest hole is 0.91 Å from Pb1 in (II). For (III), the highest residual electron-density peak and the deepest hole are 0.92 Å and 0.82 Å, respectively, from Pb1.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The three acetate coordination modes observed in (I), (II), and (III), showing (a) µ2-acetato-κ2O,O', (b) µ2-acetato-κ4O,O':O:O', and (c) µ2-acetato-κ3O,O':O
[Figure 2] Fig. 2. The atom-labeling scheme for (I). Anisotropic displacement parameters are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view of (I) in which the two halves of the asymmetric unit related by the pseudo-translation are color coded. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The atom-labeling scheme for (II). Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry identifiers: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.]
[Figure 5] Fig. 5. The atom-labeling scheme for (III). Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry identifiers: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.]
[Figure 6] Fig. 6. Representation of the PbII coordination environments observed in (I), (II), and (III). Symmetry identifiers are those used in Tables 1, 2 and 3.
[Figure 7] Fig. 7. Packing diagram for (I), showing the linked chains. Hydrogen bonds are represented by dashed bonds. H atoms not involved in the hydrogen-bonding network are not shown. [Symmetry identifiers: (i) -x+2, -y+1, -z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+3/2, y+1/2, -z+1/2; (v) -x+5/2, y+1/2, -z+3/2.]
[Figure 8] Fig. 8. Packing diagram for (III), showing the chains joined by N—H···NC hydrogen bonds. Hydrogen bonds are represented by by dashed lines. H atoms not involved in the hydrogen-bonding network are not shown. [Symmetry identifiers: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y-1, z-1; (iv) -x+2, -y, -z; (v) x, y-1, z-1.]
(I) Poly[tris(acetato-κ2O,O')(µ3-acetato-κ3O,O':O)tetrakis(µ2-acetato-κ4O,O':O:O')bis(benzene-1,2-diamine-κN)tetralead(II)] top
Crystal data top
[Pb4(C2H3O2)8(C6H8N2)2]F(000) = 2768
Mr = 1517.40Dx = 2.646 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.1447 (14) ÅCell parameters from 426 reflections
b = 29.694 (4) Åθ = 0.1–26.5°
c = 11.8597 (14) ŵ = 17.70 mm1
β = 103.941 (4)°T = 200 K
V = 3809.1 (8) Å3Plate, clear colorless
Z = 40.50 × 0.30 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
7708 independent reflections
Radiation source: sealed microfocus tube5239 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.080
ω scansθmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1312
Tmin = 0.12, Tmax = 0.27k = 3635
26670 measured reflectionsl = 914
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0015P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
7708 reflectionsΔρmax = 2.12 e Å3
502 parametersΔρmin = 1.97 e Å3
122 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000185 (12)
Crystal data top
[Pb4(C2H3O2)8(C6H8N2)2]V = 3809.1 (8) Å3
Mr = 1517.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1447 (14) ŵ = 17.70 mm1
b = 29.694 (4) ÅT = 200 K
c = 11.8597 (14) Å0.50 × 0.30 × 0.10 mm
β = 103.941 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
7708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5239 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.27Rint = 0.080
26670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042122 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 2.12 e Å3
7708 reflectionsΔρmin = 1.97 e Å3
502 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.96723 (3)0.43662 (2)0.39419 (3)0.02150 (11)
Pb21.09865 (4)0.31230 (2)0.58736 (3)0.02407 (11)
Pb30.98507 (3)0.18567 (2)0.40741 (3)0.02108 (11)
Pb41.07290 (3)0.05882 (2)0.60542 (3)0.02225 (11)
O10.7399 (6)0.4682 (2)0.3553 (6)0.0339 (18)
O20.7962 (6)0.4054 (2)0.4545 (6)0.0276 (17)
O31.0040 (7)0.4700 (2)0.5906 (6)0.0332 (18)
O41.0871 (7)0.4030 (2)0.5891 (6)0.0326 (18)
O51.0131 (6)0.3484 (2)0.3958 (6)0.0277 (17)
O61.0227 (7)0.2751 (2)0.3972 (6)0.0298 (17)
O71.3471 (7)0.3072 (3)0.6898 (6)0.051 (2)
O81.2763 (7)0.3133 (3)0.4997 (6)0.047 (2)
O91.1040 (7)0.2231 (2)0.6007 (6)0.037 (2)
O101.0341 (6)0.1551 (2)0.6181 (5)0.0277 (17)
O110.8067 (7)0.2193 (2)0.4613 (7)0.039 (2)
O120.7851 (6)0.1481 (2)0.4133 (6)0.0344 (18)
O131.0352 (6)0.0970 (2)0.4139 (6)0.0278 (17)
O140.9730 (7)0.0274 (2)0.4033 (6)0.0331 (19)
O151.3094 (7)0.0892 (2)0.6606 (6)0.039 (2)
O161.2513 (6)0.0321 (2)0.5413 (6)0.0328 (18)
N10.8445 (8)0.3134 (3)0.5734 (7)0.0268 (19)
H1A0.825 (8)0.3367 (16)0.525 (6)0.032*
H1B0.811 (8)0.2888 (15)0.538 (6)0.032*
N20.8160 (13)0.2434 (4)0.7296 (9)0.069 (4)
H2A0.796 (12)0.2323 (18)0.657 (3)0.082*
H2B0.818 (12)0.2193 (12)0.776 (5)0.082*
N30.8106 (9)0.0629 (3)0.5758 (7)0.034 (2)
H3A0.794 (9)0.0893 (12)0.543 (7)0.04*
H3B0.774 (8)0.0418 (19)0.527 (6)0.04*
N40.8000 (10)0.1348 (3)0.7272 (10)0.052 (3)
H4A0.827 (9)0.146 (3)0.798 (4)0.062*
H4B0.851 (8)0.142 (3)0.684 (7)0.062*
C10.8190 (9)0.3205 (3)0.6868 (8)0.026 (2)
C20.8133 (10)0.3672 (4)0.7200 (9)0.040 (3)
H20.82240.39080.66870.048*
C30.7946 (11)0.3763 (4)0.8272 (10)0.049 (3)
H30.78950.40670.85120.059*
C40.7832 (10)0.3414 (4)0.9007 (10)0.040 (3)
H40.77140.34870.97530.048*
C50.7879 (10)0.2975 (4)0.8724 (9)0.038 (3)
H50.77710.27450.92480.045*
C60.8096 (10)0.2864 (4)0.7613 (9)0.039 (3)
C80.7861 (9)0.0904 (4)0.7650 (9)0.033 (2)
C70.7876 (9)0.0548 (3)0.6853 (9)0.028 (2)
C120.7734 (10)0.0105 (4)0.7208 (9)0.035 (3)
H120.77720.01370.66950.042*
C110.7537 (11)0.0016 (4)0.8298 (9)0.043 (3)
H110.73850.02830.8510.051*
C100.7565 (10)0.0366 (4)0.9073 (10)0.038 (3)
H100.74810.03020.98350.046*
C90.7711 (9)0.0805 (4)0.8758 (9)0.031 (2)
H90.77090.10420.92970.037*
C130.7171 (9)0.4340 (3)0.4121 (8)0.021 (2)
C140.5894 (9)0.4294 (4)0.4293 (10)0.044 (3)
H14A0.57680.39860.45360.066*
H14B0.52920.43610.35620.066*
H14C0.57830.45060.48940.066*
C151.0659 (9)0.4370 (3)0.6435 (8)0.021 (2)
C161.1129 (12)0.4395 (4)0.7736 (9)0.052 (4)
H16A1.17380.46380.79370.077*
H16B1.15190.41080.80260.077*
H16C1.04370.44540.80920.077*
C170.9977 (8)0.3114 (3)0.3407 (7)0.019 (2)
C180.9578 (11)0.3100 (4)0.2115 (8)0.043 (3)
H18A1.03060.30750.17920.065*
H18B0.91260.33770.1830.065*
H18C0.90380.28390.18720.065*
C191.3646 (10)0.3104 (4)0.5901 (10)0.033 (3)
C201.4962 (10)0.3101 (4)0.5755 (10)0.053 (3)
H20A1.51380.33890.54230.08*
H20B1.50590.28550.52340.08*
H20C1.55380.30580.65140.08*
C211.0930 (9)0.1891 (4)0.6614 (8)0.024 (2)
C221.1513 (12)0.1894 (4)0.7902 (8)0.053 (4)
H22A1.20990.21450.80890.08*
H22B1.19510.16090.81250.08*
H22C1.08670.19290.83290.08*
C230.7422 (10)0.1834 (4)0.4410 (9)0.036 (3)
C240.6089 (10)0.1854 (4)0.4486 (10)0.045 (3)
H24A0.55710.19560.3740.068*
H24B0.60110.20660.50980.068*
H24C0.58210.15550.46690.068*
C250.9838 (9)0.0635 (3)0.3540 (8)0.024 (2)
C260.9410 (10)0.0680 (4)0.2243 (8)0.042 (3)
H26A0.92030.03810.18970.063*
H26B1.0070.08130.19360.063*
H26C0.86770.08730.20480.063*
C271.3316 (9)0.0598 (4)0.5943 (8)0.028 (3)
C281.4623 (9)0.0562 (4)0.5755 (10)0.045 (3)
H28A1.48510.08470.54490.068*
H28B1.46490.03190.520.068*
H28C1.52070.04950.64970.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0228 (2)0.0223 (2)0.0190 (2)0.00101 (17)0.00423 (15)0.00183 (17)
Pb20.0257 (2)0.0232 (2)0.0211 (2)0.00045 (18)0.00127 (16)0.00155 (19)
Pb30.0208 (2)0.0210 (2)0.02038 (19)0.00022 (17)0.00290 (15)0.00038 (18)
Pb40.0243 (2)0.0220 (2)0.0198 (2)0.00163 (17)0.00413 (16)0.00230 (17)
O10.030 (4)0.031 (4)0.045 (5)0.005 (4)0.018 (4)0.006 (4)
O20.024 (4)0.026 (4)0.031 (4)0.005 (3)0.004 (3)0.009 (3)
O30.042 (5)0.024 (4)0.030 (4)0.001 (4)0.000 (4)0.004 (3)
O40.050 (5)0.020 (4)0.024 (4)0.005 (4)0.002 (4)0.005 (3)
O50.039 (5)0.016 (4)0.024 (4)0.006 (3)0.001 (3)0.000 (3)
O60.038 (5)0.023 (4)0.026 (4)0.003 (3)0.004 (3)0.000 (3)
O70.037 (5)0.084 (7)0.029 (4)0.002 (5)0.001 (4)0.005 (5)
O80.030 (5)0.068 (6)0.038 (4)0.002 (4)0.003 (4)0.012 (4)
O90.046 (5)0.028 (4)0.033 (4)0.014 (4)0.001 (4)0.003 (4)
O100.041 (5)0.018 (4)0.023 (4)0.004 (3)0.005 (3)0.004 (3)
O110.038 (5)0.032 (5)0.054 (5)0.005 (4)0.022 (4)0.014 (4)
O120.030 (4)0.024 (4)0.051 (5)0.006 (3)0.014 (4)0.009 (4)
O130.036 (4)0.022 (4)0.031 (4)0.002 (3)0.017 (3)0.000 (3)
O140.049 (5)0.022 (4)0.028 (4)0.017 (4)0.009 (4)0.006 (3)
O150.041 (5)0.040 (5)0.043 (5)0.004 (4)0.022 (4)0.017 (4)
O160.028 (4)0.026 (4)0.043 (5)0.004 (3)0.004 (4)0.014 (4)
N10.033 (5)0.023 (5)0.025 (4)0.000 (4)0.008 (4)0.002 (4)
N20.095 (10)0.047 (5)0.069 (8)0.000 (5)0.031 (8)0.000 (5)
N30.047 (6)0.026 (5)0.031 (4)0.004 (5)0.016 (4)0.003 (4)
N40.062 (8)0.032 (5)0.066 (7)0.005 (4)0.023 (6)0.002 (5)
C10.021 (5)0.034 (5)0.020 (4)0.002 (4)0.001 (4)0.003 (3)
C20.045 (7)0.044 (5)0.031 (5)0.000 (5)0.009 (5)0.006 (4)
C30.055 (8)0.048 (6)0.046 (5)0.007 (5)0.016 (5)0.000 (4)
C40.028 (6)0.051 (5)0.040 (6)0.001 (5)0.005 (5)0.006 (4)
C50.026 (6)0.049 (5)0.035 (5)0.003 (5)0.001 (4)0.006 (4)
C60.038 (7)0.042 (5)0.037 (5)0.001 (4)0.007 (4)0.008 (4)
C80.023 (6)0.033 (5)0.041 (5)0.003 (4)0.006 (4)0.002 (4)
C70.022 (5)0.033 (4)0.027 (4)0.002 (4)0.003 (4)0.001 (3)
C120.036 (6)0.031 (5)0.037 (5)0.006 (4)0.007 (4)0.000 (4)
C110.045 (7)0.041 (6)0.044 (5)0.002 (5)0.016 (5)0.008 (4)
C100.031 (6)0.043 (5)0.041 (5)0.004 (5)0.010 (5)0.005 (4)
C90.019 (5)0.040 (5)0.031 (5)0.005 (4)0.002 (4)0.003 (4)
C130.022 (5)0.028 (6)0.016 (5)0.005 (5)0.009 (4)0.009 (5)
C140.026 (6)0.061 (9)0.045 (7)0.005 (6)0.010 (5)0.015 (7)
C150.029 (6)0.014 (5)0.019 (5)0.007 (5)0.004 (4)0.000 (5)
C160.064 (9)0.058 (9)0.027 (7)0.013 (7)0.001 (6)0.003 (6)
C170.018 (5)0.020 (5)0.019 (5)0.005 (4)0.003 (4)0.004 (5)
C180.064 (9)0.040 (7)0.024 (6)0.006 (7)0.006 (6)0.000 (6)
C190.024 (6)0.025 (6)0.048 (7)0.007 (5)0.005 (5)0.001 (6)
C200.035 (8)0.067 (9)0.055 (8)0.008 (7)0.005 (6)0.010 (8)
C210.025 (6)0.020 (6)0.027 (5)0.002 (5)0.005 (4)0.004 (5)
C220.065 (9)0.068 (9)0.022 (6)0.014 (8)0.001 (6)0.017 (7)
C230.030 (7)0.042 (8)0.033 (6)0.001 (6)0.006 (5)0.003 (6)
C240.025 (7)0.057 (8)0.056 (8)0.001 (6)0.015 (6)0.001 (7)
C250.026 (6)0.025 (6)0.021 (5)0.001 (5)0.005 (4)0.006 (5)
C260.037 (7)0.068 (9)0.016 (5)0.004 (6)0.004 (5)0.007 (6)
C270.023 (6)0.048 (8)0.013 (5)0.002 (5)0.003 (4)0.013 (5)
C280.025 (6)0.061 (8)0.053 (8)0.004 (6)0.014 (6)0.018 (7)
Geometric parameters (Å, º) top
Pb1—O22.380 (6)N4—H4A0.88 (2)
Pb1—O32.474 (7)N4—H4B0.88 (2)
Pb1—O42.576 (7)C1—C61.366 (13)
Pb1—O12.636 (7)C1—C21.445 (14)
Pb1—O52.667 (6)C2—C31.364 (14)
Pb1—O3i2.792 (7)C2—H20.95
Pb2—O82.448 (8)C3—C41.380 (14)
Pb2—O62.470 (7)C3—H30.95
Pb2—O52.485 (6)C4—C51.352 (14)
Pb2—O92.654 (7)C4—H40.95
Pb2—O42.696 (6)C5—C61.434 (14)
Pb2—O72.747 (8)C5—H50.95
Pb2—N12.797 (9)C8—C91.395 (14)
Pb3—O112.443 (7)C8—C71.421 (14)
Pb3—O122.509 (7)C7—C121.401 (13)
Pb3—O102.590 (6)C12—C111.388 (14)
Pb3—O92.604 (7)C12—H120.95
Pb3—O7ii2.675 (7)C11—C101.382 (14)
Pb3—O132.688 (6)C11—H110.95
Pb3—O62.696 (7)C10—C91.377 (14)
Pb4—O162.427 (7)C10—H100.95
Pb4—O132.482 (7)C9—H90.95
Pb4—O142.563 (7)C13—C141.492 (13)
Pb4—O14iii2.609 (7)C14—H14A0.98
Pb4—O152.713 (7)C14—H14B0.98
Pb4—O102.901 (6)C14—H14C0.98
Pb4—N32.862 (10)C15—C161.507 (13)
O1—C131.279 (11)C16—H16A0.98
O2—C131.239 (11)C16—H16B0.98
O3—C151.273 (11)C16—H16C0.98
O4—C151.252 (11)C17—C181.490 (12)
O5—C171.270 (10)C18—H18A0.98
O6—C171.263 (11)C18—H18B0.98
O7—C191.248 (12)C18—H18C0.98
O7—Pb3iv2.675 (7)C19—C201.517 (14)
O8—C191.272 (12)C20—H20A0.98
O9—C211.262 (11)C20—H20B0.98
O10—C211.246 (11)C20—H20C0.98
O11—C231.276 (12)C21—C221.509 (13)
O12—C231.230 (12)C22—H22A0.98
O13—C251.276 (11)C22—H22B0.98
O14—C251.240 (11)C22—H22C0.98
O14—Pb4iii2.609 (7)C23—C241.511 (14)
O15—C271.239 (12)C24—H24A0.98
O16—C271.266 (12)C24—H24B0.98
N1—C11.456 (11)C24—H24C0.98
N1—H1A0.89 (2)C25—C261.503 (13)
N1—H1B0.88 (2)C26—H26A0.98
N2—C61.336 (14)C26—H26B0.98
N2—H2A0.899 (19)C26—H26C0.98
N2—H2B0.898 (19)C27—C281.530 (13)
N3—C71.403 (12)C28—H28A0.98
N3—H3A0.87 (2)C28—H28B0.98
N3—H3B0.88 (2)C28—H28C0.98
N4—C81.415 (14)
O2—Pb1—O380.6 (2)C8—N4—H4A95 (7)
O2—Pb1—O481.9 (2)C8—N4—H4B124 (7)
O3—Pb1—O451.5 (2)H4A—N4—H4B110 (5)
O2—Pb1—O152.1 (2)C6—C1—C2121.3 (10)
O3—Pb1—O187.5 (2)C6—C1—N1123.5 (9)
O4—Pb1—O1124.3 (2)C2—C1—N1115.0 (9)
O2—Pb1—O577.4 (2)C3—C2—C1118.2 (10)
O3—Pb1—O5113.5 (2)C3—C2—H2120.9
O4—Pb1—O563.6 (2)C1—C2—H2120.9
O1—Pb1—O5121.7 (2)C2—C3—C4119.8 (11)
O8—Pb2—O675.6 (2)C2—C3—H3120.1
O8—Pb2—O577.2 (2)C4—C3—H3120.1
O6—Pb2—O552.2 (2)C5—C4—C3123.6 (11)
O8—Pb2—O991.6 (2)C5—C4—H4118.2
O6—Pb2—O966.8 (2)C3—C4—H4118.2
O5—Pb2—O9118.9 (2)C4—C5—C6118.4 (11)
O8—Pb2—O492.1 (2)C4—C5—H5120.8
O6—Pb2—O4116.5 (2)C6—C5—H5120.8
O5—Pb2—O464.4 (2)N2—C6—C1120.6 (11)
O9—Pb2—O4175.6 (2)N2—C6—C5120.7 (10)
O8—Pb2—O749.9 (2)C1—C6—C5118.7 (11)
O6—Pb2—O7117.8 (2)C9—C8—N4122.8 (10)
O5—Pb2—O7123.5 (2)C9—C8—C7119.6 (10)
O9—Pb2—O785.0 (2)N4—C8—C7117.6 (10)
O4—Pb2—O795.5 (2)C12—C7—N3119.9 (9)
O8—Pb2—N1152.3 (2)C12—C7—C8118.5 (10)
O6—Pb2—N180.3 (2)N3—C7—C8121.5 (9)
O5—Pb2—N177.3 (2)C11—C12—C7121.0 (10)
O9—Pb2—N191.3 (2)C11—C12—H12119.5
O4—Pb2—N186.5 (2)C7—C12—H12119.5
O7—Pb2—N1157.7 (2)C10—C11—C12119.5 (11)
O11—Pb3—O1252.5 (2)C10—C11—H11120.3
O11—Pb3—O1083.5 (2)C12—C11—H11120.3
O12—Pb3—O1078.4 (2)C9—C10—C11121.1 (11)
O11—Pb3—O982.5 (2)C9—C10—H10119.4
O12—Pb3—O9115.6 (2)C11—C10—H10119.4
O10—Pb3—O949.9 (2)C10—C9—C8120.2 (10)
O11—Pb3—O7ii84.6 (3)C10—C9—H9119.9
O12—Pb3—O7ii75.7 (2)C8—C9—H9119.9
O10—Pb3—O7ii153.7 (2)O2—C13—O1123.1 (9)
O9—Pb3—O7ii150.2 (2)O2—C13—C14119.4 (9)
O11—Pb3—O13124.7 (2)O1—C13—C14117.4 (9)
O12—Pb3—O1375.1 (2)C13—C14—H14A109.5
O10—Pb3—O1368.6 (2)C13—C14—H14B109.5
O9—Pb3—O13109.5 (2)H14A—C14—H14B109.5
O7ii—Pb3—O1399.9 (2)C13—C14—H14C109.5
O11—Pb3—O675.7 (2)H14A—C14—H14C109.5
O12—Pb3—O6126.0 (2)H14B—C14—H14C109.5
O10—Pb3—O6112.9 (2)O4—C15—O3120.9 (9)
O9—Pb3—O664.4 (2)O4—C15—C16120.2 (9)
O7ii—Pb3—O686.5 (2)O3—C15—C16118.8 (9)
O13—Pb3—O6158.8 (2)C15—C16—H16A109.5
O16—Pb4—O1380.4 (2)C15—C16—H16B109.5
O16—Pb4—O1478.0 (2)H16A—C16—H16B109.5
O13—Pb4—O1451.0 (2)C15—C16—H16C109.5
O16—Pb4—O14iii80.4 (2)H16A—C16—H16C109.5
O13—Pb4—O14iii115.1 (2)H16B—C16—H16C109.5
O14—Pb4—O14iii64.5 (3)O6—C17—O5118.7 (8)
O16—Pb4—O1550.4 (2)O6—C17—C18119.7 (9)
O13—Pb4—O1590.5 (2)O5—C17—C18121.5 (9)
O14—Pb4—O15121.6 (2)C17—C18—H18A109.5
O14iii—Pb4—O15120.4 (2)C17—C18—H18B109.5
O16—Pb4—N3149.9 (2)H18A—C18—H18B109.5
O13—Pb4—N385.7 (2)C17—C18—H18C109.5
O14—Pb4—N372.5 (2)H18A—C18—H18C109.5
O14iii—Pb4—N381.5 (2)H18B—C18—H18C109.5
O15—Pb4—N3156.9 (2)O7—C19—O8122.5 (10)
C13—O1—Pb185.9 (5)O7—C19—C20119.0 (10)
C13—O2—Pb198.9 (6)O8—C19—C20118.5 (10)
C15—O3—Pb195.9 (6)C19—C20—H20A109.5
C15—O4—Pb191.6 (6)C19—C20—H20B109.5
C15—O4—Pb2145.7 (6)H20A—C20—H20B109.5
Pb1—O4—Pb2113.3 (2)C19—C20—H20C109.5
C17—O5—Pb294.1 (5)H20A—C20—H20C109.5
C17—O5—Pb1147.7 (6)H20B—C20—H20C109.5
Pb2—O5—Pb1117.5 (2)O10—C21—O9121.7 (9)
C17—O6—Pb295.0 (5)O10—C21—C22118.5 (9)
C17—O6—Pb3147.9 (6)O9—C21—C22119.8 (9)
Pb2—O6—Pb3115.0 (3)C21—C22—H22A109.5
C19—O7—Pb3iv136.3 (7)C21—C22—H22B109.5
C19—O7—Pb287.0 (6)H22A—C22—H22B109.5
Pb3iv—O7—Pb2134.9 (3)C21—C22—H22C109.5
C19—O8—Pb2100.5 (6)H22A—C22—H22C109.5
C21—O9—Pb393.6 (6)H22B—C22—H22C109.5
C21—O9—Pb2145.9 (6)O12—C23—O11121.8 (10)
Pb3—O9—Pb2112.0 (3)O12—C23—C24120.0 (11)
C21—O10—Pb394.7 (6)O11—C23—C24118.2 (10)
C23—O11—Pb393.8 (6)C23—C24—H24A109.5
C23—O12—Pb391.8 (6)C23—C24—H24B109.5
C25—O13—Pb496.2 (6)H24A—C24—H24B109.5
C25—O13—Pb3133.3 (6)C23—C24—H24C109.5
Pb4—O13—Pb3117.5 (3)H24A—C24—H24C109.5
C25—O14—Pb493.3 (6)H24B—C24—H24C109.5
C25—O14—Pb4iii150.4 (6)O14—C25—O13119.5 (9)
Pb4—O14—Pb4iii115.5 (3)O14—C25—C26121.0 (9)
C27—O15—Pb486.8 (6)O13—C25—C26119.4 (9)
C27—O16—Pb499.5 (6)C25—C26—H26A109.5
C1—N1—Pb2111.6 (6)C25—C26—H26B109.5
C1—N1—H1A114 (6)H26A—C26—H26B109.5
Pb2—N1—H1A98 (6)C25—C26—H26C109.5
C1—N1—H1B114 (6)H26A—C26—H26C109.5
Pb2—N1—H1B109 (6)H26B—C26—H26C109.5
H1A—N1—H1B109 (4)O15—C27—O16123.2 (9)
C6—N2—H2A127 (4)O15—C27—C28119.0 (10)
C6—N2—H2B126 (4)O16—C27—C28117.8 (9)
H2A—N2—H2B105 (4)C27—C28—H28A109.5
C7—N3—Pb4106.7 (6)C27—C28—H28B109.5
C7—N3—H3A119 (6)H28A—C28—H28B109.5
Pb4—N3—H3A101 (7)C27—C28—H28C109.5
C7—N3—H3B109 (6)H28A—C28—H28C109.5
Pb4—N3—H3B110 (7)H28B—C28—H28C109.5
H3A—N3—H3B110 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.89 (2)2.20 (3)3.061 (11)163 (7)
N1—H1B···O110.88 (2)2.25 (4)3.079 (11)156 (8)
N2—H2A···O110.90 (2)2.38 (5)3.238 (13)159 (11)
N2—H2B···N40.90 (2)2.57 (5)3.229 (14)131 (5)
N3—H3A···O120.87 (2)2.32 (4)3.151 (11)160 (8)
N3—H3B···O16iii0.88 (2)2.33 (4)3.145 (11)154 (7)
N4—H4B···O100.88 (2)2.38 (4)3.236 (12)163 (10)
C2—H2···O20.952.523.309 (13)140
C12—H12···O16iii0.952.53.305 (13)142
C9—H9···O8v0.952.583.474 (13)156
C16—H16B···O12iv0.982.463.413 (13)165
C18—H18B···O15ii0.982.443.403 (14)167
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
(II) Poly[acetato-κ2O,O')(µ3-acetato-κ4O,O':O:O')(4-chlorobenzene-1,2-diamine-κN)lead(II)] top
Crystal data top
[Pb(C2H3O2)2(C6H7ClN2)]Z = 2
Mr = 467.86F(000) = 436
Triclinic, P1Dx = 2.374 Mg m3
a = 7.3623 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6177 (10) ÅCell parameters from 120 reflections
c = 13.1413 (17) Åθ = 3.6–25.7°
α = 89.762 (4)°µ = 13.10 mm1
β = 76.405 (4)°T = 200 K
γ = 66.691 (4)°Needle, clear orange
V = 654.63 (15) Å30.30 × 0.10 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2572 independent reflections
Radiation source: sealed microfocus tube2262 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.057
ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.11, Tmax = 0.35k = 99
6572 measured reflectionsl = 1516
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 1.04Δρmax = 3.38 e Å3
2572 reflectionsΔρmin = 3.08 e Å3
178 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008)
6 restraintsExtinction coefficient: 0.0042 (8)
Crystal data top
[Pb(C2H3O2)2(C6H7ClN2)]γ = 66.691 (4)°
Mr = 467.86V = 654.63 (15) Å3
Triclinic, P1Z = 2
a = 7.3623 (10) ÅMo Kα radiation
b = 7.6177 (10) ŵ = 13.10 mm1
c = 13.1413 (17) ÅT = 200 K
α = 89.762 (4)°0.30 × 0.10 × 0.10 mm
β = 76.405 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
2572 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2262 reflections with I > 2σ(I)
Tmin = 0.11, Tmax = 0.35Rint = 0.057
6572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 3.38 e Å3
2572 reflectionsΔρmin = 3.08 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.67144 (4)0.16792 (4)0.53160 (2)0.01693 (17)
Cl10.2021 (4)0.3992 (4)1.0948 (2)0.0413 (7)
O10.8134 (9)0.2240 (10)0.3510 (5)0.0263 (15)
O20.4752 (10)0.3657 (10)0.3929 (6)0.0342 (17)
O30.6797 (9)0.1072 (9)0.4242 (5)0.0239 (15)
O40.9660 (9)0.1498 (9)0.4639 (5)0.0246 (15)
N10.7013 (12)0.0788 (11)0.6912 (6)0.0223 (17)
H1A0.652 (11)0.160 (9)0.675 (8)0.027*
H1B0.827 (6)0.145 (10)0.696 (8)0.027*
N20.8707 (15)0.0961 (18)0.8079 (9)0.057 (3)
H2A0.951 (13)0.031 (17)0.749 (5)0.068*
H2B0.933 (14)0.138 (18)0.844 (8)0.068*
C10.5832 (14)0.0307 (12)0.7902 (7)0.0204 (19)
C20.6734 (14)0.1165 (13)0.8450 (7)0.022 (2)
C30.5512 (14)0.2296 (14)0.9401 (8)0.027 (2)
H30.6080.28780.98030.033*
C40.3504 (14)0.2563 (14)0.9749 (7)0.028 (2)
C50.2584 (14)0.1756 (15)0.9208 (8)0.030 (2)
H50.11890.1960.9460.036*
C60.3793 (15)0.0641 (14)0.8284 (8)0.028 (2)
H60.32020.00730.7890.034*
C70.6442 (13)0.3293 (14)0.3291 (7)0.023 (2)
C80.6519 (17)0.4058 (15)0.2235 (8)0.036 (3)
H8A0.5420.39830.19620.054*
H8B0.78430.32910.17480.054*
H8C0.63440.53990.23060.054*
C90.8652 (12)0.2138 (13)0.4197 (7)0.0166 (18)
C100.9620 (17)0.4105 (15)0.3656 (9)0.040 (3)
H10A0.94090.50060.41560.06*
H10B1.10890.44610.33750.06*
H10C0.90030.4150.30770.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0120 (2)0.0172 (2)0.0188 (2)0.00311 (14)0.00369 (13)0.00168 (14)
Cl10.0378 (15)0.0373 (15)0.0300 (14)0.0009 (12)0.0004 (11)0.0101 (12)
O10.016 (3)0.037 (4)0.023 (3)0.006 (3)0.005 (3)0.003 (3)
O20.019 (3)0.035 (4)0.043 (4)0.004 (3)0.010 (3)0.006 (3)
O30.013 (3)0.023 (4)0.032 (4)0.004 (3)0.007 (3)0.003 (3)
O40.017 (3)0.020 (3)0.037 (4)0.005 (3)0.012 (3)0.004 (3)
N10.019 (4)0.022 (4)0.020 (4)0.003 (3)0.003 (3)0.002 (3)
N20.030 (5)0.074 (8)0.059 (7)0.021 (5)0.005 (5)0.031 (6)
C10.023 (5)0.015 (5)0.019 (5)0.004 (4)0.005 (4)0.005 (4)
C20.027 (5)0.020 (5)0.024 (5)0.015 (4)0.004 (4)0.001 (4)
C30.029 (5)0.023 (5)0.029 (5)0.009 (4)0.011 (4)0.001 (4)
C40.027 (5)0.020 (5)0.017 (5)0.006 (4)0.001 (4)0.005 (4)
C50.021 (5)0.035 (6)0.027 (5)0.008 (4)0.001 (4)0.004 (5)
C60.030 (5)0.028 (5)0.032 (5)0.013 (4)0.015 (4)0.006 (4)
C70.016 (4)0.022 (5)0.025 (5)0.000 (4)0.008 (4)0.008 (4)
C80.046 (6)0.032 (6)0.041 (6)0.022 (5)0.022 (5)0.016 (5)
C90.010 (4)0.021 (5)0.017 (4)0.008 (3)0.005 (3)0.004 (4)
C100.036 (6)0.031 (6)0.047 (7)0.003 (5)0.016 (5)0.014 (6)
Geometric parameters (Å, º) top
Pb1—O12.467 (6)N2—H2B0.87 (2)
Pb1—O32.504 (6)C1—C61.383 (13)
Pb1—O42.512 (6)C1—C21.400 (13)
Pb1—O4i2.632 (6)C2—C31.407 (13)
Pb1—O22.678 (7)C3—C41.372 (13)
Pb1—O3ii2.734 (6)C3—H30.95
Pb1—N12.800 (8)C4—C51.379 (14)
Cl1—C41.767 (9)C5—C61.374 (13)
O1—C71.286 (10)C5—H50.95
O2—C71.252 (12)C6—H60.95
O3—C91.270 (10)C7—C81.500 (14)
O3—Pb1ii2.734 (6)C8—H8A0.98
O4—C91.272 (10)C8—H8B0.98
O4—Pb1i2.632 (6)C8—H8C0.98
N1—C11.430 (11)C9—C101.478 (13)
N1—H1A0.88 (2)C10—H10A0.98
N1—H1B0.88 (2)C10—H10B0.98
N2—C21.364 (13)C10—H10C0.98
N2—H2A0.87 (2)
O1—Pb1—O377.8 (2)H2A—N2—H2B112 (5)
O1—Pb1—O477.8 (2)C6—C1—C2119.8 (8)
O3—Pb1—O451.77 (19)C6—C1—N1121.4 (8)
O1—Pb1—O4i76.6 (2)C2—C1—N1118.7 (8)
O3—Pb1—O4i114.49 (19)N2—C2—C1122.1 (9)
O4—Pb1—O4i64.3 (2)N2—C2—C3120.4 (8)
O1—Pb1—O250.8 (2)C1—C2—C3117.5 (8)
O3—Pb1—O281.2 (2)C4—C3—C2120.2 (9)
O4—Pb1—O2117.4 (2)C4—C3—H3119.9
O4i—Pb1—O2121.3 (2)C2—C3—H3119.9
O1—Pb1—O3ii119.4 (2)C3—C4—C5123.0 (9)
O3—Pb1—O3ii64.1 (2)C3—C4—Cl1118.9 (8)
O4—Pb1—O3ii107.7 (2)C5—C4—Cl1118.2 (8)
O4i—Pb1—O3ii161.4 (2)C6—C5—C4116.4 (9)
O2—Pb1—O3ii77.2 (2)C6—C5—H5121.8
O1—Pb1—N1148.3 (2)C4—C5—H5121.8
O3—Pb1—N184.2 (2)C5—C6—C1123.1 (9)
O4—Pb1—N170.5 (2)C5—C6—H6118.4
O4i—Pb1—N187.7 (2)C1—C6—H6118.4
O2—Pb1—N1150.8 (2)O2—C7—O1121.5 (9)
O3ii—Pb1—N173.7 (2)O2—C7—C8119.9 (8)
C7—O1—Pb198.4 (6)O1—C7—C8118.6 (9)
C7—O2—Pb189.4 (5)C7—C8—H8A109.5
C9—O3—Pb194.8 (5)C7—C8—H8B109.5
C9—O3—Pb1ii133.5 (6)H8A—C8—H8B109.5
Pb1—O3—Pb1ii115.9 (2)C7—C8—H8C109.5
C9—O4—Pb194.4 (5)H8A—C8—H8C109.5
C9—O4—Pb1i146.7 (5)H8B—C8—H8C109.5
Pb1—O4—Pb1i115.7 (2)O3—C9—O4119.0 (8)
C1—N1—Pb1109.3 (5)O3—C9—C10120.6 (8)
C1—N1—H1A111 (6)O4—C9—C10120.3 (8)
Pb1—N1—H1A105 (6)C9—C10—H10A109.5
C1—N1—H1B108 (6)C9—C10—H10B109.5
Pb1—N1—H1B114 (7)H10A—C10—H10B109.5
H1A—N1—H1B108 (5)C9—C10—H10C109.5
C2—N2—H2A124 (7)H10A—C10—H10C109.5
C2—N2—H2B123 (7)H10B—C10—H10C109.5
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.88 (2)2.38 (3)3.261 (11)172 (9)
N1—H1B···O1i0.88 (2)2.39 (5)3.201 (10)153 (8)
N2—H2A···O1i0.87 (2)2.19 (6)2.998 (11)155 (13)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
(III) Poly[(acetato-κ2O,O')(µ3-acetato-κ4O,O':O:O')(3,4-diaminobenzonitrile-κN)lead(II)] top
Crystal data top
[Pb(C2H3O2)2(C7H7N3)]Z = 2
Mr = 458.43F(000) = 428
Triclinic, P1Dx = 2.260 Mg m3
a = 7.3724 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6349 (8) ÅCell parameters from 117 reflections
c = 13.4069 (15) Åθ = 3.4–27.1°
α = 88.839 (3)°µ = 12.54 mm1
β = 78.330 (3)°T = 200 K
γ = 66.035 (3)°Plate, clear colourless
V = 673.71 (13) Å30.30 × 0.20 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2819 independent reflections
Radiation source: sealed microfocus tube2498 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.053
ω scansθmax = 27.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.12, Tmax = 0.57k = 99
8223 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0965P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2819 reflectionsΔρmax = 3.41 e Å3
187 parametersΔρmin = 2.68 e Å3
96 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (14)
Crystal data top
[Pb(C2H3O2)2(C7H7N3)]γ = 66.035 (3)°
Mr = 458.43V = 673.71 (13) Å3
Triclinic, P1Z = 2
a = 7.3724 (8) ÅMo Kα radiation
b = 7.6349 (8) ŵ = 12.54 mm1
c = 13.4069 (15) ÅT = 200 K
α = 88.839 (3)°0.30 × 0.20 × 0.05 mm
β = 78.330 (3)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
2819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2498 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.57Rint = 0.053
8223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04196 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 3.41 e Å3
2819 reflectionsΔρmin = 2.68 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.67380 (5)0.66477 (5)0.53022 (2)0.0203 (2)
N10.7227 (14)0.4007 (13)0.6920 (7)0.0275 (19)
H1A0.670 (16)0.320 (12)0.682 (11)0.041*
H1B0.845 (8)0.333 (14)0.702 (10)0.041*
N20.8921 (17)0.592 (2)0.8005 (10)0.059 (4)
H2A0.97 (2)0.54 (2)0.742 (7)0.088*
H2B0.94 (2)0.67 (2)0.823 (12)0.088*
C10.6114 (17)0.5081 (16)0.7846 (8)0.027 (2)
C20.6936 (17)0.6094 (15)0.8374 (8)0.028 (2)
C30.5729 (17)0.7188 (17)0.9252 (9)0.036 (3)
H30.62840.78020.96350.043*
C40.3739 (18)0.7430 (18)0.9601 (9)0.035 (2)
C50.2911 (18)0.6475 (18)0.9083 (9)0.038 (3)
H50.1560.65960.93290.046*
C60.4078 (17)0.5367 (16)0.8218 (9)0.032 (2)
H60.34960.4760.78480.038*
C70.251 (2)0.870 (2)1.0495 (9)0.044 (3)
N30.1570 (19)0.9743 (18)1.1197 (10)0.057 (3)
O10.6745 (10)0.3933 (10)0.4281 (6)0.0253 (15)
O20.9632 (11)0.3531 (12)0.4658 (6)0.0303 (17)
C80.8580 (15)0.2890 (15)0.4258 (8)0.0216 (19)
C90.9546 (18)0.0876 (19)0.3768 (11)0.041 (3)
H9A1.10090.04960.35290.062*
H9B0.89420.08260.31880.062*
H9C0.93150.00050.42690.062*
O30.8051 (11)0.7257 (11)0.3578 (6)0.0280 (16)
O40.4720 (12)0.8727 (14)0.3943 (7)0.042 (2)
C100.6369 (18)0.8350 (18)0.3345 (9)0.032 (2)
C110.642 (2)0.916 (2)0.2316 (10)0.047 (3)
H11A0.65771.03670.23530.07*
H11B0.51440.93980.21040.07*
H11C0.7560.82380.18180.07*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0163 (3)0.0203 (3)0.0214 (3)0.00385 (19)0.00553 (16)0.00232 (16)
N10.028 (4)0.015 (4)0.030 (4)0.001 (4)0.002 (3)0.004 (3)
N20.040 (5)0.073 (9)0.057 (7)0.024 (5)0.005 (5)0.034 (6)
C10.030 (4)0.021 (5)0.022 (4)0.003 (4)0.004 (3)0.001 (3)
C20.032 (4)0.020 (5)0.027 (4)0.002 (4)0.012 (3)0.004 (3)
C30.036 (5)0.033 (6)0.033 (5)0.006 (4)0.009 (4)0.004 (4)
C40.034 (5)0.029 (6)0.028 (5)0.001 (4)0.006 (4)0.001 (4)
C50.033 (5)0.041 (6)0.029 (5)0.006 (5)0.001 (4)0.003 (4)
C60.033 (4)0.023 (5)0.032 (5)0.007 (4)0.001 (3)0.003 (4)
C70.044 (7)0.051 (9)0.029 (6)0.013 (7)0.002 (5)0.011 (6)
N30.062 (8)0.050 (8)0.047 (7)0.014 (7)0.002 (6)0.016 (6)
O10.017 (3)0.013 (3)0.042 (4)0.000 (3)0.013 (3)0.002 (3)
O20.017 (3)0.034 (5)0.036 (4)0.006 (3)0.006 (3)0.011 (3)
C80.021 (4)0.020 (4)0.022 (4)0.006 (3)0.007 (3)0.005 (3)
C90.027 (5)0.028 (5)0.063 (8)0.002 (4)0.014 (5)0.019 (5)
O30.023 (3)0.028 (4)0.031 (4)0.008 (3)0.007 (3)0.002 (3)
O40.023 (3)0.048 (6)0.043 (4)0.001 (4)0.012 (3)0.011 (4)
C100.029 (4)0.036 (6)0.033 (5)0.014 (4)0.012 (3)0.004 (4)
C110.060 (8)0.042 (8)0.043 (5)0.021 (6)0.022 (5)0.011 (5)
Geometric parameters (Å, º) top
Pb1—O32.431 (7)C4—C71.449 (17)
Pb1—O22.485 (8)C5—C61.358 (15)
Pb1—O12.505 (7)C5—H50.95
Pb1—O2i2.635 (7)C6—H60.95
Pb1—O42.667 (8)C7—N31.146 (16)
Pb1—O1ii2.727 (7)O1—C81.255 (12)
Pb1—N12.906 (10)O1—Pb1ii2.727 (7)
N1—C11.403 (13)O2—C81.271 (12)
N1—H1A0.88 (2)O2—Pb1i2.635 (7)
N1—H1B0.87 (2)C8—C91.505 (15)
N2—C21.398 (15)C9—H9A0.98
N2—H2A0.88 (2)C9—H9B0.98
N2—H2B0.88 (2)C9—H9C0.98
C1—C61.409 (15)O3—C101.279 (13)
C1—C21.430 (15)O4—C101.239 (14)
C2—C31.373 (15)C10—C111.500 (18)
C3—C41.382 (17)C11—H11A0.98
C3—H30.95C11—H11B0.98
C4—C51.393 (17)C11—H11C0.98
O3—Pb1—O277.0 (3)C4—C3—H3118.7
O3—Pb1—O178.6 (3)C3—C4—C5120.0 (11)
O2—Pb1—O152.0 (2)C3—C4—C7119.9 (12)
O3—Pb1—O2i75.3 (2)C5—C4—C7120.0 (11)
O2—Pb1—O2i64.3 (3)C6—C5—C4118.5 (11)
O1—Pb1—O2i114.8 (2)C6—C5—H5120.7
O3—Pb1—O450.8 (2)C4—C5—H5120.7
O2—Pb1—O4117.2 (3)C5—C6—C1122.9 (11)
O1—Pb1—O482.3 (3)C5—C6—H6118.6
O2i—Pb1—O4119.7 (3)C1—C6—H6118.6
O3—Pb1—O1ii119.9 (2)N3—C7—C4177.7 (16)
O2—Pb1—O1ii108.4 (2)C8—O1—Pb193.8 (6)
O1—Pb1—O1ii63.9 (3)C8—O1—Pb1ii134.3 (6)
O2i—Pb1—O1ii162.4 (3)Pb1—O1—Pb1ii116.1 (3)
O4—Pb1—O1ii77.9 (3)C8—O2—Pb194.3 (6)
O3—Pb1—N1147.4 (2)C8—O2—Pb1i147.4 (7)
O2—Pb1—N170.6 (3)Pb1—O2—Pb1i115.7 (3)
O1—Pb1—N183.9 (3)O1—C8—O2119.8 (9)
O2i—Pb1—N187.6 (3)O1—C8—C9120.6 (9)
O4—Pb1—N1152.5 (3)O2—C8—C9119.6 (9)
O1ii—Pb1—N174.7 (2)C8—C9—H9A109.5
C1—N1—Pb1107.9 (6)C8—C9—H9B109.5
C1—N1—H1A108 (9)H9A—C9—H9B109.5
Pb1—N1—H1A109 (9)C8—C9—H9C109.5
C1—N1—H1B106 (9)H9A—C9—H9C109.5
Pb1—N1—H1B119 (9)H9B—C9—H9C109.5
H1A—N1—H1B107 (5)C10—O3—Pb198.9 (7)
C2—N2—H2A128 (10)C10—O4—Pb188.8 (7)
C2—N2—H2B123 (10)O4—C10—O3121.5 (11)
H2A—N2—H2B106 (5)O4—C10—C11119.8 (11)
N1—C1—C6120.8 (10)O3—C10—C11118.6 (11)
N1—C1—C2120.7 (10)C10—C11—H11A109.5
C6—C1—C2118.1 (10)C10—C11—H11B109.5
C3—C2—N2122.3 (11)H11A—C11—H11B109.5
C3—C2—C1117.7 (10)C10—C11—H11C109.5
N2—C2—C1120.0 (10)H11A—C11—H11C109.5
C2—C3—C4122.7 (11)H11B—C11—H11C109.5
C2—C3—H3118.7
Pb1—N1—C1—C691.4 (11)C2—C1—C6—C53.7 (18)
Pb1—N1—C1—C281.2 (10)Pb1—O1—C8—O23.0 (10)
N1—C1—C2—C3177.1 (10)Pb1ii—O1—C8—O2135.8 (8)
C6—C1—C2—C34.2 (16)Pb1—O1—C8—C9176.5 (10)
N1—C1—C2—N24.3 (17)Pb1ii—O1—C8—C943.6 (15)
C6—C1—C2—N2177.1 (12)Pb1—O2—C8—O13.0 (10)
N2—C2—C3—C4177.4 (13)Pb1i—O2—C8—O1154.9 (9)
C1—C2—C3—C44.0 (18)Pb1—O2—C8—C9176.4 (10)
C2—C3—C4—C53.0 (19)Pb1i—O2—C8—C926 (2)
C2—C3—C4—C7175.9 (12)Pb1—O4—C10—O32.1 (11)
C3—C4—C5—C62.2 (19)Pb1—O4—C10—C11178.9 (11)
C7—C4—C5—C6176.7 (12)Pb1—O3—C10—O42.3 (13)
C4—C5—C6—C12.7 (19)Pb1—O3—C10—C11178.7 (10)
N1—C1—C6—C5176.6 (11)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.88 (2)2.46 (4)3.310 (14)164 (12)
N1—H1B···O3i0.87 (2)2.40 (8)3.139 (12)143 (11)
N2—H2A···O3i0.88 (2)2.25 (9)3.044 (14)150 (16)
N2—H2B···N3iii0.88 (2)2.62 (11)3.355 (18)142 (14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2.
Selected bond lengths (Å) for (I) top
Pb1—O22.380 (6)Pb3—O122.509 (7)
Pb1—O32.474 (7)Pb3—O102.590 (6)
Pb1—O42.576 (7)Pb3—O92.604 (7)
Pb1—O12.636 (7)Pb3—O7ii2.675 (7)
Pb1—O52.667 (6)Pb3—O132.688 (6)
Pb1—O3i2.792 (7)Pb3—O62.696 (7)
Pb2—O82.448 (8)Pb4—O162.427 (7)
Pb2—O62.470 (7)Pb4—O132.482 (7)
Pb2—O52.485 (6)Pb4—O142.563 (7)
Pb2—O92.654 (7)Pb4—O14iii2.609 (7)
Pb2—O42.696 (6)Pb4—O152.713 (7)
Pb2—O72.747 (8)Pb4—O102.901 (6)
Pb2—N12.797 (9)Pb4—N32.862 (10)
Pb3—O112.443 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y, z+1.
Selected bond lengths (Å) for (II) top
Pb1—O12.467 (6)Pb1—O22.678 (7)
Pb1—O32.504 (6)Pb1—O3ii2.734 (6)
Pb1—O42.512 (6)Pb1—N12.800 (8)
Pb1—O4i2.632 (6)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Selected bond lengths (Å) for (III) top
Pb1—O32.431 (7)Pb1—O42.667 (8)
Pb1—O22.485 (8)Pb1—O1ii2.727 (7)
Pb1—O12.505 (7)Pb1—N12.906 (10)
Pb1—O2i2.635 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.89 (2)2.20 (3)3.061 (11)163.(7)
N1—H1B···O110.88 (2)2.25 (4)3.079 (11)156.(8)
N2—H2A···O110.899 (19)2.38 (5)3.238 (13)159.(11)
N2—H2B···N40.898 (19)2.57 (5)3.229 (14)131.(5)
N3—H3A···O120.87 (2)2.32 (4)3.151 (11)160.(8)
N3—H3B···O16iii0.88 (2)2.33 (4)3.145 (11)154.(7)
N4—H4B···O100.88 (2)2.38 (4)3.236 (12)163.(10)
Symmetry code: (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.88 (2)2.38 (3)3.261 (11)172.(9)
N1—H1B···O1i0.88 (2)2.39 (5)3.201 (10)153.(8)
N2—H2A···O1i0.87 (2)2.19 (6)2.998 (11)155.(13)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.88 (2)2.46 (4)3.310 (14)164.(12)
N1—H1B···O3i0.87 (2)2.40 (8)3.139 (12)143.(11)
N2—H2A···O3i0.88 (2)2.25 (9)3.044 (14)150.(16)
N2—H2B···N3iii0.88 (2)2.62 (11)3.355 (18)142.(14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Pb4(C2H3O2)8(C6H8N2)2][Pb(C2H3O2)2(C6H7ClN2)][Pb(C2H3O2)2(C7H7N3)]
Mr1517.40467.86458.43
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Triclinic, P1
Temperature (K)200200200
a, b, c (Å)11.1447 (14), 29.694 (4), 11.8597 (14)7.3623 (10), 7.6177 (10), 13.1413 (17)7.3724 (8), 7.6349 (8), 13.4069 (15)
α, β, γ (°)90, 103.941 (4), 9089.762 (4), 76.405 (4), 66.691 (4)88.839 (3), 78.330 (3), 66.035 (3)
V3)3809.1 (8)654.63 (15)673.71 (13)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)17.7013.1012.54
Crystal size (mm)0.50 × 0.30 × 0.100.30 × 0.10 × 0.100.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART X2S benchtopBruker SMART X2S benchtopBruker SMART X2S benchtop
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Multi-scan
(SADABS; Bruker, 2013)
Multi-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.12, 0.270.11, 0.350.12, 0.57
No. of measured, independent and
observed [I > 2σ(I)] reflections
26670, 7708, 5239 6572, 2572, 2262 8223, 2819, 2498
Rint0.0800.0570.053
(sin θ/λ)max1)0.6240.6250.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 0.96 0.038, 0.100, 1.04 0.041, 0.145, 1.14
No. of reflections770825722819
No. of parameters502178187
No. of restraints122696
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.12, 1.973.38, 3.083.41, 2.68

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J., Yang, J. & An, X. (2009). Acta Cryst. E65, m709–m710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDevereux, M., van Severen, M.-C., Parisel, O., Piquemal, J.-P. & Gresh, N. (2011). J. Chem. Theory Comput. 7, 138–147.  Web of Science CrossRef CAS Google Scholar
First citationDey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Acta Cryst. B70, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEsteban-Gómez, D., Platas-Iglesias, C., Enriquez-Pérez, T. & Avecilla, F. (2006). Inorg. Chem. 45, 5407–5416.  PubMed Google Scholar
First citationFarha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166–1175.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForeman, M. R. S. J., Plater, M. J. & Skakle, J. M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897–1903.  Web of Science CSD CrossRef Google Scholar
First citationGeiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247–m248.  CSD CrossRef IUCr Journals Google Scholar
First citationImran, M., Mix, A., Neumann, B., Stammler, H.-G., Monkowius, U., Gründlinger, P. & Mitzel, N. W. (2014). Dalton Trans. doi: 10.1039/c4dt01406e  Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLyczko, K. & Bak, J. (2008). Acta Cryst. E64, m1341–m1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohammadnezhad, G., Ghanbarpour, A. R., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorsali, A. (2004). Z. Naturforsch. Teil B, 59, 1039–1044.  CAS Google Scholar
First citationMorsali, A., Mahjoub, A. R., Soltanian, M. J. & Pour, P. E. (2005). Z. Naturforsch. Teil B, 60, 300–304.  CAS Google Scholar
First citationPark, H. & Barbier, J. (2001). Acta Cryst. E57, i82–i84.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. & Liebau, F. (2007). Acta Cryst. B63, 216–228.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYilmaz, V. T., Hamamci, S., Andac, O. & Guven, K. (2003). Z. Anorg. Allg. Chem. 629, 172–176.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds