metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m397-m398

Crystal structure of bis­­[1,3,4,5-tetra­methyl-1H-imidazole-2(3H)-thione-κS]chlorido­copper(I)

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 3 November 2014; accepted 6 November 2014; online 15 November 2014)

The mol­ecular structure of the title compound, [CuCl(C7H12N2S)2], shows a slightly distorted trigonal–planar coordination geometry of the Cu atom. The Cu—Cl bond measures 2.2287 (9) Å, and the two Cu—S bonds are significantly different from each other, with values of 2.2270 (10) and 2.2662 (10) Å. Also, the S—Cu—Cl angles differ, with values of 113.80 (4) and 124.42 (4)°, while the S—Cu—S angle is 121.51 (4)°. The two imidazole rings are almost parallel, making a dihedral angle of 2.1 (2)°. In the crystal, the shortest C—H⋯Cl interactions stabilize a three-dimensional network with molecules linked into centrosymmetric dimers that are stacked along the b-axis direction.

1. Related literature

For structures of related Cu complexes, see: Devillanova et al. (1980[Devillanova, F. A., Verani, G., Battaglia, L. P. & Bonamartini Corradi, A. (1980). Transition Met. Chem. 5, 362-364.]); Kimani et al. (2011[Kimani, M. M., Bayse, C. A. & Brumaghim, J. L. (2011). Dalton Trans. 40, 3711-3723.]). For background to effective anti-oxidants, see: Bhabak et al. (2010[Bhabak, K. P. & Mugesh, G. (2010). Chem. Eur. J. 16, 1175-1185.]); Yamashita & Yamashita (2010[Yamashita, Y. & Yamashita, M. (2010). J. Biol. Chem. 285, 18134-18138.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CuCl(C7H12N2S)2]

  • Mr = 411.48

  • Monoclinic, P 21 /n

  • a = 9.4738 (14) Å

  • b = 13.662 (2) Å

  • c = 14.119 (2) Å

  • β = 98.314 (3)°

  • V = 1808.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.11 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.845

  • 17386 measured reflections

  • 4304 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.099

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.091

  • S = 0.85

  • 4304 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯Cl1i 0.98 2.75 3.717 (4) 170
C11—H11A⋯Cl1ii 0.98 2.76 3.721 (3) 165
C14—H14B⋯Cl1iii 0.98 2.80 3.782 (4) 176
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

We are interested in the chemistry of N,N-dimethylimidazole-thione derivatives due to their ability to act as effective antioxidants (Bhabak et al., 2010; Yamashita et al., 2010). Here we report the synthesis of a copper(I) chloride complex with 1,3,4,5-tetra-methylimidazole-2-thione ligands.

The title compound shows the same trans configuration as the bis-N,N'-dimethylimidazole-thione-Cu(I) compound (Kimani et al., 2011) or bis-N,N'-dimethylimidazolidine-thione-CuCl (Devillanova et al., 1980) whereas the cis configuration is also known for bis-N,N'-dimethylimidazole-thione-CuX (X = Cl, Br, I) (Kimani et al., 2011). In contrast to all the reported complexes in the title compound both Cu and Cl atoms lie on general positions and the two Cu—S bond lengths differ strongly with Cu–S1 2.2662 (10) and Cu–S2 2.2270 (10) Å. Also the S—Cu—Cl angles differ with 113.80 (4)° and 124.41 (4)°, while the S—Cu—S angle is 121.51 (4)°.

The intramolecular hydrogen bonds between the chlorine atom and hydrogen atoms of the methyl group amount to 4.838 (H2b—Cl) and 4.911 Å(H9a—Cl).

Related literature top

For structures of related Cu complexes, see: Devillanova et al. (1980); Kimani et al. (2011). For background to effective anti-oxidants, see: Bhabak et al. (2010); Yamashita et al. (2010)

Experimental top

To a solution of 1,3,4,5-tetra-methylimidazoline-2-thione (0.390 mg, 2.75 mmol) in acetonitrile (50 ml) CuCl2 (0.168 mg, 1.25 mmol) was added and the mixture was stirred at room temperature for 24 h. Afterwards the solvent was removed under vacuum. White crystals were obtained from diffusion of diethyl ether into acetonitrile.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.5Ueq(–CH3) and C–H = 0.98 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.
Bis[1,3,4,5-tetramethyl-1H-imidazole-2(3H)-thione-κS]chloridocopper(I) top
Crystal data top
[CuCl(C7H12N2S)2]F(000) = 856
Mr = 411.48Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4738 (14) ÅCell parameters from 2398 reflections
b = 13.662 (2) Åθ = 2.6–23.8°
c = 14.119 (2) ŵ = 1.59 mm1
β = 98.314 (3)°T = 120 K
V = 1808.2 (5) Å3Prism, blue
Z = 40.25 × 0.20 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4304 independent reflections
Radiation source: sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.692, Tmax = 0.845k = 1716
17386 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[CuCl(C7H12N2S)2]V = 1808.2 (5) Å3
Mr = 411.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4738 (14) ŵ = 1.59 mm1
b = 13.662 (2) ÅT = 120 K
c = 14.119 (2) Å0.25 × 0.20 × 0.11 mm
β = 98.314 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4304 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2584 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.845Rint = 0.099
17386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.85Δρmax = 0.52 e Å3
4304 reflectionsΔρmin = 0.58 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42892 (4)0.63369 (3)0.67946 (3)0.02856 (13)
Cl10.50281 (8)0.51059 (6)0.76351 (6)0.0275 (2)
S10.18839 (9)0.64545 (9)0.69146 (7)0.0453 (3)
S20.57219 (9)0.74573 (7)0.60170 (6)0.0308 (2)
N10.1745 (3)0.5835 (2)0.5081 (2)0.0312 (7)
N20.0533 (3)0.71469 (19)0.54686 (19)0.0215 (6)
N30.4380 (3)0.77570 (19)0.44451 (19)0.0224 (6)
N40.3860 (3)0.88515 (19)0.55378 (19)0.0246 (7)
C10.1411 (3)0.6492 (2)0.5796 (2)0.0264 (8)
C20.2621 (4)0.4972 (3)0.5142 (3)0.0497 (12)
H2A0.20160.43870.51930.075*
H2B0.33330.49260.45670.075*
H2C0.31060.50210.57090.075*
C30.1069 (3)0.6088 (3)0.4301 (3)0.0325 (9)
C40.1248 (4)0.5507 (3)0.3408 (3)0.0578 (13)
H4A0.08190.58600.29160.087*
H4B0.22660.54060.31870.087*
H4C0.07760.48720.35290.087*
C50.0309 (3)0.6901 (3)0.4548 (2)0.0273 (8)
C60.0632 (4)0.7501 (3)0.4023 (3)0.0421 (10)
H6A0.06810.72050.33960.063*
H6B0.15910.75280.43910.063*
H6C0.02440.81650.39350.063*
C70.0058 (3)0.8007 (2)0.5986 (3)0.0301 (8)
H7A0.04000.80980.65590.045*
H7B0.01130.85840.55730.045*
H7C0.10870.79180.61740.045*
C80.4618 (3)0.8033 (2)0.5325 (2)0.0238 (8)
C90.5003 (4)0.6902 (2)0.3929 (3)0.0320 (9)
H9A0.53290.64400.43820.048*
H9B0.42860.65860.35970.048*
H9C0.58160.71060.34600.048*
C100.3462 (3)0.8419 (2)0.4094 (2)0.0229 (8)
C110.3028 (3)0.8309 (3)0.3134 (2)0.0285 (8)
H11A0.23490.88280.30340.043*
H11B0.38700.83580.26440.043*
H11C0.25760.76690.30880.043*
C120.3132 (3)0.9106 (2)0.4776 (2)0.0248 (8)
C130.2251 (3)1.0006 (2)0.4780 (3)0.0314 (8)
H13A0.17501.00050.42200.047*
H13B0.15531.00230.53650.047*
H13C0.28681.05830.47590.047*
C140.3773 (4)0.9387 (3)0.6430 (3)0.0350 (9)
H14A0.43830.99690.63360.052*
H14B0.27840.95870.66380.052*
H14C0.40950.89670.69190.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0284 (2)0.0310 (3)0.0266 (2)0.0035 (2)0.00511 (17)0.0040 (2)
Cl10.0260 (4)0.0266 (5)0.0307 (5)0.0004 (4)0.0067 (4)0.0052 (4)
S10.0254 (5)0.0805 (9)0.0295 (5)0.0085 (5)0.0023 (4)0.0173 (6)
S20.0249 (4)0.0367 (6)0.0314 (5)0.0010 (4)0.0059 (4)0.0092 (4)
N10.0220 (14)0.0205 (16)0.049 (2)0.0061 (13)0.0017 (14)0.0012 (15)
N20.0190 (13)0.0205 (15)0.0247 (16)0.0006 (11)0.0024 (11)0.0018 (12)
N30.0215 (14)0.0216 (16)0.0239 (16)0.0023 (12)0.0021 (11)0.0001 (12)
N40.0237 (14)0.0258 (17)0.0246 (16)0.0023 (12)0.0045 (12)0.0019 (13)
C10.0163 (15)0.028 (2)0.034 (2)0.0002 (14)0.0005 (14)0.0082 (17)
C20.031 (2)0.027 (2)0.087 (4)0.0087 (18)0.008 (2)0.009 (2)
C30.0194 (17)0.038 (2)0.039 (2)0.0031 (16)0.0017 (16)0.0098 (18)
C40.035 (2)0.073 (3)0.063 (3)0.001 (2)0.000 (2)0.041 (3)
C50.0221 (17)0.035 (2)0.025 (2)0.0030 (15)0.0012 (14)0.0000 (16)
C60.037 (2)0.062 (3)0.028 (2)0.009 (2)0.0079 (17)0.005 (2)
C70.0293 (18)0.026 (2)0.034 (2)0.0014 (16)0.0013 (16)0.0028 (17)
C80.0200 (16)0.0241 (19)0.027 (2)0.0005 (14)0.0007 (14)0.0051 (15)
C90.034 (2)0.026 (2)0.036 (2)0.0061 (16)0.0028 (16)0.0009 (17)
C100.0211 (16)0.023 (2)0.0247 (19)0.0016 (14)0.0031 (14)0.0060 (15)
C110.0272 (18)0.033 (2)0.024 (2)0.0006 (15)0.0008 (15)0.0046 (16)
C120.0262 (17)0.0231 (19)0.026 (2)0.0001 (15)0.0047 (15)0.0043 (16)
C130.0283 (18)0.028 (2)0.037 (2)0.0005 (16)0.0021 (16)0.0017 (17)
C140.033 (2)0.042 (2)0.030 (2)0.0038 (17)0.0078 (17)0.0098 (18)
Geometric parameters (Å, º) top
Cu1—S22.2270 (10)C4—H4C0.9800
Cu1—Cl12.2287 (9)C5—C61.486 (5)
Cu1—S12.2662 (10)C6—H6A0.9800
S1—C11.704 (4)C6—H6B0.9800
S2—C81.721 (3)C6—H6C0.9800
N1—C11.354 (4)C7—H7A0.9800
N1—C31.395 (4)C7—H7B0.9800
N1—C21.451 (4)C7—H7C0.9800
N2—C11.348 (4)C9—H9A0.9800
N2—C51.388 (4)C9—H9B0.9800
N2—C71.452 (4)C9—H9C0.9800
N3—C81.349 (4)C10—C121.349 (5)
N3—C101.395 (4)C10—C111.480 (4)
N3—C91.456 (4)C11—H11A0.9800
N4—C81.339 (4)C11—H11B0.9800
N4—C121.402 (4)C11—H11C0.9800
N4—C141.449 (4)C12—C131.486 (4)
C2—H2A0.9800C13—H13A0.9800
C2—H2B0.9800C13—H13B0.9800
C2—H2C0.9800C13—H13C0.9800
C3—C51.342 (5)C14—H14A0.9800
C3—C41.479 (5)C14—H14B0.9800
C4—H4A0.9800C14—H14C0.9800
C4—H4B0.9800
S2—Cu1—Cl1124.42 (4)H6A—C6—H6C109.5
S2—Cu1—S1121.51 (4)H6B—C6—H6C109.5
Cl1—Cu1—S1113.80 (4)N2—C7—H7A109.5
C1—S1—Cu1109.23 (11)N2—C7—H7B109.5
C8—S2—Cu1102.52 (11)H7A—C7—H7B109.5
C1—N1—C3109.8 (3)N2—C7—H7C109.5
C1—N1—C2124.6 (3)H7A—C7—H7C109.5
C3—N1—C2125.5 (3)H7B—C7—H7C109.5
C1—N2—C5110.2 (3)N4—C8—N3106.5 (3)
C1—N2—C7125.3 (3)N4—C8—S2127.2 (3)
C5—N2—C7124.5 (3)N3—C8—S2126.3 (3)
C8—N3—C10110.1 (3)N3—C9—H9A109.5
C8—N3—C9125.1 (3)N3—C9—H9B109.5
C10—N3—C9124.8 (3)H9A—C9—H9B109.5
C8—N4—C12110.0 (3)N3—C9—H9C109.5
C8—N4—C14125.3 (3)H9A—C9—H9C109.5
C12—N4—C14124.7 (3)H9B—C9—H9C109.5
N2—C1—N1105.9 (3)C12—C10—N3106.8 (3)
N2—C1—S1126.6 (3)C12—C10—C11131.2 (3)
N1—C1—S1127.4 (3)N3—C10—C11122.0 (3)
N1—C2—H2A109.5C10—C11—H11A109.5
N1—C2—H2B109.5C10—C11—H11B109.5
H2A—C2—H2B109.5H11A—C11—H11B109.5
N1—C2—H2C109.5C10—C11—H11C109.5
H2A—C2—H2C109.5H11A—C11—H11C109.5
H2B—C2—H2C109.5H11B—C11—H11C109.5
C5—C3—N1106.9 (3)C10—C12—N4106.7 (3)
C5—C3—C4131.0 (4)C10—C12—C13130.6 (3)
N1—C3—C4122.1 (3)N4—C12—C13122.7 (3)
C3—C4—H4A109.5C12—C13—H13A109.5
C3—C4—H4B109.5C12—C13—H13B109.5
H4A—C4—H4B109.5H13A—C13—H13B109.5
C3—C4—H4C109.5C12—C13—H13C109.5
H4A—C4—H4C109.5H13A—C13—H13C109.5
H4B—C4—H4C109.5H13B—C13—H13C109.5
C3—C5—N2107.1 (3)N4—C14—H14A109.5
C3—C5—C6131.7 (3)N4—C14—H14B109.5
N2—C5—C6121.2 (3)H14A—C14—H14B109.5
C5—C6—H6A109.5N4—C14—H14C109.5
C5—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
C5—C6—H6C109.5
S2—Cu1—S1—C158.01 (14)C1—N2—C5—C6179.5 (3)
Cl1—Cu1—S1—C1127.70 (13)C7—N2—C5—C62.5 (5)
Cl1—Cu1—S2—C8168.08 (12)C12—N4—C8—N30.4 (3)
S1—Cu1—S2—C818.26 (13)C14—N4—C8—N3178.3 (3)
C5—N2—C1—N10.3 (3)C12—N4—C8—S2178.0 (2)
C7—N2—C1—N1177.8 (3)C14—N4—C8—S23.3 (5)
C5—N2—C1—S1175.2 (2)C10—N3—C8—N40.4 (3)
C7—N2—C1—S16.7 (5)C9—N3—C8—N4179.6 (3)
C3—N1—C1—N20.1 (4)C10—N3—C8—S2177.9 (2)
C2—N1—C1—N2177.1 (3)C9—N3—C8—S21.2 (5)
C3—N1—C1—S1175.6 (2)Cu1—S2—C8—N494.7 (3)
C2—N1—C1—S11.7 (5)Cu1—S2—C8—N387.3 (3)
Cu1—S1—C1—N2130.1 (3)C8—N3—C10—C120.3 (4)
Cu1—S1—C1—N155.3 (3)C9—N3—C10—C12179.5 (3)
C1—N1—C3—C50.5 (4)C8—N3—C10—C11179.0 (3)
C2—N1—C3—C5176.7 (3)C9—N3—C10—C110.1 (5)
C1—N1—C3—C4179.4 (3)N3—C10—C12—N40.0 (3)
C2—N1—C3—C43.4 (5)C11—C10—C12—N4179.2 (3)
N1—C3—C5—N20.6 (4)N3—C10—C12—C13177.2 (3)
C4—C3—C5—N2179.2 (4)C11—C10—C12—C132.1 (6)
N1—C3—C5—C6179.4 (3)C8—N4—C12—C100.2 (4)
C4—C3—C5—C60.7 (7)C14—N4—C12—C10178.5 (3)
C1—N2—C5—C30.6 (4)C8—N4—C12—C13177.2 (3)
C7—N2—C5—C3177.5 (3)C14—N4—C12—C134.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···S10.982.743.217 (4)110
C4—H4B···Cl1i0.982.753.717 (4)170
C7—H7A···S10.982.733.209 (3)110
C9—H9A···S20.982.773.211 (4)108
C11—H11A···Cl1ii0.982.763.721 (3)165
C14—H14B···Cl1iii0.982.803.782 (4)176
C14—H14C···S20.982.773.223 (4)109
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···S10.982.743.217 (4)110
C4—H4B···Cl1i0.982.753.717 (4)170
C7—H7A···S10.982.733.209 (3)110
C9—H9A···S20.982.773.211 (4)108
C11—H11A···Cl1ii0.982.763.721 (3)165
C14—H14B···Cl1iii0.982.803.782 (4)176
C14—H14C···S20.982.773.223 (4)109
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z+3/2.
 

References

First citationBhabak, K. P. & Mugesh, G. (2010). Chem. Eur. J. 16, 1175–1185.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevillanova, F. A., Verani, G., Battaglia, L. P. & Bonamartini Corradi, A. (1980). Transition Met. Chem. 5, 362–364.  CSD CrossRef CAS Web of Science Google Scholar
First citationKimani, M. M., Bayse, C. A. & Brumaghim, J. L. (2011). Dalton Trans. 40, 3711–3723.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamashita, Y. & Yamashita, M. (2010). J. Biol. Chem. 285, 18134–18138.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m397-m398
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds