research communications
κ2O,O′)[1-phenyl-3-(pyridin-4-yl)propane-κN]uranium(VI)
of dioxidobis(pentane-2,4-dionato-aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp
In the title compound, [UO2(C5H7O2)2(C14H15N)], the uranyl(VI) unit ([O=U=O]2+) is coordinated to two acetylacetonate (acac) anions and one 1-phenyl-3-(pyridin-4-yl)propane (ppp) molecule. The geometry around the U atom is UNO6 pentagonal–bipyramidal; two uranyl(VI) O atoms are located at the axial positions, whereas four O atoms from two chelating bidentate acac ligands and one N atom of a ppp ligand form the equatorial plane.
Keywords: crystal structure; pentane-2,4-dionate; 1-phenyl-3-(pyridin-4-yl)propane; uranium(VI) complex.
CCDC reference: 1037284
1. Chemical context
The structural properties of uranyl(VI) complexes are interesting from the viewpoint of nuclear fuels reprocessing and actinide waste treatment. In most commercial reprocessing plants, spent nuclear fuels are treated by the Purex method, in which uranium and plutonium are extracted from a nitric acid solution of spent nuclear fuels using tributyl-phosphate/n-dodecane. Uranium in the nitric acid solution exists as uranyl(VI) ([O=U=O]2+) complexes. However, the Purex method has a few problems; for example, as the processing takes place on a relatively large scale, a large amount of extractant is necessary (Ikeda et al., 2004; Suzuki et al., 2012) Attempts to find other suitable coordinating ligands are therefore being undertaken. A number of structural studies of uranyl(VI) β-diketonate complexes have been reported by ourselves and others (Alcock et al., 1984, 1987; Huuskonen et al., 2007; Kannan et al., 2001; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010; Sidorenko et al., 2009; Tahir et al., 2006; Takao & Ikeda, 2008). In particular, acetylacetonate (acac), is the simplest β-diketonate ligand and an important coordinating ligand for uranium.
We report herein the synthesis and ), namely, [UO2(acac)2(ppp)].
of a novel uranyl(VI) acetylacetonate (acac) complex with the pyridine-based ligand ppp [ppp = 1-phenyl-3-(pyridin-4-yl)propane] (Seth, 20142. Structural commentary
The title compound of formula [UO2(C5H7O2)2(C14H15N)], is constructed from one uranyl(VI) ([O=U=O]2+) unit, two acetylacetonate anions and one molecule of ppp (Fig. 1). The uranium(VI) atom exhibits a pentagonal–bipyramidal coordination geometry: two uranyl(VI) oxygen atoms (O1 and O2) are located in the axial positions and four oxygen atoms (O3, O4, O5 and O6) from two chelating bidentate acac ions, together with one nitrogen atom (N1) of the ppp molecule, form the equatorial plane. The bond lengths around U1 (Table 1) decrease in the order U—N > U—Oacac > U=O. The dihedral angle between the pyridine ring of the ppp molecule and the equatorial plane around U1 is 49.43 (12)°. The above structural properties are similar to those in the majority of previously characterised [UO2(acac)2L] (L = pyridine derivative ligand) complexes (Alcock et al., 1984; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010). The conformation of the ppp molecule is GG′ (Fig. 2). The dihedral angle between the pyridine ring and the phenyl ring in the ppp molecule is 26.96 (13)°.
|
3. Supramolecular features
A packing diagram of title complex is shown in Fig. 3. The molecules are stacked along the b axis, held together by van der Waals' interactions only. Significant intermolecular π–π and C—H⋯π interactions are not found.
4. Synthesis and crystallization
The title complex was synthesized according to literature procedures (Alcock et al., 1984, 1987; Kawasaki & Kitazawa, 2008; Kawasaki et al., 2010). To 10 ml of a methanolic solution containing 1 mmol UO2(NO3)2·6H2O was added 3 mmol of acetylacetone and 3 mmol of 1-phenyl-3-(pyridin-4-yl)propane in 5 ml MeOH. The solvent evaporated slowly at room temperature for a few days and orange crystal were obtained.
5. Refinement
Crystal data, data collection and structure . All H atoms were placed at calculated positions [C(CH)—H = 0.93, C(CH2)—H = 0.97 and C(CH3)—H = 0.96Å] and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH,CH2) and Uiso(H) = 1.5Ueq(CH3).
details are summarized in Table 2Supporting information
CCDC reference: 1037284
https://doi.org/10.1107/S2056989014026607/cq2012sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026607/cq2012Isup2.hkl
Data collection: APEX2 (Bruker, 2007) and XSCANS (Bruker, 2007); cell
SAINT (Bruker, 2007) and XSCANS (Bruker, 2007); data reduction: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[U(C5H7O2)2O2(C14H15N)] | Z = 2 |
Mr = 665.51 | F(000) = 640 |
Triclinic, P1 | Dx = 1.773 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2100 (16) Å | Cell parameters from 4311 reflections |
b = 11.530 (2) Å | θ = 2.6–28.5° |
c = 14.516 (3) Å | µ = 6.55 mm−1 |
α = 108.67 (3)° | T = 297 K |
β = 98.50 (3)° | Block, orange |
γ = 100.81 (3)° | 0.47 × 0.29 × 0.26 mm |
V = 1246.4 (4) Å3 |
Bruker SMART APEXII diffractometer | 6948 independent reflections |
Radiation source: fine-focus sealed tube | 6026 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
Detector resolution: 8.333 pixels mm-1 | θmax = 30.9°, θmin = 1.9° |
ω scans | h = −11→9 |
Absorption correction: analytical (XPREP; Bruker, 2007) | k = −16→15 |
Tmin = 0.149, Tmax = 0.281 | l = −14→20 |
9353 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0257P)2] where P = (Fo2 + 2Fc2)/3 |
6948 reflections | (Δ/σ)max = 0.003 |
293 parameters | Δρmax = 0.88 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.488854 (15) | 0.690915 (11) | 0.372080 (8) | 0.03519 (4) | |
O1 | 0.3391 (3) | 0.5504 (2) | 0.3581 (2) | 0.0535 (6) | |
O2 | 0.6386 (3) | 0.8327 (2) | 0.38786 (19) | 0.0525 (6) | |
O3 | 0.6977 (3) | 0.6473 (3) | 0.47398 (18) | 0.0566 (7) | |
O4 | 0.6471 (3) | 0.5741 (2) | 0.27211 (18) | 0.0521 (6) | |
O5 | 0.3569 (4) | 0.6784 (3) | 0.21310 (17) | 0.0579 (7) | |
O6 | 0.2846 (3) | 0.8105 (3) | 0.38825 (18) | 0.0567 (7) | |
N1 | 0.4613 (4) | 0.7730 (3) | 0.55740 (19) | 0.0397 (6) | |
C1 | 0.9705 (6) | 0.6794 (5) | 0.5706 (3) | 0.0810 (14) | |
H1A | 0.9878 | 0.7680 | 0.6071 | 0.121* | |
H1B | 1.0774 | 0.6618 | 0.5601 | 0.121* | |
H1C | 0.9231 | 0.6316 | 0.6080 | 0.121* | |
C2 | 0.8488 (5) | 0.6426 (3) | 0.4705 (3) | 0.0493 (9) | |
C3 | 0.9047 (5) | 0.6043 (4) | 0.3827 (3) | 0.0573 (10) | |
H3 | 1.0188 | 0.6043 | 0.3872 | 0.069* | |
C4 | 0.8004 (5) | 0.5661 (3) | 0.2886 (3) | 0.0497 (9) | |
C5 | 0.8646 (7) | 0.5049 (5) | 0.1981 (4) | 0.0757 (14) | |
H5A | 0.7867 | 0.4249 | 0.1584 | 0.114* | |
H5B | 0.9744 | 0.4920 | 0.2186 | 0.114* | |
H5C | 0.8738 | 0.5586 | 0.1595 | 0.114* | |
C6 | 0.2066 (7) | 0.6847 (5) | 0.0645 (3) | 0.0796 (15) | |
H6A | 0.3049 | 0.7172 | 0.0433 | 0.119* | |
H6B | 0.1140 | 0.7170 | 0.0434 | 0.119* | |
H6C | 0.1752 | 0.5940 | 0.0354 | 0.119* | |
C7 | 0.2466 (5) | 0.7251 (4) | 0.1764 (3) | 0.0496 (9) | |
C8 | 0.1637 (5) | 0.8067 (4) | 0.2321 (3) | 0.0560 (10) | |
H8 | 0.0878 | 0.8375 | 0.1980 | 0.067* | |
C9 | 0.1856 (4) | 0.8459 (3) | 0.3350 (3) | 0.0473 (8) | |
C10 | 0.0891 (6) | 0.9354 (4) | 0.3879 (3) | 0.0670 (12) | |
H10A | −0.0194 | 0.8881 | 0.3894 | 0.101* | |
H10B | 0.0723 | 0.9919 | 0.3531 | 0.101* | |
H10C | 0.1526 | 0.9833 | 0.4549 | 0.101* | |
C11 | 0.4545 (5) | 0.6962 (3) | 0.6101 (3) | 0.0449 (8) | |
H11 | 0.4583 | 0.6129 | 0.5791 | 0.054* | |
C12 | 0.4422 (5) | 0.7361 (4) | 0.7083 (3) | 0.0479 (8) | |
H12 | 0.4371 | 0.6798 | 0.7421 | 0.058* | |
C13 | 0.4373 (4) | 0.8594 (3) | 0.7568 (2) | 0.0434 (8) | |
C14 | 0.4484 (5) | 0.9381 (3) | 0.7028 (3) | 0.0476 (8) | |
H14 | 0.4501 | 1.0227 | 0.7333 | 0.057* | |
C15 | 0.4570 (5) | 0.8929 (3) | 0.6042 (3) | 0.0470 (8) | |
H15 | 0.4599 | 0.9474 | 0.5688 | 0.056* | |
C16 | 0.4135 (6) | 0.9028 (4) | 0.8628 (3) | 0.0576 (10) | |
H16A | 0.4701 | 0.9919 | 0.8956 | 0.069* | |
H16B | 0.4675 | 0.8568 | 0.8984 | 0.069* | |
C17 | 0.2268 (6) | 0.8831 (4) | 0.8692 (3) | 0.0586 (10) | |
H17A | 0.1655 | 0.7980 | 0.8253 | 0.070* | |
H17B | 0.2195 | 0.8901 | 0.9367 | 0.070* | |
C18 | 0.1404 (5) | 0.9765 (4) | 0.8412 (3) | 0.0536 (9) | |
H18A | 0.1565 | 0.9747 | 0.7759 | 0.064* | |
H18B | 0.0192 | 0.9492 | 0.8361 | 0.064* | |
C19 | 0.2056 (5) | 1.1116 (4) | 0.9144 (3) | 0.0488 (8) | |
C20 | 0.1846 (6) | 1.1420 (4) | 1.0114 (3) | 0.0621 (11) | |
H20 | 0.1317 | 1.0788 | 1.0318 | 0.075* | |
C21 | 0.2424 (6) | 1.2672 (5) | 1.0796 (3) | 0.0750 (14) | |
H21 | 0.2255 | 1.2868 | 1.1442 | 0.090* | |
C22 | 0.3239 (6) | 1.3604 (5) | 1.0503 (4) | 0.0772 (14) | |
H22 | 0.3654 | 1.4431 | 1.0952 | 0.093* | |
C23 | 0.3428 (7) | 1.3292 (5) | 0.9534 (4) | 0.0796 (14) | |
H23 | 0.3952 | 1.3923 | 0.9328 | 0.096* | |
C24 | 0.2867 (6) | 1.2082 (4) | 0.8869 (3) | 0.0627 (11) | |
H24 | 0.3030 | 1.1900 | 0.8222 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.03593 (7) | 0.03608 (7) | 0.03601 (7) | 0.01545 (5) | 0.00830 (5) | 0.01242 (5) |
O1 | 0.0494 (15) | 0.0444 (15) | 0.0616 (16) | 0.0058 (12) | 0.0129 (12) | 0.0154 (12) |
O2 | 0.0563 (16) | 0.0411 (14) | 0.0611 (16) | 0.0096 (12) | 0.0197 (13) | 0.0182 (12) |
O3 | 0.0536 (16) | 0.078 (2) | 0.0503 (14) | 0.0391 (15) | 0.0132 (12) | 0.0262 (14) |
O4 | 0.0537 (16) | 0.0575 (16) | 0.0478 (14) | 0.0285 (13) | 0.0151 (12) | 0.0124 (12) |
O5 | 0.0669 (18) | 0.0722 (19) | 0.0417 (13) | 0.0421 (15) | 0.0081 (12) | 0.0175 (13) |
O6 | 0.0607 (17) | 0.0762 (19) | 0.0453 (13) | 0.0456 (15) | 0.0134 (12) | 0.0208 (13) |
N1 | 0.0469 (16) | 0.0383 (15) | 0.0385 (14) | 0.0166 (13) | 0.0148 (12) | 0.0141 (12) |
C1 | 0.067 (3) | 0.093 (4) | 0.075 (3) | 0.026 (3) | −0.012 (2) | 0.029 (3) |
C2 | 0.046 (2) | 0.043 (2) | 0.062 (2) | 0.0183 (16) | 0.0049 (17) | 0.0212 (17) |
C3 | 0.0358 (19) | 0.065 (3) | 0.079 (3) | 0.0201 (18) | 0.0187 (19) | 0.030 (2) |
C4 | 0.052 (2) | 0.044 (2) | 0.068 (2) | 0.0230 (17) | 0.0303 (19) | 0.0257 (18) |
C5 | 0.093 (4) | 0.072 (3) | 0.086 (3) | 0.043 (3) | 0.054 (3) | 0.032 (3) |
C6 | 0.092 (4) | 0.107 (4) | 0.046 (2) | 0.048 (3) | 0.004 (2) | 0.029 (2) |
C7 | 0.048 (2) | 0.056 (2) | 0.0462 (19) | 0.0167 (18) | 0.0018 (16) | 0.0232 (17) |
C8 | 0.055 (2) | 0.064 (3) | 0.052 (2) | 0.030 (2) | 0.0006 (18) | 0.0204 (19) |
C9 | 0.0377 (18) | 0.043 (2) | 0.058 (2) | 0.0173 (15) | 0.0035 (16) | 0.0130 (17) |
C10 | 0.062 (3) | 0.068 (3) | 0.071 (3) | 0.040 (2) | 0.011 (2) | 0.014 (2) |
C11 | 0.057 (2) | 0.0391 (19) | 0.0473 (19) | 0.0229 (16) | 0.0172 (17) | 0.0184 (15) |
C12 | 0.060 (2) | 0.049 (2) | 0.0470 (19) | 0.0214 (18) | 0.0182 (17) | 0.0262 (17) |
C13 | 0.0427 (19) | 0.048 (2) | 0.0362 (16) | 0.0154 (16) | 0.0057 (14) | 0.0101 (15) |
C14 | 0.060 (2) | 0.0379 (19) | 0.0438 (18) | 0.0158 (17) | 0.0158 (17) | 0.0096 (15) |
C15 | 0.062 (2) | 0.0379 (19) | 0.0488 (19) | 0.0157 (17) | 0.0215 (17) | 0.0192 (16) |
C16 | 0.076 (3) | 0.066 (3) | 0.0361 (18) | 0.034 (2) | 0.0081 (18) | 0.0178 (18) |
C17 | 0.079 (3) | 0.055 (2) | 0.051 (2) | 0.021 (2) | 0.029 (2) | 0.0227 (19) |
C18 | 0.052 (2) | 0.057 (2) | 0.053 (2) | 0.0113 (18) | 0.0174 (18) | 0.0191 (19) |
C19 | 0.0391 (19) | 0.058 (2) | 0.048 (2) | 0.0161 (17) | 0.0076 (16) | 0.0160 (18) |
C20 | 0.063 (3) | 0.065 (3) | 0.056 (2) | 0.015 (2) | 0.018 (2) | 0.017 (2) |
C21 | 0.073 (3) | 0.084 (4) | 0.058 (3) | 0.033 (3) | 0.011 (2) | 0.007 (2) |
C22 | 0.069 (3) | 0.051 (3) | 0.094 (4) | 0.018 (2) | −0.001 (3) | 0.009 (3) |
C23 | 0.081 (3) | 0.053 (3) | 0.103 (4) | 0.013 (2) | 0.019 (3) | 0.029 (3) |
C24 | 0.064 (3) | 0.063 (3) | 0.069 (3) | 0.021 (2) | 0.019 (2) | 0.030 (2) |
U1—O1 | 1.773 (3) | C10—H10A | 0.9600 |
U1—O2 | 1.777 (3) | C10—H10B | 0.9600 |
U1—O3 | 2.330 (2) | C10—H10C | 0.9600 |
U1—O4 | 2.360 (2) | C11—C12 | 1.376 (5) |
U1—O5 | 2.348 (2) | C11—H11 | 0.9300 |
U1—O6 | 2.354 (2) | C12—C13 | 1.382 (5) |
U1—N1 | 2.610 (3) | C12—H12 | 0.9300 |
O3—C2 | 1.260 (4) | C13—C14 | 1.375 (5) |
O4—C4 | 1.272 (4) | C13—C16 | 1.512 (5) |
O5—C7 | 1.271 (4) | C14—C15 | 1.375 (5) |
O6—C9 | 1.251 (4) | C14—H14 | 0.9300 |
N1—C11 | 1.342 (4) | C15—H15 | 0.9300 |
N1—C15 | 1.342 (4) | C16—C17 | 1.528 (6) |
C1—C2 | 1.519 (5) | C16—H16A | 0.9700 |
C1—H1A | 0.9600 | C16—H16B | 0.9700 |
C1—H1B | 0.9600 | C17—C18 | 1.519 (5) |
C1—H1C | 0.9600 | C17—H17A | 0.9700 |
C2—C3 | 1.384 (6) | C17—H17B | 0.9700 |
C3—C4 | 1.386 (6) | C18—C19 | 1.517 (6) |
C3—H3 | 0.9300 | C18—H18A | 0.9700 |
C4—C5 | 1.501 (5) | C18—H18B | 0.9700 |
C5—H5A | 0.9600 | C19—C20 | 1.382 (5) |
C5—H5B | 0.9600 | C19—C24 | 1.389 (6) |
C5—H5C | 0.9600 | C20—C21 | 1.407 (6) |
C6—C7 | 1.505 (5) | C20—H20 | 0.9300 |
C6—H6A | 0.9600 | C21—C22 | 1.375 (7) |
C6—H6B | 0.9600 | C21—H21 | 0.9300 |
C6—H6C | 0.9600 | C22—C23 | 1.375 (7) |
C7—C8 | 1.385 (5) | C22—H22 | 0.9300 |
C8—C9 | 1.388 (5) | C23—C24 | 1.362 (6) |
C8—H8 | 0.9300 | C23—H23 | 0.9300 |
C9—C10 | 1.504 (5) | C24—H24 | 0.9300 |
O1—U1—O2 | 179.19 (11) | O6—C9—C8 | 122.9 (3) |
O1—U1—O3 | 91.86 (12) | O6—C9—C10 | 116.8 (3) |
O1—U1—O4 | 91.38 (11) | C8—C9—C10 | 120.3 (3) |
O1—U1—O5 | 89.82 (12) | C9—C10—H10A | 109.5 |
O1—U1—O6 | 92.85 (12) | C9—C10—H10B | 109.5 |
O2—U1—O3 | 87.91 (12) | H10A—C10—H10B | 109.5 |
O2—U1—O4 | 89.27 (11) | C9—C10—H10C | 109.5 |
O2—U1—O5 | 90.77 (12) | H10A—C10—H10C | 109.5 |
O2—U1—O6 | 86.82 (11) | H10B—C10—H10C | 109.5 |
O3—U1—O4 | 70.88 (9) | N1—C11—C12 | 122.5 (3) |
O3—U1—O5 | 149.99 (9) | N1—C11—H11 | 118.8 |
O3—U1—O6 | 138.83 (9) | C12—C11—H11 | 118.8 |
O4—U1—O5 | 79.13 (9) | C11—C12—C13 | 120.3 (3) |
O4—U1—O6 | 149.71 (9) | C11—C12—H12 | 119.8 |
O5—U1—O6 | 70.91 (9) | C13—C12—H12 | 119.8 |
O1—U1—N1 | 86.45 (11) | C14—C13—C12 | 116.7 (3) |
O2—U1—N1 | 92.74 (11) | C14—C13—C16 | 122.3 (3) |
O3—U1—N1 | 69.37 (9) | C12—C13—C16 | 121.0 (3) |
O4—U1—N1 | 140.08 (8) | C15—C14—C13 | 120.7 (3) |
O5—U1—N1 | 140.62 (9) | C15—C14—H14 | 119.6 |
O6—U1—N1 | 70.15 (9) | C13—C14—H14 | 119.6 |
C2—O3—U1 | 132.2 (2) | N1—C15—C14 | 122.3 (3) |
C4—O4—U1 | 132.7 (2) | N1—C15—H15 | 118.9 |
C7—O5—U1 | 137.4 (2) | C14—C15—H15 | 118.9 |
C9—O6—U1 | 139.2 (2) | C13—C16—C17 | 113.2 (3) |
C11—N1—C15 | 117.5 (3) | C13—C16—H16A | 108.9 |
C11—N1—U1 | 120.6 (2) | C17—C16—H16A | 108.9 |
C15—N1—U1 | 121.9 (2) | C13—C16—H16B | 108.9 |
C2—C1—H1A | 109.5 | C17—C16—H16B | 108.9 |
C2—C1—H1B | 109.5 | H16A—C16—H16B | 107.7 |
H1A—C1—H1B | 109.5 | C18—C17—C16 | 113.9 (3) |
C2—C1—H1C | 109.5 | C18—C17—H17A | 108.8 |
H1A—C1—H1C | 109.5 | C16—C17—H17A | 108.8 |
H1B—C1—H1C | 109.5 | C18—C17—H17B | 108.8 |
O3—C2—C3 | 123.9 (4) | C16—C17—H17B | 108.8 |
O3—C2—C1 | 115.6 (4) | H17A—C17—H17B | 107.7 |
C3—C2—C1 | 120.5 (4) | C19—C18—C17 | 114.2 (3) |
C2—C3—C4 | 123.8 (3) | C19—C18—H18A | 108.7 |
C2—C3—H3 | 118.1 | C17—C18—H18A | 108.7 |
C4—C3—H3 | 118.1 | C19—C18—H18B | 108.7 |
O4—C4—C3 | 124.5 (3) | C17—C18—H18B | 108.7 |
O4—C4—C5 | 115.8 (4) | H18A—C18—H18B | 107.6 |
C3—C4—C5 | 119.7 (4) | C20—C19—C24 | 117.9 (4) |
C4—C5—H5A | 109.5 | C20—C19—C18 | 120.4 (4) |
C4—C5—H5B | 109.5 | C24—C19—C18 | 121.7 (4) |
H5A—C5—H5B | 109.5 | C19—C20—C21 | 120.9 (4) |
C4—C5—H5C | 109.5 | C19—C20—H20 | 119.5 |
H5A—C5—H5C | 109.5 | C21—C20—H20 | 119.5 |
H5B—C5—H5C | 109.5 | C22—C21—C20 | 119.7 (5) |
C7—C6—H6A | 109.5 | C22—C21—H21 | 120.1 |
C7—C6—H6B | 109.5 | C20—C21—H21 | 120.1 |
H6A—C6—H6B | 109.5 | C21—C22—C23 | 118.8 (5) |
C7—C6—H6C | 109.5 | C21—C22—H22 | 120.6 |
H6A—C6—H6C | 109.5 | C23—C22—H22 | 120.6 |
H6B—C6—H6C | 109.5 | C24—C23—C22 | 121.7 (5) |
O5—C7—C8 | 124.5 (3) | C24—C23—H23 | 119.1 |
O5—C7—C6 | 115.5 (4) | C22—C23—H23 | 119.1 |
C8—C7—C6 | 120.0 (3) | C23—C24—C19 | 120.8 (4) |
C7—C8—C9 | 124.8 (3) | C23—C24—H24 | 119.6 |
C7—C8—H8 | 117.6 | C19—C24—H24 | 119.6 |
C9—C8—H8 | 117.6 |
Acknowledgements
This work was supported by a MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities 2012–2016.
References
Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681. CSD CrossRef Web of Science Google Scholar
Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2007). APEX2, XSCANS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Huuskonen, J., Raatikainen, K. & Rissanen, K. (2007). Acta Cryst. E63, m413–m414. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ikeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420–425. Web of Science CrossRef CAS Google Scholar
Kannan, S., Shanmugasundara Raj, S. & Fun, H.-K. (2001). Polyhedron, 20, 2145–2150. Web of Science CSD CrossRef CAS Google Scholar
Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528–1530. Web of Science CSD CrossRef CAS Google Scholar
Seth, S. K. (2014). J. Mol. Struct. 1070, 65–74. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sidorenko, G. V., Grigor'ev, M. S., Gurzhiy, V. V., Suglobov, D. N. & Tananaev, I. G. (2009). Radiochemistry, 51, 345–349. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, T., Kawasaki, T., Takao, K., Harada, M., Nogami, M. & Ikeda, Y. (2012). J. Nucl. Sci. Technol. 49, 1010–1017. Web of Science CrossRef CAS Google Scholar
Tahir, A. A., Hamid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2006). Acta Cryst. E62, m1780–m1781. CSD CrossRef IUCr Journals Google Scholar
Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219–m220. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.