research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dioxidobis(pentane-2,4-dionato-κ2O,O′)[1-phenyl-3-(pyridin-4-yl)propane-κN]uranium(VI)

aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp

Edited by A. M. Chippindale, University of Reading, England (Received 23 October 2014; accepted 3 December 2014; online 1 January 2015)

In the title compound, [UO2(C5H7O2)2(C14H15N)], the uran­yl(VI) unit ([O=U=O]2+) is coordinated to two acetyl­acetonate (acac) anions and one 1-phenyl-3-(pyridin-4-yl)propane (ppp) mol­ecule. The geometry around the U atom is UNO6 penta­gonal–bipyramidal; two uran­yl(VI) O atoms are located at the axial positions, whereas four O atoms from two chelating bidentate acac ligands and one N atom of a ppp ligand form the equatorial plane.

1. Chemical context

The structural properties of uran­yl(VI) complexes are inter­esting from the viewpoint of nuclear fuels reprocessing and actinide waste treatment. In most commercial reprocessing plants, spent nuclear fuels are treated by the Purex method, in which uranium and plutonium are extracted from a nitric acid solution of spent nuclear fuels using tributyl-phosphate/n-dodecane. Uranium in the nitric acid solution exists as uran­yl(VI) ([O=U=O]2+) complexes. However, the Purex method has a few problems; for example, as the processing takes place on a relatively large scale, a large amount of extractant is necessary (Ikeda et al., 2004[Ikeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420-425.]; Suzuki et al., 2012[Suzuki, T., Kawasaki, T., Takao, K., Harada, M., Nogami, M. & Ikeda, Y. (2012). J. Nucl. Sci. Technol. 49, 1010-1017.]) Attempts to find other suitable coordinating ligands are therefore being undertaken. A number of structural studies of uran­yl(VI) β-diketonate complexes have been reported by ourselves and others (Alcock et al., 1984[Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679-681.], 1987[Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476-1480.]; Huuskonen et al., 2007[Huuskonen, J., Raatikainen, K. & Rissanen, K. (2007). Acta Cryst. E63, m413-m414.]; Kannan et al., 2001[Kannan, S., Shanmugasundara Raj, S. & Fun, H.-K. (2001). Polyhedron, 20, 2145-2150.]; Kawasaki & Kitazawa, 2008[Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788.]; Kawasaki et al., 2010[Kawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528-1530.]; Sidorenko et al., 2009[Sidorenko, G. V., Grigor'ev, M. S., Gurzhiy, V. V., Suglobov, D. N. & Tananaev, I. G. (2009). Radiochemistry, 51, 345-349.]; Tahir et al., 2006[Tahir, A. A., Hamid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2006). Acta Cryst. E62, m1780-m1781.]; Takao & Ikeda, 2008[Takao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219-m220.]). In particular, acetyl­acetonate (acac), is the simplest β-diketonate ligand and an important coordin­ating ligand for uranium.

[Scheme 1]

We report herein the synthesis and crystal structure of a novel uran­yl(VI) acetyl­acetonate (acac) complex with the pyridine-based ligand ppp [ppp = 1-phenyl-3-(pyridin-4-yl)propane] (Seth, 2014[Seth, S. K. (2014). J. Mol. Struct. 1070, 65-74.]), namely, [UO2(acac)2(ppp)].

2. Structural commentary

The title compound of formula [UO2(C5H7O2)2(C14H15N)], is constructed from one uran­yl(VI) ([O=U=O]2+) unit, two acetyl­acetonate anions and one mol­ecule of ppp (Fig. 1[link]). The uranium(VI) atom exhibits a penta­gonal–bipyramidal coord­ination geometry: two uran­yl(VI) oxygen atoms (O1 and O2) are located in the axial positions and four oxygen atoms (O3, O4, O5 and O6) from two chelating bidentate acac ions, together with one nitro­gen atom (N1) of the ppp mol­ecule, form the equatorial plane. The bond lengths around U1 (Table 1[link]) decrease in the order U—N > U—Oacac > U=O. The dihedral angle between the pyridine ring of the ppp mol­ecule and the equatorial plane around U1 is 49.43 (12)°. The above structural properties are similar to those in the majority of previously characterised [UO2(acac)2L] (L = pyridine derivative ligand) complexes (Alcock et al., 1984[Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679-681.]; Kawasaki & Kitazawa, 2008[Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788.]; Kawasaki et al., 2010[Kawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528-1530.]). The conformation of the ppp mol­ecule is GG′ (Fig. 2[link]). The dihedral angle between the pyridine ring and the phenyl ring in the ppp mol­ecule is 26.96 (13)°.

Table 1
Selected geometric parameters (Å, °)

U1—O1 1.773 (3) U1—O5 2.348 (2)
U1—O2 1.777 (3) U1—O6 2.354 (2)
U1—O3 2.330 (2) U1—N1 2.610 (3)
U1—O4 2.360 (2)    
       
O1—U1—O2 179.19 (11) O1—U1—N1 86.45 (11)
O3—U1—O4 70.88 (9) O2—U1—N1 92.74 (11)
O3—U1—O6 138.83 (9) O3—U1—N1 69.37 (9)
O4—U1—O5 79.13 (9) O6—U1—N1 70.15 (9)
O5—U1—O6 70.91 (9)    
[Figure 1]
Figure 1
The mol­ecular structure of [UO2(acac)2(ppp)]. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The four possible conformations that the ppp ligand can form (based on Carlucci et al., 2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121-129.]). In the title compound, the conformation is GG′.

3. Supra­molecular features

A packing diagram of title complex is shown in Fig. 3[link]. The mol­ecules are stacked along the b axis, held together by van der Waals' inter­actions only. Significant inter­molecular ππ and C—H⋯π inter­actions are not found.

[Figure 3]
Figure 3
A packing diagram of the title complex (red line: a axis; green line: b axis; blue line: c axis). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title complex was synthesized according to literature procedures (Alcock et al., 1984[Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679-681.], 1987[Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476-1480.]; Kawasaki & Kitazawa, 2008[Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788.]; Kawasaki et al., 2010[Kawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528-1530.]). To 10 ml of a methano­lic solution containing 1 mmol UO2(NO3)2·6H2O was added 3 mmol of acetyl­acetone and 3 mmol of 1-phenyl-3-(pyridin-4-yl)propane in 5 ml MeOH. The solvent evaporated slowly at room temperature for a few days and orange crystal were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed at calculated positions [C(CH)—H = 0.93, C(CH2)—H = 0.97 and C(CH3)—H = 0.96Å] and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH,CH2) and Uiso(H) = 1.5Ueq(CH3).

Table 2
Experimental details

Crystal data
Chemical formula [UO2(C5H7O2)2(C14H15N)]
Mr 665.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 8.2100 (16), 11.530 (2), 14.516 (3)
α, β, γ (°) 108.67 (3), 98.50 (3), 100.81 (3)
V3) 1246.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.55
Crystal size (mm) 0.47 × 0.29 × 0.26
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Analytical (XPREP; Bruker, 2007[Bruker (2007). APEX2, XSCANS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.149, 0.281
No. of measured, independent and observed [I > 2σ(I)] reflections 9353, 6948, 6026
Rint 0.015
(sin θ/λ)max−1) 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 0.99
No. of reflections 6948
No. of parameters 293
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.64
Computer programs: APEX2, SAINT and XSCANS (Bruker, 2007[Bruker (2007). APEX2, XSCANS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007) and XSCANS (Bruker, 2007); cell refinement: SAINT (Bruker, 2007) and XSCANS (Bruker, 2007); data reduction: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Dioxidobis(pentane-2,4-dionato-κ2O,O')[1-phenyl-3-(pyridin-4-yl)propane-κN]uranium(VI) top
Crystal data top
[U(C5H7O2)2O2(C14H15N)]Z = 2
Mr = 665.51F(000) = 640
Triclinic, P1Dx = 1.773 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2100 (16) ÅCell parameters from 4311 reflections
b = 11.530 (2) Åθ = 2.6–28.5°
c = 14.516 (3) ŵ = 6.55 mm1
α = 108.67 (3)°T = 297 K
β = 98.50 (3)°Block, orange
γ = 100.81 (3)°0.47 × 0.29 × 0.26 mm
V = 1246.4 (4) Å3
Data collection top
Bruker SMART APEXII
diffractometer
6948 independent reflections
Radiation source: fine-focus sealed tube6026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.333 pixels mm-1θmax = 30.9°, θmin = 1.9°
ω scansh = 119
Absorption correction: analytical
(XPREP; Bruker, 2007)
k = 1615
Tmin = 0.149, Tmax = 0.281l = 1420
9353 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0257P)2]
where P = (Fo2 + 2Fc2)/3
6948 reflections(Δ/σ)max = 0.003
293 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.488854 (15)0.690915 (11)0.372080 (8)0.03519 (4)
O10.3391 (3)0.5504 (2)0.3581 (2)0.0535 (6)
O20.6386 (3)0.8327 (2)0.38786 (19)0.0525 (6)
O30.6977 (3)0.6473 (3)0.47398 (18)0.0566 (7)
O40.6471 (3)0.5741 (2)0.27211 (18)0.0521 (6)
O50.3569 (4)0.6784 (3)0.21310 (17)0.0579 (7)
O60.2846 (3)0.8105 (3)0.38825 (18)0.0567 (7)
N10.4613 (4)0.7730 (3)0.55740 (19)0.0397 (6)
C10.9705 (6)0.6794 (5)0.5706 (3)0.0810 (14)
H1A0.98780.76800.60710.121*
H1B1.07740.66180.56010.121*
H1C0.92310.63160.60800.121*
C20.8488 (5)0.6426 (3)0.4705 (3)0.0493 (9)
C30.9047 (5)0.6043 (4)0.3827 (3)0.0573 (10)
H31.01880.60430.38720.069*
C40.8004 (5)0.5661 (3)0.2886 (3)0.0497 (9)
C50.8646 (7)0.5049 (5)0.1981 (4)0.0757 (14)
H5A0.78670.42490.15840.114*
H5B0.97440.49200.21860.114*
H5C0.87380.55860.15950.114*
C60.2066 (7)0.6847 (5)0.0645 (3)0.0796 (15)
H6A0.30490.71720.04330.119*
H6B0.11400.71700.04340.119*
H6C0.17520.59400.03540.119*
C70.2466 (5)0.7251 (4)0.1764 (3)0.0496 (9)
C80.1637 (5)0.8067 (4)0.2321 (3)0.0560 (10)
H80.08780.83750.19800.067*
C90.1856 (4)0.8459 (3)0.3350 (3)0.0473 (8)
C100.0891 (6)0.9354 (4)0.3879 (3)0.0670 (12)
H10A0.01940.88810.38940.101*
H10B0.07230.99190.35310.101*
H10C0.15260.98330.45490.101*
C110.4545 (5)0.6962 (3)0.6101 (3)0.0449 (8)
H110.45830.61290.57910.054*
C120.4422 (5)0.7361 (4)0.7083 (3)0.0479 (8)
H120.43710.67980.74210.058*
C130.4373 (4)0.8594 (3)0.7568 (2)0.0434 (8)
C140.4484 (5)0.9381 (3)0.7028 (3)0.0476 (8)
H140.45011.02270.73330.057*
C150.4570 (5)0.8929 (3)0.6042 (3)0.0470 (8)
H150.45990.94740.56880.056*
C160.4135 (6)0.9028 (4)0.8628 (3)0.0576 (10)
H16A0.47010.99190.89560.069*
H16B0.46750.85680.89840.069*
C170.2268 (6)0.8831 (4)0.8692 (3)0.0586 (10)
H17A0.16550.79800.82530.070*
H17B0.21950.89010.93670.070*
C180.1404 (5)0.9765 (4)0.8412 (3)0.0536 (9)
H18A0.15650.97470.77590.064*
H18B0.01920.94920.83610.064*
C190.2056 (5)1.1116 (4)0.9144 (3)0.0488 (8)
C200.1846 (6)1.1420 (4)1.0114 (3)0.0621 (11)
H200.13171.07881.03180.075*
C210.2424 (6)1.2672 (5)1.0796 (3)0.0750 (14)
H210.22551.28681.14420.090*
C220.3239 (6)1.3604 (5)1.0503 (4)0.0772 (14)
H220.36541.44311.09520.093*
C230.3428 (7)1.3292 (5)0.9534 (4)0.0796 (14)
H230.39521.39230.93280.096*
C240.2867 (6)1.2082 (4)0.8869 (3)0.0627 (11)
H240.30301.19000.82220.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.03593 (7)0.03608 (7)0.03601 (7)0.01545 (5)0.00830 (5)0.01242 (5)
O10.0494 (15)0.0444 (15)0.0616 (16)0.0058 (12)0.0129 (12)0.0154 (12)
O20.0563 (16)0.0411 (14)0.0611 (16)0.0096 (12)0.0197 (13)0.0182 (12)
O30.0536 (16)0.078 (2)0.0503 (14)0.0391 (15)0.0132 (12)0.0262 (14)
O40.0537 (16)0.0575 (16)0.0478 (14)0.0285 (13)0.0151 (12)0.0124 (12)
O50.0669 (18)0.0722 (19)0.0417 (13)0.0421 (15)0.0081 (12)0.0175 (13)
O60.0607 (17)0.0762 (19)0.0453 (13)0.0456 (15)0.0134 (12)0.0208 (13)
N10.0469 (16)0.0383 (15)0.0385 (14)0.0166 (13)0.0148 (12)0.0141 (12)
C10.067 (3)0.093 (4)0.075 (3)0.026 (3)0.012 (2)0.029 (3)
C20.046 (2)0.043 (2)0.062 (2)0.0183 (16)0.0049 (17)0.0212 (17)
C30.0358 (19)0.065 (3)0.079 (3)0.0201 (18)0.0187 (19)0.030 (2)
C40.052 (2)0.044 (2)0.068 (2)0.0230 (17)0.0303 (19)0.0257 (18)
C50.093 (4)0.072 (3)0.086 (3)0.043 (3)0.054 (3)0.032 (3)
C60.092 (4)0.107 (4)0.046 (2)0.048 (3)0.004 (2)0.029 (2)
C70.048 (2)0.056 (2)0.0462 (19)0.0167 (18)0.0018 (16)0.0232 (17)
C80.055 (2)0.064 (3)0.052 (2)0.030 (2)0.0006 (18)0.0204 (19)
C90.0377 (18)0.043 (2)0.058 (2)0.0173 (15)0.0035 (16)0.0130 (17)
C100.062 (3)0.068 (3)0.071 (3)0.040 (2)0.011 (2)0.014 (2)
C110.057 (2)0.0391 (19)0.0473 (19)0.0229 (16)0.0172 (17)0.0184 (15)
C120.060 (2)0.049 (2)0.0470 (19)0.0214 (18)0.0182 (17)0.0262 (17)
C130.0427 (19)0.048 (2)0.0362 (16)0.0154 (16)0.0057 (14)0.0101 (15)
C140.060 (2)0.0379 (19)0.0438 (18)0.0158 (17)0.0158 (17)0.0096 (15)
C150.062 (2)0.0379 (19)0.0488 (19)0.0157 (17)0.0215 (17)0.0192 (16)
C160.076 (3)0.066 (3)0.0361 (18)0.034 (2)0.0081 (18)0.0178 (18)
C170.079 (3)0.055 (2)0.051 (2)0.021 (2)0.029 (2)0.0227 (19)
C180.052 (2)0.057 (2)0.053 (2)0.0113 (18)0.0174 (18)0.0191 (19)
C190.0391 (19)0.058 (2)0.048 (2)0.0161 (17)0.0076 (16)0.0160 (18)
C200.063 (3)0.065 (3)0.056 (2)0.015 (2)0.018 (2)0.017 (2)
C210.073 (3)0.084 (4)0.058 (3)0.033 (3)0.011 (2)0.007 (2)
C220.069 (3)0.051 (3)0.094 (4)0.018 (2)0.001 (3)0.009 (3)
C230.081 (3)0.053 (3)0.103 (4)0.013 (2)0.019 (3)0.029 (3)
C240.064 (3)0.063 (3)0.069 (3)0.021 (2)0.019 (2)0.030 (2)
Geometric parameters (Å, º) top
U1—O11.773 (3)C10—H10A0.9600
U1—O21.777 (3)C10—H10B0.9600
U1—O32.330 (2)C10—H10C0.9600
U1—O42.360 (2)C11—C121.376 (5)
U1—O52.348 (2)C11—H110.9300
U1—O62.354 (2)C12—C131.382 (5)
U1—N12.610 (3)C12—H120.9300
O3—C21.260 (4)C13—C141.375 (5)
O4—C41.272 (4)C13—C161.512 (5)
O5—C71.271 (4)C14—C151.375 (5)
O6—C91.251 (4)C14—H140.9300
N1—C111.342 (4)C15—H150.9300
N1—C151.342 (4)C16—C171.528 (6)
C1—C21.519 (5)C16—H16A0.9700
C1—H1A0.9600C16—H16B0.9700
C1—H1B0.9600C17—C181.519 (5)
C1—H1C0.9600C17—H17A0.9700
C2—C31.384 (6)C17—H17B0.9700
C3—C41.386 (6)C18—C191.517 (6)
C3—H30.9300C18—H18A0.9700
C4—C51.501 (5)C18—H18B0.9700
C5—H5A0.9600C19—C201.382 (5)
C5—H5B0.9600C19—C241.389 (6)
C5—H5C0.9600C20—C211.407 (6)
C6—C71.505 (5)C20—H200.9300
C6—H6A0.9600C21—C221.375 (7)
C6—H6B0.9600C21—H210.9300
C6—H6C0.9600C22—C231.375 (7)
C7—C81.385 (5)C22—H220.9300
C8—C91.388 (5)C23—C241.362 (6)
C8—H80.9300C23—H230.9300
C9—C101.504 (5)C24—H240.9300
O1—U1—O2179.19 (11)O6—C9—C8122.9 (3)
O1—U1—O391.86 (12)O6—C9—C10116.8 (3)
O1—U1—O491.38 (11)C8—C9—C10120.3 (3)
O1—U1—O589.82 (12)C9—C10—H10A109.5
O1—U1—O692.85 (12)C9—C10—H10B109.5
O2—U1—O387.91 (12)H10A—C10—H10B109.5
O2—U1—O489.27 (11)C9—C10—H10C109.5
O2—U1—O590.77 (12)H10A—C10—H10C109.5
O2—U1—O686.82 (11)H10B—C10—H10C109.5
O3—U1—O470.88 (9)N1—C11—C12122.5 (3)
O3—U1—O5149.99 (9)N1—C11—H11118.8
O3—U1—O6138.83 (9)C12—C11—H11118.8
O4—U1—O579.13 (9)C11—C12—C13120.3 (3)
O4—U1—O6149.71 (9)C11—C12—H12119.8
O5—U1—O670.91 (9)C13—C12—H12119.8
O1—U1—N186.45 (11)C14—C13—C12116.7 (3)
O2—U1—N192.74 (11)C14—C13—C16122.3 (3)
O3—U1—N169.37 (9)C12—C13—C16121.0 (3)
O4—U1—N1140.08 (8)C15—C14—C13120.7 (3)
O5—U1—N1140.62 (9)C15—C14—H14119.6
O6—U1—N170.15 (9)C13—C14—H14119.6
C2—O3—U1132.2 (2)N1—C15—C14122.3 (3)
C4—O4—U1132.7 (2)N1—C15—H15118.9
C7—O5—U1137.4 (2)C14—C15—H15118.9
C9—O6—U1139.2 (2)C13—C16—C17113.2 (3)
C11—N1—C15117.5 (3)C13—C16—H16A108.9
C11—N1—U1120.6 (2)C17—C16—H16A108.9
C15—N1—U1121.9 (2)C13—C16—H16B108.9
C2—C1—H1A109.5C17—C16—H16B108.9
C2—C1—H1B109.5H16A—C16—H16B107.7
H1A—C1—H1B109.5C18—C17—C16113.9 (3)
C2—C1—H1C109.5C18—C17—H17A108.8
H1A—C1—H1C109.5C16—C17—H17A108.8
H1B—C1—H1C109.5C18—C17—H17B108.8
O3—C2—C3123.9 (4)C16—C17—H17B108.8
O3—C2—C1115.6 (4)H17A—C17—H17B107.7
C3—C2—C1120.5 (4)C19—C18—C17114.2 (3)
C2—C3—C4123.8 (3)C19—C18—H18A108.7
C2—C3—H3118.1C17—C18—H18A108.7
C4—C3—H3118.1C19—C18—H18B108.7
O4—C4—C3124.5 (3)C17—C18—H18B108.7
O4—C4—C5115.8 (4)H18A—C18—H18B107.6
C3—C4—C5119.7 (4)C20—C19—C24117.9 (4)
C4—C5—H5A109.5C20—C19—C18120.4 (4)
C4—C5—H5B109.5C24—C19—C18121.7 (4)
H5A—C5—H5B109.5C19—C20—C21120.9 (4)
C4—C5—H5C109.5C19—C20—H20119.5
H5A—C5—H5C109.5C21—C20—H20119.5
H5B—C5—H5C109.5C22—C21—C20119.7 (5)
C7—C6—H6A109.5C22—C21—H21120.1
C7—C6—H6B109.5C20—C21—H21120.1
H6A—C6—H6B109.5C21—C22—C23118.8 (5)
C7—C6—H6C109.5C21—C22—H22120.6
H6A—C6—H6C109.5C23—C22—H22120.6
H6B—C6—H6C109.5C24—C23—C22121.7 (5)
O5—C7—C8124.5 (3)C24—C23—H23119.1
O5—C7—C6115.5 (4)C22—C23—H23119.1
C8—C7—C6120.0 (3)C23—C24—C19120.8 (4)
C7—C8—C9124.8 (3)C23—C24—H24119.6
C7—C8—H8117.6C19—C24—H24119.6
C9—C8—H8117.6
 

Acknowledgements

This work was supported by a MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan)-Supported Program for the Strategic Research Foundation at Private Universities 2012–2016.

References

First citationAlcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681.  CSD CrossRef Web of Science Google Scholar
First citationAlcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). APEX2, XSCANS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 4, 121–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuuskonen, J., Raatikainen, K. & Rissanen, K. (2007). Acta Cryst. E63, m413–m414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIkeda, Y., Wada, E., Harada, M., Chikazawa, T., Kikuchi, T., Mineo, H., Morita, Y., Nogami, M. & Suzuki, K. (2004). J. Alloys Compd, 374, 420–425.  Web of Science CrossRef CAS Google Scholar
First citationKannan, S., Shanmugasundara Raj, S. & Fun, H.-K. (2001). Polyhedron, 20, 2145–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationKawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawasaki, T., Nishimura, T. & Kitazawa, T. (2010). Bull. Chem. Soc. Jpn, 83, 1528–1530.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeth, S. K. (2014). J. Mol. Struct. 1070, 65–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSidorenko, G. V., Grigor'ev, M. S., Gurzhiy, V. V., Suglobov, D. N. & Tananaev, I. G. (2009). Radiochemistry, 51, 345–349.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Kawasaki, T., Takao, K., Harada, M., Nogami, M. & Ikeda, Y. (2012). J. Nucl. Sci. Technol. 49, 1010–1017.  Web of Science CrossRef CAS Google Scholar
First citationTahir, A. A., Hamid, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2006). Acta Cryst. E62, m1780–m1781.  CSD CrossRef IUCr Journals Google Scholar
First citationTakao, K. & Ikeda, Y. (2008). Acta Cryst. E64, m219–m220.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds