organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1268-o1269

Crystal structure of (Z)-3-{3-(4-chloro­phen­yl)-2-[(4-chloro­phen­yl)imino]-2,3-di­hydro­thia­zol-4-yl}-2H-chromen-2-one

aDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur 613 007, Tamilnadu, India, and bDepartment of Chemistry, National Institute of Technology, Warangal 506 004, Telangana, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 26 October 2014; accepted 11 November 2014; online 19 November 2014)

In the title compound, C24H14Cl2N2O2S, the 2H-chromene ring system is approximately planar, with a maximum deviation of 0.025 (2) Å. The thia­zole ring is almost planar, with an r.m.s. deviation of 0.0022 Å, and makes a dihedral angle of 58.52 (7)° with the chromene ring system. The chromene ring system is inclined at angles of 58.3 (1) and 55.39 (9)° with respect to the two chloro­phenyl rings. The two chloro­phenyl rings show significant deviation from coplanarity, with a dihedral angle between them of 47.69 (8)°. The crystal structure features C—H⋯Cl inter­actions extending in (100) and propagating along the a-axis direction and weak ππ inter­actions [centroid–centroid separation = 3.867 (2) Å].

1. Related literature

For the bioactivity of coumarin, see: Yusufzai et al. (2012[Yusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416-o2417.]). For related structures, see: Arshad, Osman, Chan et al. (2010[Arshad, A., Osman, H., Chan, K. L., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1788-o1789.]); Arshad, Osman, Lam et al. (2010a[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1632-o1633.],b[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446-o1447.]). For synthetic chemistry, medicinal chemistry, photochemistry and solid-state chemistry applications of coumarin derivatives, see: Chopra et al. (2009[Chopra, D., Choudhury, A. R., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o3047-o3048.]). For the synthesis, see: Raj Kumar & Rajeswar Rao (2014[Raj Kumar, R. & Rajeswar Rao, V. (2014). Synth. Commun. 44, 1301-1306.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H14Cl2N2O2S

  • Mr = 465.33

  • Monoclinic, P 21

  • a = 9.1491 (7) Å

  • b = 10.3099 (8) Å

  • c = 11.9347 (10) Å

  • β = 111.587 (2)°

  • V = 1046.80 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 1.000

  • 15409 measured reflections

  • 5549 independent reflections

  • 4070 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.03

  • 5549 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack x determined using 1604 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.004 (19)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containing the coumarin moiety exhibit useful and diverse biological activities (Yusufzai et al., 2012). Coumarins are an important class of organic compounds and have been extensively studied. Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry and in the area of laser dyes based on the fact that such compounds show state dependent variations in their static dipole moments. The geometry and molecular packing patterns of several coumarins derivatives have been studied to evaluate the features of non-covalent interactions (Chopra et al., 2009). Some of the coumarin derivatives have been found to be useful in photochemotherapy, antitumour, anti-HIV therapy, anti-bacterial, anticoagulant, anti-fungal, cytotoxic activities, free radical scavengers and enzyme inhibiting agents. The related compounds whose structures have been solved by X-ray are 3-{2-[2-(diphenylmethylene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one (Arshad, Osman, Chan et al., 2010), (Z)-3-(2-{2-[1-(4-hydroxyphenyl)ethylidene]hydrazin-1-yl}-1,3-thiazol-4-yl)-2H-chromen-2-one (Arshad, Osman, Lam et al., 2010a) and 3-{2-[2-(2-fluororbenzylidene)hydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one (Arshad, Osman, Lam et al., 2010b). The title compound, C24H14Cl2N2O2S, (Fig. 1), is a new derivative of dihydrothiazoyl coumarin. We present herein its crystal structure.

The 2H-chromene (O1/C1–C9/O2) ring system is approximately planar, with the maximum deviation of -0.025 (2) Å at atom O1. The thiazole ring (S1/N1/C10–C12) is almost planar with a r.m.s. deviation of 0.0022 Å and makes a dihedral angle of 58.52 (7)° with the chromene ring. The chromene ring system is inclined at angles of 58.3 (1)° and 55.39 (9)° with respect to the two chlorophenyl rings (C13–C18/Cl1) and (C19–C24/Cl2), respectively. The two chlorophenyl rings show significant deviation from coplanarity, with a dihedral angle between the two planes of 47.69 (8)°. The sum of bond angles around N1 [359.79 (5)°] indicates that atom N exhibits sp2 hybridization. Torsion angles C1—C2—C10—N1 = -58.5 (4)° and C10—N1—C22—C23 = -51.8 (4)° indicate that the chromene ring and the chlorophenyl ring are substituted synclinally to the thiazole ring at atoms C2 and C22, respectively. The torsion angle C22—N1—C12—N2 [6.4 (4)°] indicates that the two chlorophenyl rings have a Z-configuration across the N1—C12 bond. In the crystal, a short intermolecular C3—H···Cli contact is observed [3.282 (3) Å] [symmetry code: (i) x, y - 1, z] together with second longer C23—H···Cl1ii contact is observed between C23 and Cl1ii [3.547 (3) Å] [symmetry code: x + 1, y, z + 1] (Fig. 2). Inter-ring ππ stacking interactions between the symmetry related C4–C9 ring (centroid Cg3) and the C13–C18iii ring (centroid Cg4), with Cg3···Cg4 = 3.867 (2) Å (symmetry code: (iii) x + 1, y, z + 1) further stabilize the crystal structure (Fig. 3).

Related literature top

For the bioactivity of coumarin, see: Yusufzai et al. (2012). For the biological applications of coumarin, see: Arshad, Osman, Chan et al. (2010); Arshad, Osman, Lam et al. (2010a,b). For synthetic chemistry, medicinal chemistry, photochemistry and solid-state chemistry applications of coumarin derivatives, see: Chopra et al. (2009). For the synthesis, see: Raj Kumar & Rajeswar Rao (2014).

Experimental top

The compound was synthesized according to the published procedure (Raj Kumar & Rajeswar Rao, 2014).

Refinement top

All the H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C). Although of no relevance in this achiral stucture, the Flack factor obtained (Parsons et al., 2013) was -0.004 (19).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

Crystal packing of the title compound in the unit cell, viewed along the a axis, showing C—H···Cl interactions as dashed lines.

The partial packing of the title compound, showing the ππ interactions.
(Z)-3-{3-(4-Chlorophenyl)-2-[(4-chlorophenyl)imino]-2,3-dihydrothiazol-4-yl}-2H-chromen-2-one top
Crystal data top
C24H14Cl2N2O2SF(000) = 476
Mr = 465.33Dx = 1.476 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.1491 (7) ÅCell parameters from 5853 reflections
b = 10.3099 (8) Åθ = 4.8–29.9°
c = 11.9347 (10) ŵ = 0.44 mm1
β = 111.587 (2)°T = 296 K
V = 1046.80 (14) Å3Block, colourless
Z = 20.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5549 independent reflections
Radiation source: fine-focus sealed tube4070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 30.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.897, Tmax = 1.000k = 1314
15409 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.1767P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.17 e Å3
5549 reflectionsΔρmin = 0.20 e Å3
280 parametersAbsolute structure: Flack x determined using 1604 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.004 (19)
Crystal data top
C24H14Cl2N2O2SV = 1046.80 (14) Å3
Mr = 465.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1491 (7) ŵ = 0.44 mm1
b = 10.3099 (8) ÅT = 296 K
c = 11.9347 (10) Å0.35 × 0.30 × 0.25 mm
β = 111.587 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5549 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4070 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.024
15409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.20 e Å3
5549 reflectionsAbsolute structure: Flack x determined using 1604 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
280 parametersAbsolute structure parameter: 0.004 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73427 (9)0.67172 (10)1.28483 (6)0.0611 (2)
Cl20.07802 (15)0.15926 (9)0.32829 (9)0.0911 (3)
S10.42551 (10)0.84490 (8)0.71595 (7)0.0526 (2)
O10.2030 (2)0.7096 (2)0.17243 (18)0.0552 (6)
O20.3924 (2)0.6405 (2)0.33588 (19)0.0611 (6)
N10.3118 (2)0.6598 (2)0.56482 (18)0.0408 (5)
N20.4358 (3)0.5837 (2)0.7613 (2)0.0536 (7)
C10.2735 (3)0.7030 (3)0.2954 (2)0.0438 (7)
C20.1989 (3)0.7740 (3)0.3656 (2)0.0366 (6)
C30.0669 (3)0.8415 (3)0.3101 (2)0.0386 (6)
H30.01940.88460.35620.046*
C40.0030 (3)0.8489 (3)0.1811 (2)0.0392 (6)
C50.1396 (4)0.9181 (3)0.1185 (3)0.0511 (8)
H50.19120.96310.16070.061*
C60.1983 (4)0.9202 (4)0.0050 (3)0.0606 (9)
H60.28930.96670.04650.073*
C70.1228 (4)0.8536 (4)0.0675 (3)0.0690 (10)
H70.16310.85620.15130.083*
C80.0110 (4)0.7834 (4)0.0087 (3)0.0645 (9)
H80.06110.73780.05150.077*
C90.0692 (3)0.7822 (3)0.1157 (2)0.0452 (7)
C100.2782 (3)0.7744 (3)0.4978 (2)0.0379 (6)
C110.3305 (4)0.8795 (3)0.5646 (3)0.0462 (7)
H110.31740.96320.53330.055*
C120.3931 (3)0.6762 (3)0.6869 (2)0.0428 (6)
C130.5081 (3)0.6096 (3)0.8852 (3)0.0453 (7)
C140.6503 (4)0.5525 (3)0.9501 (3)0.0551 (8)
H140.69920.50050.91060.066*
C150.7211 (4)0.5712 (3)1.0723 (3)0.0559 (9)
H150.81780.53301.11490.067*
C160.6480 (3)0.6468 (3)1.1310 (2)0.0422 (6)
C170.5071 (3)0.7039 (3)1.0692 (3)0.0531 (8)
H170.45840.75541.10920.064*
C180.4369 (3)0.6845 (4)0.9460 (3)0.0556 (8)
H180.34020.72270.90360.067*
C190.1469 (4)0.3047 (3)0.4032 (3)0.0506 (8)
C200.3036 (4)0.3174 (3)0.4712 (3)0.0536 (8)
H200.37230.24850.47920.064*
C210.3576 (4)0.4336 (3)0.5275 (3)0.0492 (8)
H210.46360.44370.57450.059*
C220.2553 (3)0.5348 (3)0.5145 (2)0.0377 (6)
C230.0977 (3)0.5194 (3)0.4499 (3)0.0443 (7)
H230.02850.58710.44480.053*
C240.0419 (4)0.4032 (3)0.3925 (3)0.0527 (8)
H240.06450.39200.34760.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0589 (4)0.0805 (6)0.0361 (4)0.0094 (4)0.0086 (3)0.0030 (4)
Cl20.1509 (9)0.0438 (4)0.0690 (6)0.0333 (6)0.0292 (6)0.0135 (5)
S10.0634 (5)0.0460 (4)0.0382 (4)0.0074 (4)0.0069 (3)0.0095 (3)
O10.0514 (11)0.0756 (15)0.0401 (11)0.0026 (11)0.0187 (10)0.0100 (10)
O20.0481 (12)0.0787 (17)0.0577 (13)0.0119 (12)0.0209 (10)0.0019 (12)
N10.0441 (12)0.0374 (11)0.0330 (11)0.0043 (11)0.0050 (9)0.0020 (11)
N20.0641 (17)0.0458 (15)0.0380 (13)0.0036 (12)0.0037 (12)0.0006 (11)
C10.0427 (15)0.0492 (16)0.0404 (15)0.0036 (14)0.0162 (13)0.0047 (13)
C20.0404 (15)0.0341 (13)0.0357 (14)0.0053 (12)0.0144 (12)0.0038 (11)
C30.0476 (15)0.0300 (12)0.0390 (14)0.0045 (13)0.0170 (12)0.0054 (12)
C40.0445 (14)0.0337 (13)0.0367 (13)0.0076 (13)0.0117 (12)0.0020 (12)
C50.0561 (19)0.0434 (16)0.0460 (17)0.0003 (14)0.0096 (15)0.0001 (14)
C60.063 (2)0.058 (2)0.0460 (18)0.0005 (17)0.0026 (16)0.0053 (16)
C70.078 (2)0.082 (2)0.0355 (16)0.005 (2)0.0079 (17)0.0021 (19)
C80.066 (2)0.088 (3)0.0402 (17)0.007 (2)0.0208 (16)0.0091 (18)
C90.0461 (16)0.0518 (17)0.0372 (15)0.0077 (14)0.0146 (13)0.0026 (13)
C100.0371 (14)0.0396 (15)0.0352 (14)0.0007 (12)0.0112 (12)0.0027 (12)
C110.0566 (19)0.0402 (17)0.0398 (16)0.0039 (13)0.0154 (14)0.0043 (12)
C120.0399 (13)0.0471 (17)0.0370 (14)0.0047 (14)0.0090 (11)0.0071 (14)
C130.0475 (16)0.0430 (15)0.0381 (15)0.0052 (13)0.0069 (13)0.0019 (13)
C140.066 (2)0.0477 (17)0.0456 (17)0.0145 (16)0.0142 (16)0.0030 (14)
C150.0490 (18)0.061 (2)0.0464 (18)0.0120 (15)0.0039 (15)0.0077 (15)
C160.0402 (14)0.0489 (16)0.0332 (13)0.0061 (13)0.0086 (11)0.0064 (13)
C170.0462 (16)0.072 (2)0.0430 (16)0.0079 (16)0.0182 (13)0.0052 (15)
C180.0384 (14)0.081 (2)0.0429 (16)0.0096 (17)0.0095 (13)0.0070 (18)
C190.079 (2)0.0358 (15)0.0362 (15)0.0115 (15)0.0207 (15)0.0025 (12)
C200.072 (2)0.0378 (17)0.0506 (18)0.0081 (14)0.0218 (17)0.0017 (13)
C210.0434 (17)0.0474 (18)0.0496 (18)0.0029 (14)0.0089 (14)0.0011 (14)
C220.0441 (16)0.0356 (14)0.0315 (13)0.0028 (12)0.0118 (12)0.0021 (11)
C230.0390 (15)0.0445 (17)0.0459 (16)0.0006 (12)0.0114 (13)0.0011 (13)
C240.0486 (17)0.0565 (19)0.0447 (17)0.0186 (16)0.0075 (14)0.0003 (15)
Geometric parameters (Å, º) top
Cl1—C161.731 (3)C8—C91.380 (4)
Cl2—C191.741 (3)C8—H80.9300
S1—C111.729 (3)C10—C111.326 (4)
S1—C121.777 (3)C11—H110.9300
O1—C11.371 (3)C13—C181.376 (4)
O1—C91.382 (4)C13—C141.378 (4)
O2—C11.203 (3)C14—C151.374 (4)
N1—C121.381 (3)C14—H140.9300
N1—C101.396 (4)C15—C161.375 (4)
N1—C221.436 (3)C15—H150.9300
N2—C121.263 (4)C16—C171.362 (4)
N2—C131.406 (4)C17—C181.386 (4)
C1—C21.457 (4)C17—H170.9300
C2—C31.339 (4)C18—H180.9300
C2—C101.474 (4)C19—C201.369 (5)
C3—C41.435 (3)C19—C241.371 (5)
C3—H30.9300C20—C211.373 (4)
C4—C91.378 (4)C20—H200.9300
C4—C51.394 (4)C21—C221.371 (4)
C5—C61.371 (4)C21—H210.9300
C5—H50.9300C22—C231.371 (4)
C6—C71.372 (5)C23—C241.381 (4)
C6—H60.9300C23—H230.9300
C7—C81.372 (5)C24—H240.9300
C7—H70.9300
C11—S1—C1290.84 (13)N2—C12—N1123.8 (3)
C1—O1—C9122.3 (2)N2—C12—S1128.0 (2)
C12—N1—C10114.9 (2)N1—C12—S1108.2 (2)
C12—N1—C22121.5 (2)C18—C13—C14118.4 (3)
C10—N1—C22123.41 (19)C18—C13—N2122.1 (3)
C12—N2—C13120.0 (3)C14—C13—N2119.4 (3)
O2—C1—O1117.1 (3)C15—C14—C13121.0 (3)
O2—C1—C2125.8 (3)C15—C14—H14119.5
O1—C1—C2117.1 (2)C13—C14—H14119.5
C3—C2—C1120.3 (2)C14—C15—C16119.5 (3)
C3—C2—C10121.8 (2)C14—C15—H15120.2
C1—C2—C10117.8 (2)C16—C15—H15120.2
C2—C3—C4121.5 (3)C17—C16—C15120.7 (3)
C2—C3—H3119.2C17—C16—Cl1118.8 (2)
C4—C3—H3119.2C15—C16—Cl1120.5 (2)
C9—C4—C5118.3 (3)C16—C17—C18119.2 (3)
C9—C4—C3117.6 (2)C16—C17—H17120.4
C5—C4—C3124.1 (3)C18—C17—H17120.4
C6—C5—C4120.2 (3)C13—C18—C17121.1 (3)
C6—C5—H5119.9C13—C18—H18119.5
C4—C5—H5119.9C17—C18—H18119.5
C5—C6—C7120.0 (3)C20—C19—C24121.9 (3)
C5—C6—H6120.0C20—C19—Cl2119.3 (3)
C7—C6—H6120.0C24—C19—Cl2118.7 (3)
C6—C7—C8121.2 (3)C19—C20—C21118.9 (3)
C6—C7—H7119.4C19—C20—H20120.5
C8—C7—H7119.4C21—C20—H20120.5
C7—C8—C9118.3 (3)C22—C21—C20120.0 (3)
C7—C8—H8120.9C22—C21—H21120.0
C9—C8—H8120.9C20—C21—H21120.0
C4—C9—C8122.0 (3)C23—C22—C21120.6 (3)
C4—C9—O1121.1 (2)C23—C22—N1118.7 (2)
C8—C9—O1117.0 (3)C21—C22—N1120.7 (2)
C11—C10—N1113.1 (2)C22—C23—C24120.0 (3)
C11—C10—C2124.9 (3)C22—C23—H23120.0
N1—C10—C2121.9 (2)C24—C23—H23120.0
C10—C11—S1113.0 (2)C19—C24—C23118.5 (3)
C10—C11—H11123.5C19—C24—H24120.7
S1—C11—H11123.5C23—C24—H24120.7
C9—O1—C1—O2177.6 (3)C13—N2—C12—N1175.3 (3)
C9—O1—C1—C21.5 (4)C13—N2—C12—S15.4 (4)
O2—C1—C2—C3179.3 (3)C10—N1—C12—N2178.8 (3)
O1—C1—C2—C30.3 (4)C22—N1—C12—N26.4 (4)
O2—C1—C2—C102.7 (4)C10—N1—C12—S10.5 (3)
O1—C1—C2—C10176.4 (2)C22—N1—C12—S1174.3 (2)
C1—C2—C3—C41.5 (4)C11—S1—C12—N2178.9 (3)
C10—C2—C3—C4175.0 (2)C11—S1—C12—N10.4 (2)
C2—C3—C4—C91.0 (4)C12—N2—C13—C1856.7 (4)
C2—C3—C4—C5179.7 (3)C12—N2—C13—C14127.2 (3)
C9—C4—C5—C60.7 (4)C18—C13—C14—C151.0 (5)
C3—C4—C5—C6179.9 (3)N2—C13—C14—C15177.2 (3)
C4—C5—C6—C70.2 (5)C13—C14—C15—C160.8 (5)
C5—C6—C7—C80.5 (6)C14—C15—C16—C170.5 (5)
C6—C7—C8—C90.6 (6)C14—C15—C16—Cl1179.9 (3)
C5—C4—C9—C80.6 (4)C15—C16—C17—C180.4 (5)
C3—C4—C9—C8180.0 (3)Cl1—C16—C17—C18180.0 (3)
C5—C4—C9—O1178.6 (3)C14—C13—C18—C170.9 (5)
C3—C4—C9—O10.8 (4)N2—C13—C18—C17177.0 (3)
C7—C8—C9—C40.1 (5)C16—C17—C18—C130.6 (5)
C7—C8—C9—O1179.3 (3)C24—C19—C20—C211.9 (5)
C1—O1—C9—C42.0 (4)Cl2—C19—C20—C21178.3 (2)
C1—O1—C9—C8178.7 (3)C19—C20—C21—C220.4 (5)
C12—N1—C10—C110.4 (3)C20—C21—C22—C233.0 (5)
C22—N1—C10—C11174.3 (3)C20—C21—C22—N1175.1 (3)
C12—N1—C10—C2177.1 (2)C12—N1—C22—C23122.6 (3)
C22—N1—C10—C28.2 (4)C10—N1—C22—C2351.8 (4)
C3—C2—C10—C1158.0 (4)C12—N1—C22—C2159.4 (4)
C1—C2—C10—C11118.6 (3)C10—N1—C22—C21126.3 (3)
C3—C2—C10—N1124.9 (3)C21—C22—C23—C243.2 (4)
C1—C2—C10—N158.5 (4)N1—C22—C23—C24174.9 (3)
N1—C10—C11—S10.0 (3)C20—C19—C24—C231.7 (5)
C2—C10—C11—S1177.3 (2)Cl2—C19—C24—C23178.6 (2)
C12—S1—C11—C100.2 (3)C22—C23—C24—C190.9 (4)

Experimental details

Crystal data
Chemical formulaC24H14Cl2N2O2S
Mr465.33
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.1491 (7), 10.3099 (8), 11.9347 (10)
β (°) 111.587 (2)
V3)1046.80 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15409, 5549, 4070
Rint0.024
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.03
No. of reflections5549
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20
Absolute structureFlack x determined using 1604 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.004 (19)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IITM, Chennai 600 036, Tamilnadu, India, for the data collection.

References

First citationArshad, A., Osman, H., Chan, K. L., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1788–o1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1632–o1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Choudhury, A. R., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o3047–o3048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaj Kumar, R. & Rajeswar Rao, V. (2014). Synth. Commun. 44, 1301–1306.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416–o2417.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1268-o1269
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds