research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[aqua­lithium(I)]-μ-pyrimidine-2-carboxyl­ato-κ4N1,O2:N3,O2′] hemihydrate]

aInstitute of Nuclear Chemistry & Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 20 November 2014; accepted 5 December 2014; online 1 January 2015)

The title compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n, comprises four symmetry-independent Li(C5H3N2O2)(H2O) units which form mol­ecular ribbons running along the c-axis direction. Within each ribbon, the ligand mol­ecule, acting in a μ2-mode, bridges two adjacent Li+ cations using both of its N,O-bonding sites. The coordination environment of each of the four Li+ cations can be described alternatively as either slightly distorted trigonal–bipyramidal or slightly distorted square–pyramidal. The ribbons are inter­connected by a network of O—H⋯O hydrogen bonds.

1. Chemical context

The pyrimidine-2-carboxyl­ato ligand exhibits rich versatility when applied to the synthesis of functional materials, resulting in structures with inter­esting structural and magnetic properties. Zeolite-type structures have been reported for CdII coordination polymers with this ligand (Sava et al., 2008[Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768-3770.]; Zhang et al., 2008a[Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Ga, E.-Q. (2008a). Chem. Commun. pp. 847-849.]). A variety of polymeric mol­ecular patterns have been observed in the structures of a number of divalent metal complexes with the title ligand, for example: MnII (Rodríguez-Diéguez et al., 2008[Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618.]; Zhang et al., 2008b[Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061-2068.]); FeII and CoII (Rodríguez-Diéguez et al., 2007[Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503-2510.]; Zhao & Liu, 2010[Zhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m1059.]); CaII (Zhang et al., 2008b[Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061-2068.]); CuII (Suárez-Varela et al., 2008[Suárez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodríguez-Diéguez, A., Luneau, D. & Colacio, E. (2008). Inorg. Chem. 47, 8143-8158.]). Polymeric mol­ecular patterns were also found in two LiI structures with the pyrimidine-2-carboxyl­ato ligand (Starosta & Lecieje­wicz, 2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.], 2012[Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369-m1370.]). Inter­esting hexa­nuclear, wheel-shaped nickel cationic complexes with the pyrimidine-2-carboxyl­ato ligand, encapsulating ClO4 or BF4 anions have been synthesized (Colacio et al., 2009[Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054-2064.]). Structures built of monomeric mol­ecules have been also reported in an AgI complex by Kokunov & Gorbunova (2007[Kokunov, Yu. V. & Gorbunova, Yu. E. (2007). Zh. Neorg. Khim. 52, 1632-1637.]) and in a CuII complex by Suárez-Varela et al. (2008[Suárez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodríguez-Diéguez, A., Luneau, D. & Colacio, E. (2008). Inorg. Chem. 47, 8143-8158.]) and Zhang et al. (2008c[Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008c). Acta Cryst. E64, m7.]).

[Scheme 1]

In the course of our studies of coordination modes of lithium complexes with diazine carboxyl­ates, a third lithium complex with the title ligand has recently been synthesized.

2. Structural commentary

A mol­ecular assembly consisting of an aqua-coordinated LiI cation and a bonded pyrimidine-2-carboxyl­ate (C5H3N2O2) ligand constitutes the structural unit of the title polymeric compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n. There are four such assemblies in the asymmetric unit. Linked into pairs, they form mol­ecular ribbons in which the (C5H3N2O2) ligand bridges adjacent LiI cations using both its N,O bonding sites (μ2-bridging mode) (Fig. 1[link]). The ribbons propagate in the c-axis direction (Fig. 2[link]).

[Figure 1]
Figure 1
Fragments of two mol­ecular ribbons in the structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for the non-H atoms. [Symmetry codes: (i) x, y, z + 1; (ii) x, y, z − 1.]
[Figure 2]
Figure 2
The packing of mol­ecular ribbons in the structure of the title compound as viewed down the ribbon direction (the crystallographic c axis). For clarity, H atoms are not shown.

All four LiI cations show a penta-coordination mode which can be described by two alternative geometries: either trigonal–bipyramidal or square–pyramidal, both slightly deformed. For example, in the case of the Li1 cation, the equatorial plane of a trigonal bipyramid consists of atoms O13, N11 and N23 with Li1 0.0712 (5) Å out of this plane; atoms O11 and O22 are at the apices. On the other hand, the base of the square pyramid is formed by the O11, O22, N11 and N23 atoms [r.m.s. 0.0069 (1) Å], O13 is at the apex; the Li1 cation is 0.3989 (8) Å out of the base. A similar description can be made for the remaining three independent LiO3N2 groups. The Li—O and Li—N bond lengths (Table 1[link]) fall in the range commonly observed in other Li complexes with the title ligand (Starosta & Leciejewicz, 2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.], 2012[Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369-m1370.]). The pyrimidine rings of all four ligand mol­ecules are almost planar, with r.m.s. deviations ranging from 0.0024 (1) (ligand 4) to 0.0094 (1) Å (ligand 1). The carboxyl­ate groups make dihedral angles with hetero-rings in the range from 2.8 (1) (ligand 2) to 7.6 (1)° (ligand 1).

Table 1
Selected bond lengths (Å)

Li1—O13 2.012 (14) Li3—O33 2.002 (13)
Li1—O11 2.030 (10) Li3—O31 2.107 (10)
Li1—N23 2.111 (11) Li3—O42 2.103 (10)
Li1—N11 2.121 (11) Li3—N43 2.154 (9)
Li1—O22 2.154 (10) Li3—N31 2.164 (9)
Li2—O23 1.996 (12) Li4—O43 2.010 (12)
Li2—O12 2.077 (10) Li4—O32 2.092 (9)
Li2—O21i 2.094 (10) Li4—N41i 2.107 (10)
Li2—N13 2.138 (9) Li4—N33 2.120 (10)
Li2—N21i 2.180 (9) Li4—O41i 2.126 (9)
Symmetry code: (i) x, y, z-1.

3. Supra­molecular features

The ribbons inter­act via a network of hydrogen bonds (Table 2[link]). Water mol­ecules of solvation act as donors, while the carboxyl­ate O atoms from adjacent ribbons act as acceptors. Hydrogen bonds between coordinating water mol­ecules as donors and carboxyl­ate O atoms belonging to adjacent ribbons as acceptors are also observed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O31 0.86 (2) 1.99 (3) 2.814 (7) 159 (8)
O1—H12⋯O22ii 0.86 (2) 2.06 (2) 2.897 (8) 164 (6)
O2—H21⋯O32ii 0.86 (2) 2.04 (3) 2.849 (7) 155 (7)
O2—H22⋯O21iii 0.86 (2) 1.90 (2) 2.755 (7) 174 (8)
O13—H131⋯O41i 0.86 (1) 2.13 (3) 2.898 (6) 149 (4)
O13—H132⋯O1iv 0.86 (2) 2.02 (3) 2.867 (6) 165 (7)
O23—H232⋯O13v 0.86 (2) 2.01 (3) 2.807 (6) 154 (5)
O33—H331⋯O12vi 0.86 (2) 1.93 (2) 2.777 (7) 169 (6)
O33—H332⋯O43ii 0.85 (2) 2.31 (3) 3.106 (6) 154 (6)
O43—H431⋯O22 0.86 (2) 2.03 (2) 2.879 (6) 170 (7)
O43—H432⋯O2vii 0.86 (1) 2.00 (4) 2.773 (6) 148 (5)
O23—H231⋯O42viii 0.86 (1) 1.86 (2) 2.715 (6) 177 (5)
Symmetry codes: (i) x, y, z-1; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) x+1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z]; (vi) [-x+1, y+{\script{1\over 2}}, -z+1]; (vii) x, y-1, z; (viii) [-x+1, y-{\script{1\over 2}}, -z+1].

4. Related complexes

The title compound is the third Li complex with the pyrimidine-2-carboxyl­ate ligand reported so far. In one of these complexes (Starosta & Leciejewicz, 2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.]), mol­ecular ribbons composed of Li cations bridged by the bidentate carboxyl­ate groups and bridged by bidentate nitrate anions form mol­ecular layers. An inter­esting feature is the absence of any N,O chelating bonding to the metal ion. The structural motif in the remaining complex (Starosta & Leciejewicz, 2012[Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369-m1370.]) consists of a mol­ecular chain similar to that in the title compound. In this structure, the chains are bridged by pairs of aqua-coordinated Li ions inter-connected by an aqua O atom. The tetra­hedral coordination of each of these Li cations is completed by two carboxyl­ate O atoms acting in a bidentate mode and donated by the ligands belonging to adjacent chains. The charge of the resulting cationic ribbon is compensated by the inter­spersed chloride anions.

5. Synthesis and crystallization

50 ml of an aqueous solution containing 1 mmol of pyrimidine-2-carbo­nitrile and 5 mmol of LiOH was boiled under reflux for 20 h with constant stirring. After cooling to room temperature, the solution was filtered and titrated with 0.1 N acetic acid until the pH reached ca 6.5, then stirred at 320 K for 3 h and left to evaporate slowly at room temperature. The residue was redissolved in a 1:1 ethanol–water mixture and left to crystallize at room temperature. After a few days, block-shaped single crystal of the title compound were extracted, washed with cold methanol and dried in the air.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to pyridine-ring C atoms were placed at calculated positions with C—H = 0.93 Å and treated as riding on the parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms of water mol­ecules were found from the Fourier map and refined isotropically.

Table 3
Experimental details

Crystal data
Chemical formula [Li(C5H3N2O2)(H2O)]·0.5H2O
Mr 157.06
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.4965 (5), 12.8118 (6), 10.8810 (4)
β (°) 107.771 (5)
V3) 1393.45 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.07
Crystal size (mm) 0.17 × 0.08 × 0.05
 
Data collection
Diffractometer Agilent CCD Xcalibur Ruby
Absorption correction Analytical [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.894, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 10782, 5237, 3736
Rint 0.056
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.177, 0.98
No. of reflections 5237
No. of parameters 451
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.23
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SHELXS2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

catena-Poly[[[aqualithium(I)]-µ-pyrimidine-2-carboxylato-κ4N1,O2:N3,O2'] hemihydrate] top
Crystal data top
[Li(C5H3N2O2)(H2O)]·0.5H2OF(000) = 648
Mr = 157.06Dx = 1.497 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 10.4965 (5) ÅCell parameters from 2423 reflections
b = 12.8118 (6) Åθ = 4.4–70.6°
c = 10.8810 (4) ŵ = 1.07 mm1
β = 107.771 (5)°T = 293 K
V = 1393.45 (11) Å3Block, colourless
Z = 80.17 × 0.08 × 0.05 mm
Data collection top
Agilent CCD Xcalibur Ruby
diffractometer
5237 independent reflections
Radiation source: Enhance (Cu) X-ray Source3736 reflections with I > 2σ(I)
Detector resolution: 10.4922 pixels mm-1Rint = 0.056
ω scansθmax = 71.2°, θmin = 4.3°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
h = 1112
Tmin = 0.894, Tmax = 0.952k = 1515
10782 measured reflectionsl = 1312
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.004
5237 reflectionsΔρmax = 0.35 e Å3
451 parametersΔρmin = 0.23 e Å3
Special details top

Experimental. Absorption correction: Agilent (2014). Clark & Reid (1995). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.5210 (11)0.0381 (10)0.3508 (8)0.054 (3)
Li20.5170 (10)0.0392 (9)0.1441 (8)0.046 (2)
Li30.0814 (10)0.2948 (9)0.8783 (8)0.047 (2)
Li40.0921 (9)0.2019 (9)0.3830 (7)0.043 (2)
C120.4379 (6)0.0069 (5)0.0797 (5)0.0384 (12)
C140.2428 (6)0.0067 (6)0.0846 (6)0.0529 (15)
H140.19630.00690.17230.064*
C150.1725 (7)0.0078 (6)0.0028 (6)0.0530 (16)
H150.07950.01000.02390.064*
C160.2446 (6)0.0055 (6)0.1314 (6)0.0489 (15)
H160.19940.00290.19270.059*
C170.5892 (6)0.0064 (5)0.1248 (5)0.0378 (13)
C220.5980 (6)0.0002 (5)0.6247 (5)0.0370 (12)
C240.7913 (7)0.0111 (6)0.5742 (6)0.0537 (16)
H240.83690.01470.51320.064*
C250.8632 (7)0.0101 (6)0.7026 (6)0.0569 (16)
H250.95610.01410.72990.068*
C260.7921 (6)0.0029 (6)0.7891 (5)0.0503 (15)
H260.83870.00130.87680.060*
C270.4461 (6)0.0097 (5)0.5817 (5)0.0392 (14)
C320.1661 (6)0.2465 (4)0.6557 (5)0.0380 (12)
C340.3599 (7)0.2476 (7)0.6072 (6)0.0625 (19)
H340.40670.24770.54710.075*
C350.4314 (7)0.2511 (7)0.7353 (6)0.0598 (18)
H350.52440.25290.76320.072*
C360.3584 (6)0.2519 (6)0.8201 (5)0.0530 (15)
H360.40380.25340.90810.064*
C370.0137 (7)0.2451 (5)0.6084 (5)0.0410 (14)
C420.0088 (6)0.2435 (5)1.1091 (5)0.0365 (13)
C440.1857 (6)0.2422 (5)0.9473 (5)0.0472 (14)
H440.23280.24570.85980.057*
C450.2559 (7)0.2292 (6)1.0347 (7)0.0531 (16)
H450.34870.22391.00820.064*
C460.1812 (7)0.2244 (6)1.1641 (6)0.0484 (16)
H460.22530.21641.22590.058*
C470.1617 (6)0.2510 (5)1.1531 (5)0.0380 (13)
O10.3233 (5)0.2775 (4)0.5971 (5)0.0595 (11)
H110.240 (3)0.263 (5)0.608 (8)0.071*
H120.327 (6)0.3439 (15)0.586 (8)0.071*
O20.1225 (5)0.9356 (4)0.6054 (4)0.0590 (12)
H210.120 (6)0.8692 (15)0.593 (8)0.071*
H220.205 (3)0.952 (5)0.619 (8)0.071*
O110.6455 (4)0.0173 (4)0.2421 (4)0.0535 (12)
O120.6448 (4)0.0058 (4)0.0388 (4)0.0508 (11)
O130.5044 (5)0.1941 (4)0.3601 (4)0.0530 (11)
H1310.431 (3)0.225 (5)0.3553 (17)0.064*
H1320.563 (4)0.226 (5)0.422 (5)0.064*
O210.3915 (5)0.0202 (4)0.6665 (4)0.0539 (13)
O220.3905 (4)0.0051 (4)0.4616 (4)0.0513 (11)
O230.5207 (4)0.1946 (4)0.1316 (4)0.0498 (11)
H2310.6051 (18)0.207 (6)0.113 (5)0.060*
H2320.487 (5)0.225 (5)0.205 (4)0.060*
O310.0433 (4)0.2566 (4)0.6921 (4)0.0510 (11)
O320.0389 (4)0.2317 (4)0.4901 (4)0.0514 (11)
O330.0834 (5)0.4508 (4)0.8678 (4)0.0516 (12)
H3310.166 (2)0.471 (5)0.889 (6)0.062*
H3320.043 (5)0.495 (4)0.811 (5)0.062*
O410.2199 (4)0.2372 (4)1.2700 (3)0.0458 (11)
O420.2119 (4)0.2694 (4)1.0654 (4)0.0468 (10)
O430.1100 (4)0.0457 (4)0.3826 (4)0.0518 (11)
H4310.1952 (16)0.038 (6)0.410 (6)0.062*
H4320.082 (5)0.007 (5)0.434 (5)0.062*
N110.3768 (5)0.0070 (5)0.1701 (4)0.0422 (12)
N130.3764 (5)0.0054 (4)0.0470 (4)0.0439 (11)
N210.6594 (5)0.0019 (4)0.7526 (4)0.0445 (11)
N230.6582 (5)0.0071 (5)0.5341 (4)0.0476 (12)
N310.2263 (5)0.2508 (4)0.7826 (4)0.0429 (11)
N330.2279 (5)0.2440 (5)0.5641 (5)0.0505 (13)
N410.0494 (5)0.2310 (4)1.2018 (4)0.0429 (12)
N430.0532 (5)0.2498 (4)0.9838 (4)0.0423 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.060 (7)0.078 (8)0.027 (5)0.000 (5)0.020 (5)0.001 (4)
Li20.046 (6)0.069 (7)0.029 (4)0.001 (4)0.019 (4)0.002 (4)
Li30.046 (6)0.075 (7)0.025 (4)0.005 (5)0.017 (4)0.005 (4)
Li40.040 (5)0.064 (6)0.027 (4)0.003 (4)0.010 (4)0.003 (4)
C120.046 (3)0.042 (3)0.028 (2)0.003 (3)0.013 (2)0.002 (2)
C140.045 (3)0.076 (4)0.033 (3)0.008 (3)0.005 (2)0.004 (3)
C150.036 (3)0.080 (5)0.041 (3)0.003 (3)0.009 (3)0.006 (3)
C160.043 (3)0.069 (4)0.041 (3)0.001 (3)0.022 (3)0.006 (3)
C170.044 (3)0.047 (3)0.025 (2)0.001 (3)0.014 (2)0.001 (2)
C220.045 (3)0.046 (3)0.022 (2)0.000 (3)0.014 (2)0.000 (2)
C240.041 (3)0.081 (4)0.046 (3)0.002 (3)0.023 (3)0.009 (3)
C250.036 (3)0.087 (5)0.044 (3)0.000 (3)0.007 (3)0.008 (3)
C260.044 (3)0.072 (4)0.028 (3)0.006 (3)0.002 (2)0.002 (3)
C270.040 (3)0.053 (4)0.024 (3)0.003 (3)0.009 (2)0.000 (2)
C320.042 (3)0.047 (3)0.025 (2)0.002 (2)0.011 (2)0.000 (2)
C340.048 (4)0.106 (6)0.042 (3)0.002 (4)0.025 (3)0.010 (3)
C350.040 (3)0.090 (5)0.047 (3)0.000 (3)0.009 (3)0.014 (3)
C360.046 (3)0.080 (4)0.031 (2)0.002 (3)0.007 (2)0.007 (3)
C370.044 (3)0.054 (4)0.026 (3)0.000 (3)0.013 (2)0.003 (2)
C420.038 (3)0.045 (3)0.027 (2)0.000 (2)0.010 (2)0.000 (2)
C440.041 (3)0.065 (4)0.031 (3)0.002 (3)0.005 (2)0.002 (3)
C450.035 (3)0.074 (5)0.049 (3)0.001 (3)0.012 (3)0.004 (3)
C460.043 (4)0.072 (4)0.033 (3)0.001 (3)0.015 (3)0.003 (3)
C470.040 (3)0.048 (3)0.027 (2)0.001 (2)0.011 (2)0.000 (2)
O10.042 (2)0.076 (3)0.058 (3)0.003 (2)0.012 (2)0.000 (2)
O20.051 (3)0.080 (3)0.047 (2)0.009 (2)0.017 (2)0.002 (2)
O110.044 (2)0.085 (3)0.0309 (19)0.003 (2)0.0103 (18)0.006 (2)
O120.040 (2)0.081 (3)0.0329 (19)0.001 (2)0.0146 (17)0.005 (2)
O130.055 (3)0.063 (3)0.040 (2)0.002 (2)0.014 (2)0.0012 (18)
O210.040 (2)0.092 (4)0.031 (2)0.005 (2)0.0123 (18)0.004 (2)
O220.043 (2)0.080 (3)0.0290 (19)0.004 (2)0.0082 (17)0.0042 (19)
O230.037 (2)0.081 (3)0.0319 (19)0.001 (2)0.0114 (18)0.0022 (19)
O310.040 (2)0.080 (3)0.0360 (19)0.006 (2)0.0154 (18)0.006 (2)
O320.041 (2)0.081 (3)0.0313 (19)0.003 (2)0.0094 (17)0.0048 (19)
O330.047 (3)0.063 (3)0.044 (2)0.001 (2)0.013 (2)0.0030 (19)
O410.038 (2)0.071 (3)0.0282 (19)0.001 (2)0.0091 (17)0.0032 (18)
O420.038 (2)0.073 (3)0.0309 (17)0.001 (2)0.0125 (16)0.0052 (18)
O430.051 (2)0.066 (3)0.040 (2)0.004 (2)0.017 (2)0.0062 (18)
N110.043 (3)0.061 (3)0.024 (2)0.004 (2)0.012 (2)0.004 (2)
N130.044 (3)0.061 (3)0.027 (2)0.002 (2)0.011 (2)0.003 (2)
N210.040 (3)0.065 (3)0.027 (2)0.004 (2)0.0085 (19)0.000 (2)
N230.047 (3)0.065 (3)0.032 (2)0.003 (3)0.013 (2)0.002 (2)
N310.043 (3)0.063 (3)0.023 (2)0.004 (2)0.0103 (19)0.001 (2)
N330.046 (3)0.079 (4)0.031 (2)0.000 (3)0.017 (2)0.004 (2)
N410.038 (3)0.066 (3)0.027 (2)0.000 (2)0.014 (2)0.003 (2)
N430.041 (2)0.058 (3)0.028 (2)0.002 (2)0.011 (2)0.002 (2)
Geometric parameters (Å, º) top
Li1—O132.012 (14)C27—O211.233 (7)
Li1—O112.030 (10)C27—O221.260 (7)
Li1—N232.111 (11)C32—N311.333 (7)
Li1—N112.121 (11)C32—N331.345 (7)
Li1—O222.154 (10)C32—C371.524 (9)
Li2—O231.996 (12)C34—N331.321 (9)
Li2—O122.077 (10)C34—C351.368 (9)
Li2—O21i2.094 (10)C34—H340.9300
Li2—N132.138 (9)C35—C361.367 (9)
Li2—N21i2.180 (9)C35—H350.9300
Li3—O332.002 (13)C36—N311.321 (8)
Li3—O312.107 (10)C36—H360.9300
Li3—O422.103 (10)C37—O311.242 (8)
Li3—N432.154 (9)C37—O321.248 (7)
Li3—N312.164 (9)C42—N431.322 (7)
Li4—O432.010 (12)C42—N411.339 (8)
Li4—O322.092 (9)C42—C471.531 (8)
Li4—N41i2.107 (10)C44—N431.328 (8)
Li4—N332.120 (10)C44—C451.379 (9)
Li4—O41i2.126 (9)C44—H440.9300
C12—N111.327 (8)C45—C461.389 (9)
C12—N131.332 (7)C45—H450.9300
C12—C171.512 (8)C46—N411.321 (8)
C14—N131.336 (8)C46—H460.9300
C14—C151.370 (9)C47—O421.246 (7)
C14—H140.9300C47—O411.244 (7)
C15—C161.372 (9)O1—H110.861 (15)
C15—H150.9300O1—H120.859 (15)
C16—N111.322 (8)O2—H210.861 (15)
C16—H160.9300O2—H220.857 (15)
C17—O111.240 (7)O13—H1310.857 (14)
C17—O121.255 (7)O13—H1320.864 (15)
C22—N231.327 (7)O21—Li2ii2.094 (10)
C22—N211.343 (7)O23—H2310.861 (14)
C22—C271.523 (8)O23—H2320.857 (15)
C24—N231.332 (8)O33—H3310.863 (15)
C24—C251.371 (9)O33—H3320.854 (15)
C24—H240.9300O41—Li4ii2.126 (9)
C25—C261.371 (9)O43—H4310.858 (15)
C25—H250.9300O43—H4320.862 (14)
C26—N211.328 (8)N21—Li2ii2.180 (9)
C26—H260.9300N41—Li4ii2.107 (10)
O13—Li1—O11103.9 (5)N33—C34—C35123.6 (5)
O13—Li1—N23100.6 (5)N33—C34—H34118.2
O11—Li1—N2398.7 (5)C35—C34—H34118.2
O13—Li1—N11100.7 (5)C34—C35—C36116.2 (6)
O11—Li1—N1180.8 (4)C34—C35—H35121.9
N23—Li1—N11158.2 (7)C36—C35—H35121.9
O13—Li1—O2298.5 (5)N31—C36—C35122.9 (5)
O11—Li1—O22157.6 (7)N31—C36—H36118.6
N23—Li1—O2277.9 (3)C35—C36—H36118.6
N11—Li1—O2294.3 (5)O31—C37—O32127.7 (6)
O23—Li2—O1298.4 (5)O31—C37—C32116.3 (5)
O23—Li2—O21i100.1 (5)O32—C37—C32116.0 (5)
O12—Li2—O21i161.4 (7)N43—C42—N41126.2 (6)
O23—Li2—N13103.6 (5)N43—C42—C47117.3 (5)
O12—Li2—N1379.2 (3)N41—C42—C47116.6 (5)
O21i—Li2—N1397.7 (4)N43—C44—C45122.2 (5)
O23—Li2—N21i104.6 (5)N43—C44—H44118.9
O12—Li2—N21i96.0 (4)C45—C44—H44118.9
O21i—Li2—N21i78.0 (3)C44—C45—C46116.8 (6)
N13—Li2—N21i151.8 (6)C44—C45—H45121.6
O33—Li3—O31101.0 (5)C46—C45—H45121.6
O33—Li3—O42101.2 (5)N41—C46—C45121.7 (6)
O31—Li3—O42157.6 (7)N41—C46—H46119.1
O33—Li3—N43108.5 (5)C45—C46—H46119.1
O31—Li3—N4397.7 (4)O42—C47—O41128.3 (6)
O42—Li3—N4377.4 (3)O42—C47—C42114.8 (5)
O33—Li3—N31102.2 (5)O41—C47—C42116.8 (5)
O31—Li3—N3178.4 (3)H11—O1—H12104 (2)
O42—Li3—N3194.6 (4)H21—O2—H22104 (2)
N43—Li3—N31149.2 (6)C17—O11—Li1115.2 (5)
O43—Li4—O32105.1 (5)C17—O12—Li2115.4 (5)
O43—Li4—N41i102.4 (5)Li1—O13—H131123 (4)
O32—Li4—N41i95.4 (4)Li1—O13—H132117 (4)
O43—Li4—N33102.6 (5)H131—O13—H132104 (2)
O32—Li4—N3378.8 (3)C27—O21—Li2ii116.9 (5)
N41i—Li4—N33155.0 (7)C27—O22—Li1114.9 (5)
O43—Li4—O41i97.7 (4)Li2—O23—H231101 (5)
O32—Li4—O41i157.1 (6)Li2—O23—H232113 (5)
N41i—Li4—O41i79.1 (3)H231—O23—H232104 (2)
N33—Li4—O41i96.9 (4)C37—O31—Li3115.8 (5)
N11—C12—N13125.1 (6)C37—O32—Li4116.1 (5)
N11—C12—C17117.2 (5)Li3—O33—H331108 (4)
N13—C12—C17117.7 (5)Li3—O33—H332134 (5)
N13—C14—C15121.7 (5)H331—O33—H332104 (2)
N13—C14—H14119.1C47—O41—Li4ii115.0 (5)
C15—C14—H14119.1C47—O42—Li3117.9 (4)
C14—C15—C16117.4 (6)Li4—O43—H431102 (5)
C14—C15—H15121.3Li4—O43—H432121 (5)
C16—C15—H15121.3H431—O43—H432103 (2)
N11—C16—C15121.6 (5)C16—N11—C12117.5 (5)
N11—C16—H16119.2C16—N11—Li1132.9 (5)
C15—C16—H16119.2C12—N11—Li1108.5 (5)
O11—C17—O12126.7 (6)C12—N13—C14116.6 (5)
O11—C17—C12117.2 (5)C12—N13—Li2109.0 (5)
O12—C17—C12116.1 (5)C14—N13—Li2132.1 (5)
N23—C22—N21125.7 (5)C26—N21—C22115.9 (5)
N23—C22—C27117.9 (4)C26—N21—Li2ii132.6 (4)
N21—C22—C27116.4 (4)C22—N21—Li2ii110.5 (5)
N23—C24—C25122.0 (5)C24—N23—C22116.7 (5)
N23—C24—H24119.0C24—N23—Li1130.3 (5)
C25—C24—H24119.0C22—N23—Li1111.9 (5)
C26—C25—C24117.0 (6)C36—N31—C32116.2 (5)
C26—C25—H25121.5C36—N31—Li3132.4 (4)
C24—C25—H25121.5C32—N31—Li3109.2 (4)
N21—C26—C25122.6 (5)C34—N33—C32115.3 (5)
N21—C26—H26118.7C34—N33—Li4132.3 (5)
C25—C26—H26118.7C32—N33—Li4110.9 (4)
O21—C27—O22127.4 (6)C46—N41—C42116.7 (5)
O21—C27—C22117.4 (5)C46—N41—Li4ii130.7 (5)
O22—C27—C22115.2 (5)C42—N41—Li4ii111.9 (5)
N31—C32—N33125.8 (5)C42—N43—C44116.5 (5)
N31—C32—C37117.9 (5)C42—N43—Li3111.7 (5)
N33—C32—C37116.3 (5)C44—N43—Li3131.1 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O310.86 (2)1.99 (3)2.814 (7)159 (8)
O1—H12···O22iii0.86 (2)2.06 (2)2.897 (8)164 (6)
O2—H21···O32iii0.86 (2)2.04 (3)2.849 (7)155 (7)
O2—H22···O21iv0.86 (2)1.90 (2)2.755 (7)174 (8)
O13—H131···O41i0.86 (1)2.13 (3)2.898 (6)149 (4)
O13—H132···O1v0.86 (2)2.02 (3)2.867 (6)165 (7)
O23—H232···O13vi0.86 (2)2.01 (3)2.807 (6)154 (5)
O33—H331···O12vii0.86 (2)1.93 (2)2.777 (7)169 (6)
O33—H332···O43iii0.85 (2)2.31 (3)3.106 (6)154 (6)
O43—H431···O220.86 (2)2.03 (2)2.879 (6)170 (7)
O43—H432···O2viii0.86 (1)2.00 (4)2.773 (6)148 (5)
O23—H231···O42ix0.86 (1)1.86 (2)2.715 (6)177 (5)
Symmetry codes: (i) x, y, z1; (iii) x, y+1/2, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y1/2, z; (vii) x+1, y+1/2, z+1; (viii) x, y1, z; (ix) x+1, y1/2, z+1.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationColacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationKokunov, Yu. V. & Gorbunova, Yu. E. (2007). Zh. Neorg. Khim. 52, 1632–1637.  CAS Google Scholar
First citationRodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510.  Web of Science PubMed Google Scholar
First citationSava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369–m1370.  CSD CrossRef IUCr Journals Google Scholar
First citationSuárez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodríguez-Diéguez, A., Luneau, D. & Colacio, E. (2008). Inorg. Chem. 47, 8143–8158.  Web of Science PubMed Google Scholar
First citationZhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Ga, E.-Q. (2008a). Chem. Commun. pp. 847–849.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061–2068.  Web of Science CSD CrossRef Google Scholar
First citationZhang, B.-Y., Yang, Q. & Nie, J.-J. (2008c). Acta Cryst. E64, m7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m1059.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds