organic compounds
of 3-carbamothioylpyridinium thiocyanate
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUniversité Abdelmalek Essaadi, Faculté des Sciences, BP 2121 M'Hannech II, 93002 Tétouan, Morroco
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the cation of the title salt, C6H7N2S+·SCN−, the C=S bond is oriented trans with respect to the C—C=N fragment in the pyridine ring. The planes of the aromatic ring and the thioamide fragment of the cation make a dihedral angle of 38.31 (4)°. In the crystal, the components are linked by N—H⋯S and N—H⋯N, hydrogen bonds, forming a two-dimensional network parallel to (10-1).
Keywords: crystal structure; 3-carbamothioylpyridinium cation; thiocyanate anion; N—H⋯S hydrogen bonding.
CCDC reference: 1037011
1. Related literature
For isomeric thionicotinamide structures, see: Downie et al. (1972); Form et al. (1973); Colleter & Gadret (1967). For a related structure, see: Sharif et al. (2009). For the structural interest of thionicotinamides, see: Fonari et al. (2007).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1037011
https://doi.org/10.1107/S2056989014026437/bq2397sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026437/bq2397Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014026437/bq2397Isup3.cml
3-Thionicotinamide (690 mg, 0.5 mmol) was added dropwise to a solution of KSCN (48.6 mg, 0.5 mmol) in water/ethanol (10 ml/10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, single crystals suitable for X-ray diffraction were obtained.
Approximate positions for all H atoms were first obtained from the difference
However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: C—H = 0.93 Å and N—H = 0.86 Å with Uiso = 1.2Ueq(C or N).There are three isomeric thionicotinamides of general formula C6H6N2S, 2-thioamidopyridine (Downie et al., 1972), 3-thioamidopyridine (Form et al., 1973) and 4-thioamidopyridine (Colleter & Gadret, 1967), then three possible coordination sites. The structural interest to these compounds has centered on the parameters of the thioamide group and the consequent electron arrangement within the group (Fonari et al., 2007). The thioamide group and the pyridine ring are not coplanar.
In the title compound, (I), the
contains one 3-3-carbamothioylpyridinium and one thiocyanate ions. The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the cation moiety, the C=S bond is oriented trans with respect to the C—C—N fragment in the pyridine ring. The aromatic ring and the thioamide fragment of the thionicotinamide molecule make a dihedral angle of 38.31 (4)° similar to that found in 3-carbamothioylpyridinium iodide (trans) (30.02 (3)°) (Sharif et al., 2009) and 3-thioamido-pyridine (cis) (33.76 (7)°) (Form et al. 1973). The crystal packing is stabilized by weak N—H···N and N—H···S hydrogen bonds forming a two-dimensional network (Fig. 2).For isomeric thionicotinamide structures, see: Downie et al. (1972); Form et al. (1973); Colleter & Gadret (1967). For a related structure, see: Sharif et al. (2009). For the structural interest of thionicotinamides, see: Fonari et al. (2007).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. | |
Fig. 2. Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H···S in red and N—H···N in black] |
C6H7N2S+·CNS− | F(000) = 408 |
Mr = 197.28 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2495 (2) Å | Cell parameters from 5267 reflections |
b = 9.3759 (3) Å | θ = 2.6–32.1° |
c = 13.5949 (3) Å | µ = 0.52 mm−1 |
β = 94.454 (1)° | T = 295 K |
V = 921.26 (4) Å3 | Prism, colorless |
Z = 4 | 0.2 × 0.16 × 0.1 mm |
Bruker APEXII diffractometer | 3313 independent reflections |
Radiation source: sealed tube | 2563 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scans | θmax = 32.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→10 |
Tmin = 0.679, Tmax = 0.746 | k = −14→14 |
12686 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1946P] where P = (Fo2 + 2Fc2)/3 |
3313 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C6H7N2S+·CNS− | V = 921.26 (4) Å3 |
Mr = 197.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2495 (2) Å | µ = 0.52 mm−1 |
b = 9.3759 (3) Å | T = 295 K |
c = 13.5949 (3) Å | 0.2 × 0.16 × 0.1 mm |
β = 94.454 (1)° |
Bruker APEXII diffractometer | 3313 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2563 reflections with I > 2σ(I) |
Tmin = 0.679, Tmax = 0.746 | Rint = 0.023 |
12686 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.58 e Å−3 |
3313 reflections | Δρmin = −0.26 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9430 (2) | 0.08889 (15) | 0.83615 (10) | 0.0351 (3) | |
C2 | 0.91545 (18) | 0.13467 (15) | 0.73124 (9) | 0.0322 (3) | |
C3 | 0.9619 (2) | 0.27153 (17) | 0.70337 (11) | 0.0401 (3) | |
H3 | 1.0114 | 0.336 | 0.7503 | 0.048* | |
C4 | 0.9342 (3) | 0.3117 (2) | 0.60509 (13) | 0.0536 (4) | |
H4 | 0.9675 | 0.4025 | 0.5854 | 0.064* | |
C5 | 0.8576 (3) | 0.2168 (2) | 0.53738 (12) | 0.0552 (5) | |
H5 | 0.8365 | 0.2434 | 0.4716 | 0.066* | |
C6 | 0.8395 (2) | 0.04215 (18) | 0.65938 (10) | 0.0392 (3) | |
H6 | 0.8072 | −0.0501 | 0.6764 | 0.047* | |
C11 | 0.3607 (2) | 0.10281 (16) | 0.67580 (11) | 0.0383 (3) | |
N1 | 0.9976 (2) | −0.04356 (15) | 0.85163 (10) | 0.0492 (3) | |
H1A | 1.0153 | −0.0983 | 0.8025 | 0.059* | |
H1B | 1.0156 | −0.0754 | 0.9109 | 0.059* | |
N2 | 0.81305 (19) | 0.08559 (17) | 0.56595 (9) | 0.0464 (3) | |
H2 | 0.7655 | 0.027 | 0.5224 | 0.056* | |
N11 | 0.3114 (3) | 0.0569 (2) | 0.59942 (12) | 0.0642 (5) | |
S1 | 0.90233 (7) | 0.20284 (5) | 0.92615 (3) | 0.04789 (14) | |
S11 | 0.43232 (7) | 0.16631 (5) | 0.78372 (3) | 0.04908 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0405 (7) | 0.0356 (6) | 0.0286 (5) | −0.0036 (5) | −0.0012 (5) | −0.0032 (5) |
C2 | 0.0340 (6) | 0.0364 (6) | 0.0257 (5) | 0.0005 (5) | 0.0004 (4) | −0.0029 (4) |
C3 | 0.0481 (8) | 0.0358 (7) | 0.0358 (6) | 0.0008 (6) | −0.0001 (6) | −0.0007 (5) |
C4 | 0.0724 (12) | 0.0460 (9) | 0.0427 (8) | 0.0019 (8) | 0.0056 (8) | 0.0102 (7) |
C5 | 0.0638 (11) | 0.0713 (12) | 0.0299 (7) | 0.0139 (9) | 0.0000 (7) | 0.0074 (7) |
C6 | 0.0421 (7) | 0.0435 (7) | 0.0316 (6) | −0.0039 (6) | 0.0007 (5) | −0.0066 (5) |
C11 | 0.0440 (7) | 0.0352 (7) | 0.0356 (6) | 0.0024 (6) | 0.0029 (5) | 0.0006 (5) |
N1 | 0.0781 (10) | 0.0370 (7) | 0.0323 (6) | 0.0049 (7) | 0.0022 (6) | 0.0002 (5) |
N2 | 0.0484 (7) | 0.0609 (9) | 0.0286 (5) | 0.0024 (6) | −0.0043 (5) | −0.0102 (5) |
N11 | 0.0865 (12) | 0.0625 (10) | 0.0419 (7) | 0.0034 (9) | −0.0070 (7) | −0.0116 (7) |
S1 | 0.0704 (3) | 0.0440 (2) | 0.02793 (18) | 0.01027 (18) | −0.00476 (16) | −0.00570 (13) |
S11 | 0.0598 (3) | 0.0521 (3) | 0.0344 (2) | −0.00810 (19) | −0.00268 (16) | −0.00319 (15) |
C1—N1 | 1.3154 (19) | C5—N2 | 1.337 (3) |
C1—C2 | 1.4879 (18) | C5—H5 | 0.93 |
C1—S1 | 1.6677 (14) | C6—N2 | 1.3334 (19) |
C2—C3 | 1.387 (2) | C6—H6 | 0.93 |
C2—C6 | 1.3879 (19) | C11—N11 | 1.155 (2) |
C3—C4 | 1.388 (2) | C11—S11 | 1.6303 (16) |
C3—H3 | 0.93 | N1—H1A | 0.86 |
C4—C5 | 1.367 (3) | N1—H1B | 0.86 |
C4—H4 | 0.93 | N2—H2 | 0.86 |
N1—C1—C2 | 116.23 (12) | N2—C5—H5 | 120.1 |
N1—C1—S1 | 123.75 (11) | C4—C5—H5 | 120.1 |
C2—C1—S1 | 120.02 (11) | N2—C6—C2 | 119.97 (15) |
C3—C2—C6 | 118.52 (13) | N2—C6—H6 | 120 |
C3—C2—C1 | 120.76 (12) | C2—C6—H6 | 120 |
C6—C2—C1 | 120.71 (13) | N11—C11—S11 | 179.35 (17) |
C2—C3—C4 | 119.60 (15) | C1—N1—H1A | 120 |
C2—C3—H3 | 120.2 | C1—N1—H1B | 120 |
C4—C3—H3 | 120.2 | H1A—N1—H1B | 120 |
C5—C4—C3 | 119.51 (17) | C6—N2—C5 | 122.51 (14) |
C5—C4—H4 | 120.2 | C6—N2—H2 | 118.7 |
C3—C4—H4 | 120.2 | C5—N2—H2 | 118.7 |
N2—C5—C4 | 119.88 (15) | ||
N1—C1—C2—C3 | −142.88 (16) | C2—C3—C4—C5 | 1.4 (3) |
S1—C1—C2—C3 | 37.84 (19) | C3—C4—C5—N2 | −1.1 (3) |
N1—C1—C2—C6 | 38.3 (2) | C3—C2—C6—N2 | 0.1 (2) |
S1—C1—C2—C6 | −140.98 (13) | C1—C2—C6—N2 | 178.93 (13) |
C6—C2—C3—C4 | −0.9 (2) | C2—C6—N2—C5 | 0.2 (2) |
C1—C2—C3—C4 | −179.75 (15) | C4—C5—N2—C6 | 0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S11i | 0.86 | 2.54 | 3.3450 (15) | 156 |
N1—H1B···S1ii | 0.86 | 2.55 | 3.3975 (14) | 171 |
N2—H2···N11iii | 0.86 | 1.88 | 2.709 (2) | 162 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S11i | 0.8600 | 2.5400 | 3.3450 (15) | 156.00 |
N1—H1B···S1ii | 0.8600 | 2.5500 | 3.3975 (14) | 171.00 |
N2—H2···N11iii | 0.8600 | 1.8800 | 2.709 (2) | 162.00 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1. |
Acknowledgements
Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie – Algérie) via the PNR programme for financial support.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463–3469. Google Scholar
Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1972). Acta Cryst. B28, 283–290. CSD CrossRef IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J. & Simonov, Y. A. (2007). J. Mol. Struct. 826, 89–95. Web of Science CSD CrossRef CAS Google Scholar
Form, G. R., Raper, E. S. & Downie, T. C. (1973). Acta Cryst. B29, 776–782. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A. & Ahmad, S. (2009). Acta Cryst. E65, o2423. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are three isomeric thionicotinamides of general formula C6H6N2S, 2-thioamidopyridine (Downie et al., 1972), 3-thioamidopyridine (Form et al., 1973) and 4-thioamidopyridine (Colleter & Gadret, 1967), then three possible coordination sites. The structural interest to these compounds has centered on the parameters of the thioamide group and the consequent electron arrangement within the group (Fonari et al., 2007). The thioamide group and the pyridine ring are not coplanar.
In the title compound, (I), the asymmetric unit contains one 3-3-carbamothioylpyridinium and one thiocyanate ions. The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the cation moiety, the C=S bond is oriented trans with respect to the C—C—N fragment in the pyridine ring. The aromatic ring and the thioamide fragment of the thionicotinamide molecule make a dihedral angle of 38.31 (4)° similar to that found in 3-carbamothioylpyridinium iodide (trans) (30.02 (3)°) (Sharif et al., 2009) and 3-thioamido-pyridine (cis) (33.76 (7)°) (Form et al. 1973). The crystal packing is stabilized by weak N—H···N and N—H···S hydrogen bonds forming a two-dimensional network (Fig. 2).