research communications
catena-poly[[[aqualithium(I)]-μ-pyrimidine-2-carboxylato-κ4N1,O2:N3,O2′] hemihydrate]
ofaInstitute of Nuclear Chemistry & Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
The title compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n, comprises four symmetry-independent Li(C5H3N2O2)(H2O) units which form molecular ribbons running along the c-axis direction. Within each ribbon, the ligand molecule, acting in a μ2-mode, bridges two adjacent Li+ cations using both of its N,O-bonding sites. The coordination environment of each of the four Li+ cations can be described alternatively as either slightly distorted trigonal–bipyramidal or slightly distorted square–pyramidal. The ribbons are interconnected by a network of O—H⋯O hydrogen bonds.
Keywords: crystal structure; one-dimensional coordination polymer; lithium compound; pyrimidine-2-carboxylate; hydrogen bonding.
CCDC reference: 1037774
1. Chemical context
The pyrimidine-2-carboxylato ligand exhibits rich versatility when applied to the synthesis of functional materials, resulting in structures with interesting structural and magnetic properties. Zeolite-type structures have been reported for CdII coordination polymers with this ligand (Sava et al., 2008; Zhang et al., 2008a). A variety of polymeric molecular patterns have been observed in the structures of a number of divalent metal complexes with the title ligand, for example: MnII (Rodríguez-Diéguez et al., 2008; Zhang et al., 2008b); FeII and CoII (Rodríguez-Diéguez et al., 2007; Zhao & Liu, 2010); CaII (Zhang et al., 2008b); CuII (Suárez-Varela et al., 2008). Polymeric molecular patterns were also found in two LiI structures with the pyrimidine-2-carboxylato ligand (Starosta & Leciejewicz, 2011, 2012). Interesting hexanuclear, wheel-shaped nickel cationic complexes with the pyrimidine-2-carboxylato ligand, encapsulating ClO4− or BF4− anions have been synthesized (Colacio et al., 2009). Structures built of monomeric molecules have been also reported in an AgI complex by Kokunov & Gorbunova (2007) and in a CuII complex by Suárez-Varela et al. (2008) and Zhang et al. (2008c).
In the course of our studies of coordination modes of lithium complexes with diazine carboxylates, a third lithium complex with the title ligand has recently been synthesized.
2. Structural commentary
A molecular assembly consisting of an aqua-coordinated LiI cation and a bonded pyrimidine-2-carboxylate (C5H3N2O2) ligand constitutes the structural unit of the title polymeric compound, {[Li(C5H3N2O2)(H2O)]·0.5H2O}n. There are four such assemblies in the Linked into pairs, they form molecular ribbons in which the (C5H3N2O2) ligand bridges adjacent LiI cations using both its N,O bonding sites (μ2-bridging mode) (Fig. 1). The ribbons propagate in the c-axis direction (Fig. 2).
All four LiI cations show a penta-coordination mode which can be described by two alternative geometries: either trigonal–bipyramidal or square–pyramidal, both slightly deformed. For example, in the case of the Li1 cation, the equatorial plane of a trigonal bipyramid consists of atoms O13, N11 and N23 with Li1 0.0712 (5) Å out of this plane; atoms O11 and O22 are at the apices. On the other hand, the base of the square pyramid is formed by the O11, O22, N11 and N23 atoms [r.m.s. 0.0069 (1) Å], O13 is at the apex; the Li1 cation is 0.3989 (8) Å out of the base. A similar description can be made for the remaining three independent LiO3N2 groups. The Li—O and Li—N bond lengths (Table 1) fall in the range commonly observed in other Li complexes with the title ligand (Starosta & Leciejewicz, 2011, 2012). The pyrimidine rings of all four ligand molecules are almost planar, with r.m.s. deviations ranging from 0.0024 (1) (ligand 4) to 0.0094 (1) Å (ligand 1). The carboxylate groups make dihedral angles with hetero-rings in the range from 2.8 (1) (ligand 2) to 7.6 (1)° (ligand 1).
3. Supramolecular features
The ribbons interact via a network of hydrogen bonds (Table 2). Water molecules of solvation act as donors, while the carboxylate O atoms from adjacent ribbons act as acceptors. Hydrogen bonds between coordinating water molecules as donors and carboxylate O atoms belonging to adjacent ribbons as acceptors are also observed.
|
4. Related complexes
The title compound is the third Li complex with the pyrimidine-2-carboxylate ligand reported so far. In one of these complexes (Starosta & Leciejewicz, 2011), molecular ribbons composed of Li cations bridged by the bidentate carboxylate groups and bridged by bidentate nitrate anions form molecular layers. An interesting feature is the absence of any N,O chelating bonding to the metal ion. The structural motif in the remaining complex (Starosta & Leciejewicz, 2012) consists of a molecular chain similar to that in the title compound. In this structure, the chains are bridged by pairs of aqua-coordinated Li ions inter-connected by an aqua O atom. The tetrahedral coordination of each of these Li cations is completed by two carboxylate O atoms acting in a bidentate mode and donated by the ligands belonging to adjacent chains. The charge of the resulting cationic ribbon is compensated by the interspersed chloride anions.
5. Synthesis and crystallization
50 ml of an aqueous solution containing 1 mmol of pyrimidine-2-carbonitrile and 5 mmol of LiOH was boiled under reflux for 20 h with constant stirring. After cooling to room temperature, the solution was filtered and titrated with 0.1 N acetic acid until the pH reached ca 6.5, then stirred at 320 K for 3 h and left to evaporate slowly at room temperature. The residue was redissolved in a 1:1 ethanol–water mixture and left to crystallize at room temperature. After a few days, block-shaped single crystal of the title compound were extracted, washed with cold methanol and dried in the air.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to pyridine-ring C atoms were placed at calculated positions with C—H = 0.93 Å and treated as riding on the parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were found from the Fourier map and refined isotropically.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1037774
https://doi.org/10.1107/S2056989014026735/bg2542sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026735/bg2542Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).[Li(C5H3N2O2)(H2O)]·0.5H2O | F(000) = 648 |
Mr = 157.06 | Dx = 1.497 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 10.4965 (5) Å | Cell parameters from 2423 reflections |
b = 12.8118 (6) Å | θ = 4.4–70.6° |
c = 10.8810 (4) Å | µ = 1.07 mm−1 |
β = 107.771 (5)° | T = 293 K |
V = 1393.45 (11) Å3 | Block, colourless |
Z = 8 | 0.17 × 0.08 × 0.05 mm |
Agilent CCD Xcalibur Ruby diffractometer | 5237 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3736 reflections with I > 2σ(I) |
Detector resolution: 10.4922 pixels mm-1 | Rint = 0.056 |
ω scans | θmax = 71.2°, θmin = 4.3° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | h = −11→12 |
Tmin = 0.894, Tmax = 0.952 | k = −15→15 |
10782 measured reflections | l = −13→12 |
Refinement on F2 | 20 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.004 |
5237 reflections | Δρmax = 0.35 e Å−3 |
451 parameters | Δρmin = −0.23 e Å−3 |
Experimental. Absorption correction: Agilent (2014). Clark & Reid (1995). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.5210 (11) | 0.0381 (10) | 0.3508 (8) | 0.054 (3) | |
Li2 | 0.5170 (10) | −0.0392 (9) | −0.1441 (8) | 0.046 (2) | |
Li3 | 0.0814 (10) | 0.2948 (9) | 0.8783 (8) | 0.047 (2) | |
Li4 | 0.0921 (9) | 0.2019 (9) | 0.3830 (7) | 0.043 (2) | |
C12 | 0.4379 (6) | 0.0069 (5) | 0.0797 (5) | 0.0384 (12) | |
C14 | 0.2428 (6) | 0.0067 (6) | −0.0846 (6) | 0.0529 (15) | |
H14 | 0.1963 | 0.0069 | −0.1723 | 0.064* | |
C15 | 0.1725 (7) | 0.0078 (6) | 0.0028 (6) | 0.0530 (16) | |
H15 | 0.0795 | 0.0100 | −0.0239 | 0.064* | |
C16 | 0.2446 (6) | 0.0055 (6) | 0.1314 (6) | 0.0489 (15) | |
H16 | 0.1994 | 0.0029 | 0.1927 | 0.059* | |
C17 | 0.5892 (6) | 0.0064 (5) | 0.1248 (5) | 0.0378 (13) | |
C22 | 0.5980 (6) | −0.0002 (5) | 0.6247 (5) | 0.0370 (12) | |
C24 | 0.7913 (7) | 0.0111 (6) | 0.5742 (6) | 0.0537 (16) | |
H24 | 0.8369 | 0.0147 | 0.5132 | 0.064* | |
C25 | 0.8632 (7) | 0.0101 (6) | 0.7026 (6) | 0.0569 (16) | |
H25 | 0.9561 | 0.0141 | 0.7299 | 0.068* | |
C26 | 0.7921 (6) | 0.0029 (6) | 0.7891 (5) | 0.0503 (15) | |
H26 | 0.8387 | 0.0013 | 0.8768 | 0.060* | |
C27 | 0.4461 (6) | −0.0097 (5) | 0.5817 (5) | 0.0392 (14) | |
C32 | 0.1661 (6) | 0.2465 (4) | 0.6557 (5) | 0.0380 (12) | |
C34 | 0.3599 (7) | 0.2476 (7) | 0.6072 (6) | 0.0625 (19) | |
H34 | 0.4067 | 0.2477 | 0.5471 | 0.075* | |
C35 | 0.4314 (7) | 0.2511 (7) | 0.7353 (6) | 0.0598 (18) | |
H35 | 0.5244 | 0.2529 | 0.7632 | 0.072* | |
C36 | 0.3584 (6) | 0.2519 (6) | 0.8201 (5) | 0.0530 (15) | |
H36 | 0.4038 | 0.2534 | 0.9081 | 0.064* | |
C37 | 0.0137 (7) | 0.2451 (5) | 0.6084 (5) | 0.0410 (14) | |
C42 | 0.0088 (6) | 0.2435 (5) | 1.1091 (5) | 0.0365 (13) | |
C44 | −0.1857 (6) | 0.2422 (5) | 0.9473 (5) | 0.0472 (14) | |
H44 | −0.2328 | 0.2457 | 0.8598 | 0.057* | |
C45 | −0.2559 (7) | 0.2292 (6) | 1.0347 (7) | 0.0531 (16) | |
H45 | −0.3487 | 0.2239 | 1.0082 | 0.064* | |
C46 | −0.1812 (7) | 0.2244 (6) | 1.1641 (6) | 0.0484 (16) | |
H46 | −0.2253 | 0.2164 | 1.2259 | 0.058* | |
C47 | 0.1617 (6) | 0.2510 (5) | 1.1531 (5) | 0.0380 (13) | |
O1 | −0.3233 (5) | 0.2775 (4) | 0.5971 (5) | 0.0595 (11) | |
H11 | −0.240 (3) | 0.263 (5) | 0.608 (8) | 0.071* | |
H12 | −0.327 (6) | 0.3439 (15) | 0.586 (8) | 0.071* | |
O2 | 0.1225 (5) | 0.9356 (4) | 0.6054 (4) | 0.0590 (12) | |
H21 | 0.120 (6) | 0.8692 (15) | 0.593 (8) | 0.071* | |
H22 | 0.205 (3) | 0.952 (5) | 0.619 (8) | 0.071* | |
O11 | 0.6455 (4) | 0.0173 (4) | 0.2421 (4) | 0.0535 (12) | |
O12 | 0.6448 (4) | −0.0058 (4) | 0.0388 (4) | 0.0508 (11) | |
O13 | 0.5044 (5) | 0.1941 (4) | 0.3601 (4) | 0.0530 (11) | |
H131 | 0.431 (3) | 0.225 (5) | 0.3553 (17) | 0.064* | |
H132 | 0.563 (4) | 0.226 (5) | 0.422 (5) | 0.064* | |
O21 | 0.3915 (5) | −0.0202 (4) | 0.6665 (4) | 0.0539 (13) | |
O22 | 0.3905 (4) | −0.0051 (4) | 0.4616 (4) | 0.0513 (11) | |
O23 | 0.5207 (4) | −0.1946 (4) | −0.1316 (4) | 0.0498 (11) | |
H231 | 0.6051 (18) | −0.207 (6) | −0.113 (5) | 0.060* | |
H232 | 0.487 (5) | −0.225 (5) | −0.205 (4) | 0.060* | |
O31 | −0.0433 (4) | 0.2566 (4) | 0.6921 (4) | 0.0510 (11) | |
O32 | −0.0389 (4) | 0.2317 (4) | 0.4901 (4) | 0.0514 (11) | |
O33 | 0.0834 (5) | 0.4508 (4) | 0.8678 (4) | 0.0516 (12) | |
H331 | 0.166 (2) | 0.471 (5) | 0.889 (6) | 0.062* | |
H332 | 0.043 (5) | 0.495 (4) | 0.811 (5) | 0.062* | |
O41 | 0.2199 (4) | 0.2372 (4) | 1.2700 (3) | 0.0458 (11) | |
O42 | 0.2119 (4) | 0.2694 (4) | 1.0654 (4) | 0.0468 (10) | |
O43 | 0.1100 (4) | 0.0457 (4) | 0.3826 (4) | 0.0518 (11) | |
H431 | 0.1952 (16) | 0.038 (6) | 0.410 (6) | 0.062* | |
H432 | 0.082 (5) | 0.007 (5) | 0.434 (5) | 0.062* | |
N11 | 0.3768 (5) | 0.0070 (5) | 0.1701 (4) | 0.0422 (12) | |
N13 | 0.3764 (5) | 0.0054 (4) | −0.0470 (4) | 0.0439 (11) | |
N21 | 0.6594 (5) | −0.0019 (4) | 0.7526 (4) | 0.0445 (11) | |
N23 | 0.6582 (5) | 0.0071 (5) | 0.5341 (4) | 0.0476 (12) | |
N31 | 0.2263 (5) | 0.2508 (4) | 0.7826 (4) | 0.0429 (11) | |
N33 | 0.2279 (5) | 0.2440 (5) | 0.5641 (5) | 0.0505 (13) | |
N41 | −0.0494 (5) | 0.2310 (4) | 1.2018 (4) | 0.0429 (12) | |
N43 | −0.0532 (5) | 0.2498 (4) | 0.9838 (4) | 0.0423 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.060 (7) | 0.078 (8) | 0.027 (5) | 0.000 (5) | 0.020 (5) | 0.001 (4) |
Li2 | 0.046 (6) | 0.069 (7) | 0.029 (4) | 0.001 (4) | 0.019 (4) | −0.002 (4) |
Li3 | 0.046 (6) | 0.075 (7) | 0.025 (4) | −0.005 (5) | 0.017 (4) | −0.005 (4) |
Li4 | 0.040 (5) | 0.064 (6) | 0.027 (4) | 0.003 (4) | 0.010 (4) | 0.003 (4) |
C12 | 0.046 (3) | 0.042 (3) | 0.028 (2) | 0.003 (3) | 0.013 (2) | −0.002 (2) |
C14 | 0.045 (3) | 0.076 (4) | 0.033 (3) | 0.008 (3) | 0.005 (2) | −0.004 (3) |
C15 | 0.036 (3) | 0.080 (5) | 0.041 (3) | 0.003 (3) | 0.009 (3) | −0.006 (3) |
C16 | 0.043 (3) | 0.069 (4) | 0.041 (3) | −0.001 (3) | 0.022 (3) | −0.006 (3) |
C17 | 0.044 (3) | 0.047 (3) | 0.025 (2) | 0.001 (3) | 0.014 (2) | 0.001 (2) |
C22 | 0.045 (3) | 0.046 (3) | 0.022 (2) | 0.000 (3) | 0.014 (2) | 0.000 (2) |
C24 | 0.041 (3) | 0.081 (4) | 0.046 (3) | 0.002 (3) | 0.023 (3) | 0.009 (3) |
C25 | 0.036 (3) | 0.087 (5) | 0.044 (3) | 0.000 (3) | 0.007 (3) | 0.008 (3) |
C26 | 0.044 (3) | 0.072 (4) | 0.028 (3) | −0.006 (3) | 0.002 (2) | 0.002 (3) |
C27 | 0.040 (3) | 0.053 (4) | 0.024 (3) | 0.003 (3) | 0.009 (2) | 0.000 (2) |
C32 | 0.042 (3) | 0.047 (3) | 0.025 (2) | −0.002 (2) | 0.011 (2) | 0.000 (2) |
C34 | 0.048 (4) | 0.106 (6) | 0.042 (3) | −0.002 (4) | 0.025 (3) | −0.010 (3) |
C35 | 0.040 (3) | 0.090 (5) | 0.047 (3) | 0.000 (3) | 0.009 (3) | −0.014 (3) |
C36 | 0.046 (3) | 0.080 (4) | 0.031 (2) | 0.002 (3) | 0.007 (2) | −0.007 (3) |
C37 | 0.044 (3) | 0.054 (4) | 0.026 (3) | 0.000 (3) | 0.013 (2) | −0.003 (2) |
C42 | 0.038 (3) | 0.045 (3) | 0.027 (2) | 0.000 (2) | 0.010 (2) | 0.000 (2) |
C44 | 0.041 (3) | 0.065 (4) | 0.031 (3) | −0.002 (3) | 0.005 (2) | 0.002 (3) |
C45 | 0.035 (3) | 0.074 (5) | 0.049 (3) | −0.001 (3) | 0.012 (3) | 0.004 (3) |
C46 | 0.043 (4) | 0.072 (4) | 0.033 (3) | −0.001 (3) | 0.015 (3) | 0.003 (3) |
C47 | 0.040 (3) | 0.048 (3) | 0.027 (2) | 0.001 (2) | 0.011 (2) | 0.000 (2) |
O1 | 0.042 (2) | 0.076 (3) | 0.058 (3) | 0.003 (2) | 0.012 (2) | 0.000 (2) |
O2 | 0.051 (3) | 0.080 (3) | 0.047 (2) | −0.009 (2) | 0.017 (2) | −0.002 (2) |
O11 | 0.044 (2) | 0.085 (3) | 0.0309 (19) | −0.003 (2) | 0.0103 (18) | −0.006 (2) |
O12 | 0.040 (2) | 0.081 (3) | 0.0329 (19) | −0.001 (2) | 0.0146 (17) | −0.005 (2) |
O13 | 0.055 (3) | 0.063 (3) | 0.040 (2) | 0.002 (2) | 0.014 (2) | −0.0012 (18) |
O21 | 0.040 (2) | 0.092 (4) | 0.031 (2) | −0.005 (2) | 0.0123 (18) | 0.004 (2) |
O22 | 0.043 (2) | 0.080 (3) | 0.0290 (19) | −0.004 (2) | 0.0082 (17) | 0.0042 (19) |
O23 | 0.037 (2) | 0.081 (3) | 0.0319 (19) | 0.001 (2) | 0.0114 (18) | −0.0022 (19) |
O31 | 0.040 (2) | 0.080 (3) | 0.0360 (19) | −0.006 (2) | 0.0154 (18) | −0.006 (2) |
O32 | 0.041 (2) | 0.081 (3) | 0.0313 (19) | 0.003 (2) | 0.0094 (17) | −0.0048 (19) |
O33 | 0.047 (3) | 0.063 (3) | 0.044 (2) | −0.001 (2) | 0.013 (2) | 0.0030 (19) |
O41 | 0.038 (2) | 0.071 (3) | 0.0282 (19) | 0.001 (2) | 0.0091 (17) | 0.0032 (18) |
O42 | 0.038 (2) | 0.073 (3) | 0.0309 (17) | −0.001 (2) | 0.0125 (16) | 0.0052 (18) |
O43 | 0.051 (2) | 0.066 (3) | 0.040 (2) | 0.004 (2) | 0.017 (2) | 0.0062 (18) |
N11 | 0.043 (3) | 0.061 (3) | 0.024 (2) | −0.004 (2) | 0.012 (2) | −0.004 (2) |
N13 | 0.044 (3) | 0.061 (3) | 0.027 (2) | 0.002 (2) | 0.011 (2) | −0.003 (2) |
N21 | 0.040 (3) | 0.065 (3) | 0.027 (2) | −0.004 (2) | 0.0085 (19) | 0.000 (2) |
N23 | 0.047 (3) | 0.065 (3) | 0.032 (2) | 0.003 (3) | 0.013 (2) | 0.002 (2) |
N31 | 0.043 (3) | 0.063 (3) | 0.023 (2) | 0.004 (2) | 0.0103 (19) | −0.001 (2) |
N33 | 0.046 (3) | 0.079 (4) | 0.031 (2) | 0.000 (3) | 0.017 (2) | −0.004 (2) |
N41 | 0.038 (3) | 0.066 (3) | 0.027 (2) | 0.000 (2) | 0.014 (2) | 0.003 (2) |
N43 | 0.041 (2) | 0.058 (3) | 0.028 (2) | 0.002 (2) | 0.011 (2) | 0.002 (2) |
Li1—O13 | 2.012 (14) | C27—O21 | 1.233 (7) |
Li1—O11 | 2.030 (10) | C27—O22 | 1.260 (7) |
Li1—N23 | 2.111 (11) | C32—N31 | 1.333 (7) |
Li1—N11 | 2.121 (11) | C32—N33 | 1.345 (7) |
Li1—O22 | 2.154 (10) | C32—C37 | 1.524 (9) |
Li2—O23 | 1.996 (12) | C34—N33 | 1.321 (9) |
Li2—O12 | 2.077 (10) | C34—C35 | 1.368 (9) |
Li2—O21i | 2.094 (10) | C34—H34 | 0.9300 |
Li2—N13 | 2.138 (9) | C35—C36 | 1.367 (9) |
Li2—N21i | 2.180 (9) | C35—H35 | 0.9300 |
Li3—O33 | 2.002 (13) | C36—N31 | 1.321 (8) |
Li3—O31 | 2.107 (10) | C36—H36 | 0.9300 |
Li3—O42 | 2.103 (10) | C37—O31 | 1.242 (8) |
Li3—N43 | 2.154 (9) | C37—O32 | 1.248 (7) |
Li3—N31 | 2.164 (9) | C42—N43 | 1.322 (7) |
Li4—O43 | 2.010 (12) | C42—N41 | 1.339 (8) |
Li4—O32 | 2.092 (9) | C42—C47 | 1.531 (8) |
Li4—N41i | 2.107 (10) | C44—N43 | 1.328 (8) |
Li4—N33 | 2.120 (10) | C44—C45 | 1.379 (9) |
Li4—O41i | 2.126 (9) | C44—H44 | 0.9300 |
C12—N11 | 1.327 (8) | C45—C46 | 1.389 (9) |
C12—N13 | 1.332 (7) | C45—H45 | 0.9300 |
C12—C17 | 1.512 (8) | C46—N41 | 1.321 (8) |
C14—N13 | 1.336 (8) | C46—H46 | 0.9300 |
C14—C15 | 1.370 (9) | C47—O42 | 1.246 (7) |
C14—H14 | 0.9300 | C47—O41 | 1.244 (7) |
C15—C16 | 1.372 (9) | O1—H11 | 0.861 (15) |
C15—H15 | 0.9300 | O1—H12 | 0.859 (15) |
C16—N11 | 1.322 (8) | O2—H21 | 0.861 (15) |
C16—H16 | 0.9300 | O2—H22 | 0.857 (15) |
C17—O11 | 1.240 (7) | O13—H131 | 0.857 (14) |
C17—O12 | 1.255 (7) | O13—H132 | 0.864 (15) |
C22—N23 | 1.327 (7) | O21—Li2ii | 2.094 (10) |
C22—N21 | 1.343 (7) | O23—H231 | 0.861 (14) |
C22—C27 | 1.523 (8) | O23—H232 | 0.857 (15) |
C24—N23 | 1.332 (8) | O33—H331 | 0.863 (15) |
C24—C25 | 1.371 (9) | O33—H332 | 0.854 (15) |
C24—H24 | 0.9300 | O41—Li4ii | 2.126 (9) |
C25—C26 | 1.371 (9) | O43—H431 | 0.858 (15) |
C25—H25 | 0.9300 | O43—H432 | 0.862 (14) |
C26—N21 | 1.328 (8) | N21—Li2ii | 2.180 (9) |
C26—H26 | 0.9300 | N41—Li4ii | 2.107 (10) |
O13—Li1—O11 | 103.9 (5) | N33—C34—C35 | 123.6 (5) |
O13—Li1—N23 | 100.6 (5) | N33—C34—H34 | 118.2 |
O11—Li1—N23 | 98.7 (5) | C35—C34—H34 | 118.2 |
O13—Li1—N11 | 100.7 (5) | C34—C35—C36 | 116.2 (6) |
O11—Li1—N11 | 80.8 (4) | C34—C35—H35 | 121.9 |
N23—Li1—N11 | 158.2 (7) | C36—C35—H35 | 121.9 |
O13—Li1—O22 | 98.5 (5) | N31—C36—C35 | 122.9 (5) |
O11—Li1—O22 | 157.6 (7) | N31—C36—H36 | 118.6 |
N23—Li1—O22 | 77.9 (3) | C35—C36—H36 | 118.6 |
N11—Li1—O22 | 94.3 (5) | O31—C37—O32 | 127.7 (6) |
O23—Li2—O12 | 98.4 (5) | O31—C37—C32 | 116.3 (5) |
O23—Li2—O21i | 100.1 (5) | O32—C37—C32 | 116.0 (5) |
O12—Li2—O21i | 161.4 (7) | N43—C42—N41 | 126.2 (6) |
O23—Li2—N13 | 103.6 (5) | N43—C42—C47 | 117.3 (5) |
O12—Li2—N13 | 79.2 (3) | N41—C42—C47 | 116.6 (5) |
O21i—Li2—N13 | 97.7 (4) | N43—C44—C45 | 122.2 (5) |
O23—Li2—N21i | 104.6 (5) | N43—C44—H44 | 118.9 |
O12—Li2—N21i | 96.0 (4) | C45—C44—H44 | 118.9 |
O21i—Li2—N21i | 78.0 (3) | C44—C45—C46 | 116.8 (6) |
N13—Li2—N21i | 151.8 (6) | C44—C45—H45 | 121.6 |
O33—Li3—O31 | 101.0 (5) | C46—C45—H45 | 121.6 |
O33—Li3—O42 | 101.2 (5) | N41—C46—C45 | 121.7 (6) |
O31—Li3—O42 | 157.6 (7) | N41—C46—H46 | 119.1 |
O33—Li3—N43 | 108.5 (5) | C45—C46—H46 | 119.1 |
O31—Li3—N43 | 97.7 (4) | O42—C47—O41 | 128.3 (6) |
O42—Li3—N43 | 77.4 (3) | O42—C47—C42 | 114.8 (5) |
O33—Li3—N31 | 102.2 (5) | O41—C47—C42 | 116.8 (5) |
O31—Li3—N31 | 78.4 (3) | H11—O1—H12 | 104 (2) |
O42—Li3—N31 | 94.6 (4) | H21—O2—H22 | 104 (2) |
N43—Li3—N31 | 149.2 (6) | C17—O11—Li1 | 115.2 (5) |
O43—Li4—O32 | 105.1 (5) | C17—O12—Li2 | 115.4 (5) |
O43—Li4—N41i | 102.4 (5) | Li1—O13—H131 | 123 (4) |
O32—Li4—N41i | 95.4 (4) | Li1—O13—H132 | 117 (4) |
O43—Li4—N33 | 102.6 (5) | H131—O13—H132 | 104 (2) |
O32—Li4—N33 | 78.8 (3) | C27—O21—Li2ii | 116.9 (5) |
N41i—Li4—N33 | 155.0 (7) | C27—O22—Li1 | 114.9 (5) |
O43—Li4—O41i | 97.7 (4) | Li2—O23—H231 | 101 (5) |
O32—Li4—O41i | 157.1 (6) | Li2—O23—H232 | 113 (5) |
N41i—Li4—O41i | 79.1 (3) | H231—O23—H232 | 104 (2) |
N33—Li4—O41i | 96.9 (4) | C37—O31—Li3 | 115.8 (5) |
N11—C12—N13 | 125.1 (6) | C37—O32—Li4 | 116.1 (5) |
N11—C12—C17 | 117.2 (5) | Li3—O33—H331 | 108 (4) |
N13—C12—C17 | 117.7 (5) | Li3—O33—H332 | 134 (5) |
N13—C14—C15 | 121.7 (5) | H331—O33—H332 | 104 (2) |
N13—C14—H14 | 119.1 | C47—O41—Li4ii | 115.0 (5) |
C15—C14—H14 | 119.1 | C47—O42—Li3 | 117.9 (4) |
C14—C15—C16 | 117.4 (6) | Li4—O43—H431 | 102 (5) |
C14—C15—H15 | 121.3 | Li4—O43—H432 | 121 (5) |
C16—C15—H15 | 121.3 | H431—O43—H432 | 103 (2) |
N11—C16—C15 | 121.6 (5) | C16—N11—C12 | 117.5 (5) |
N11—C16—H16 | 119.2 | C16—N11—Li1 | 132.9 (5) |
C15—C16—H16 | 119.2 | C12—N11—Li1 | 108.5 (5) |
O11—C17—O12 | 126.7 (6) | C12—N13—C14 | 116.6 (5) |
O11—C17—C12 | 117.2 (5) | C12—N13—Li2 | 109.0 (5) |
O12—C17—C12 | 116.1 (5) | C14—N13—Li2 | 132.1 (5) |
N23—C22—N21 | 125.7 (5) | C26—N21—C22 | 115.9 (5) |
N23—C22—C27 | 117.9 (4) | C26—N21—Li2ii | 132.6 (4) |
N21—C22—C27 | 116.4 (4) | C22—N21—Li2ii | 110.5 (5) |
N23—C24—C25 | 122.0 (5) | C24—N23—C22 | 116.7 (5) |
N23—C24—H24 | 119.0 | C24—N23—Li1 | 130.3 (5) |
C25—C24—H24 | 119.0 | C22—N23—Li1 | 111.9 (5) |
C26—C25—C24 | 117.0 (6) | C36—N31—C32 | 116.2 (5) |
C26—C25—H25 | 121.5 | C36—N31—Li3 | 132.4 (4) |
C24—C25—H25 | 121.5 | C32—N31—Li3 | 109.2 (4) |
N21—C26—C25 | 122.6 (5) | C34—N33—C32 | 115.3 (5) |
N21—C26—H26 | 118.7 | C34—N33—Li4 | 132.3 (5) |
C25—C26—H26 | 118.7 | C32—N33—Li4 | 110.9 (4) |
O21—C27—O22 | 127.4 (6) | C46—N41—C42 | 116.7 (5) |
O21—C27—C22 | 117.4 (5) | C46—N41—Li4ii | 130.7 (5) |
O22—C27—C22 | 115.2 (5) | C42—N41—Li4ii | 111.9 (5) |
N31—C32—N33 | 125.8 (5) | C42—N43—C44 | 116.5 (5) |
N31—C32—C37 | 117.9 (5) | C42—N43—Li3 | 111.7 (5) |
N33—C32—C37 | 116.3 (5) | C44—N43—Li3 | 131.1 (4) |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O31 | 0.86 (2) | 1.99 (3) | 2.814 (7) | 159 (8) |
O1—H12···O22iii | 0.86 (2) | 2.06 (2) | 2.897 (8) | 164 (6) |
O2—H21···O32iii | 0.86 (2) | 2.04 (3) | 2.849 (7) | 155 (7) |
O2—H22···O21iv | 0.86 (2) | 1.90 (2) | 2.755 (7) | 174 (8) |
O13—H131···O41i | 0.86 (1) | 2.13 (3) | 2.898 (6) | 149 (4) |
O13—H132···O1v | 0.86 (2) | 2.02 (3) | 2.867 (6) | 165 (7) |
O23—H232···O13vi | 0.86 (2) | 2.01 (3) | 2.807 (6) | 154 (5) |
O33—H331···O12vii | 0.86 (2) | 1.93 (2) | 2.777 (7) | 169 (6) |
O33—H332···O43iii | 0.85 (2) | 2.31 (3) | 3.106 (6) | 154 (6) |
O43—H431···O22 | 0.86 (2) | 2.03 (2) | 2.879 (6) | 170 (7) |
O43—H432···O2viii | 0.86 (1) | 2.00 (4) | 2.773 (6) | 148 (5) |
O23—H231···O42ix | 0.86 (1) | 1.86 (2) | 2.715 (6) | 177 (5) |
Symmetry codes: (i) x, y, z−1; (iii) −x, y+1/2, −z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) −x+1, y−1/2, −z; (vii) −x+1, y+1/2, −z+1; (viii) x, y−1, z; (ix) −x+1, y−1/2, −z+1. |
References
Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Colacio, E., Aouryaghal, H., Mota, A. J., Cano, J., Sillanpää, R. & Rodríguez-Diéguez, A. (2009). CrystEngComm, 11, 2054–2064. Web of Science CSD CrossRef CAS Google Scholar
Kokunov, Yu. V. & Gorbunova, Yu. E. (2007). Zh. Neorg. Khim. 52, 1632–1637. CAS Google Scholar
Rodríguez-Diéguez, A., Aouryaghal, H., Mota, A. J. & Colacio, E. (2008). Acta Cryst. E64, m618. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rodríguez-Diéguez, A., Cano, J., Kivekäs, R., Debdoubi, A. & Colacio, E. (2007). Inorg. Chem. 46, 2503–2510. Web of Science PubMed Google Scholar
Sava, D. F., Kravtsov, V. Ch., Nouar, F., Wojtas, L., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 3768–3770. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1369–m1370. CSD CrossRef IUCr Journals Google Scholar
Suárez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodríguez-Diéguez, A., Luneau, D. & Colacio, E. (2008). Inorg. Chem. 47, 8143–8158. Web of Science PubMed Google Scholar
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Ga, E.-Q. (2008a). Chem. Commun. pp. 847–849. Web of Science CSD CrossRef Google Scholar
Zhang, J.-Y., Ma, Y., Cheng, A.-L., Yue, Q., Sun, Q. & Gao, E.-Q. (2008b). Dalton Trans. pp. 2061–2068. Web of Science CSD CrossRef Google Scholar
Zhang, B.-Y., Yang, Q. & Nie, J.-J. (2008c). Acta Cryst. E64, m7. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, J.-P. & Liu, F.-C. (2010). Acta Cryst. E66, m1059. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.