organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,7,8,9-tetra­chloro-4-(3,5-di­chloro­benz­yl)-10,10-dimeth­­oxy-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

aBeijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China, bShanghai Institute of Pharmaceutical Industry, Shanghai 200040, People's Republic of China, and cState Key Laboratory of Bio-Organic & Natural Products Chmemistry, Shanghai Institute of Organic Chemistry, CAS., Shanghai 200032, People's Republic of China
*Correspondence e-mail: zhong.jialiang@sipi.com.cn

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 13 November 2014; accepted 26 November 2014; online 1 January 2015)

In the title compound, C17H11Cl6NO4, the configuration of the cyclo­alkene skeleton is endo,cis. The benzene ring is twisted by 58.94 (8)° from the attached pyrrolidine ring. Two carbonyl groups play a key role in the crystal packing. A short inter­molecular C⋯O distance of 3.017 (3) Å reveals that one carbonyl group is involved in dipole–dipole inter­actions, which link two adjacent enanti­omers into an inversion dimer. Another carbonyl group provides an acceptor for the weak inter­molecular C—H⋯O hydrogen bonds which link these dimers into layers parallel to (011).

1. Related literature

For related crystal structures, see: Shan et al. (2012[Shan, W.-Z., Gu, S.-J. & Liu, H. (2012). Chin. J. Struct. Chem. 31, 1524-1527.]); Kossakowski et al. (2009[Kossakowski, J., Pakosinska-Parys, M., Struga, M., Dybala, I., Koziol, A. E., La Colla, P., Marongiu, L. E., Ibba, C., Collu, D. & Loddo, R. (2009). Molecules, 14, 5189-5202.]). For the biological activity of related compounds, see: Kossakowski et al. (2006[Kossakowski, J., Wojciechowkai, A. & Kozio, A. E. (2006). Acta Pol. Pharm. Drug Res. 63, 261-264.], 2008[Kossakowski, J., Bielenica, A., Mirosław, B., Kozioł, A. E., Dybała, I. & Struga, M. (2008). Molecules, 13, 1570-1583.]); Struga et al. (2007[Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796-799.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H11Cl6NO4

  • Mr = 505.97

  • Triclinic, [P \overline 1]

  • a = 8.9905 (18) Å

  • b = 11.351 (2) Å

  • c = 11.482 (2) Å

  • α = 119.52 (3)°

  • β = 94.51 (3)°

  • γ = 90.23 (3)°

  • V = 1015.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 10037 measured reflections

  • 4611 independent reflections

  • 3865 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.05

  • 4611 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.93 2.57 3.265 (4) 132
C18—H18A⋯O2ii 0.96 2.45 3.260 (4) 141
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I) (Fig. 1), was synthesized from N-(3',5'-dichlorobenzyl)maleimide and 5,5-dimethoxy-1,2,3,4-tetrachlorocydopentadiene. The fused pyrrolidine ring systems are frequently encountered structural units in many synthetically challenging and biologically active alkaloids. The interest of constructing skeletons of this type was further enlightened by the recent disclosure that the rigid arylcyclo analogues having azatricyclo ring systems show anti-HIV-1, anti-cancer, antiviral, and antibacterial activities (Kossakowski et al., 2006).

In (I), the configuration of the cycloalkene skeleton is endo, cis. The dihedral angle of pyrrolidine ring and benzene ring is 58.94 (8)°. Two carbonyl groups play a key role in the crystal packing (Fig. 2). One carbonyl group is involved in dipole-dipole interactions, with C3···O1(-x+2, -y+2, -z) distance of 3.017 (3) Å, which link two adjacent enantiomers into inversion dimers. The other carbonyl group provides an acceptor for two weak intermolecular C—H···O hydrogen bonds (Table 1). These intermoleclular interactions link these dimers into layers parallel to (011).

Related literature top

For related crystal structures, see: Shan et al. (2012); Kossakowski et al. (2009). For the biological activity of related compounds, see: Kossakowski et al. (2006, 2008); Struga et al. (2007).

Experimental top

N-(3,5-Dichlorobenzyl)maleimide (2.44 g, 10 mmol) and 5,5-dimethoxy-1,2,3,4-tetrachlorocydopentadiene (2.63 g, 10 mmol) were dissolved in anhydrous toluene (100 ml). Then, the solution was refluxed for 8 h. After the solvent was removed under reduced pressure, the residue was dissolved in ether (150 ml), washed with water and brine, dried over anhydrous sodium sulfate, and concentrated to dryness. The product was purified by flash-chromatography (petroleum ether/ethyl acetate, 6:1) and the title compound was isolated as a white solid (4.16 g, 82%), with melting point between 104 and 106°C.

The crystals appropriate for X-ray data collection were obtained from acetone solution at room temperature after four days.

Refinement top

All H atoms were placed in geometically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å (0.98 for alicylic CH) for aromatic ring CH, and Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

The title compound, (I) (Fig. 1), was synthesized from N-(3',5'-dichlorobenzyl)maleimide and 5,5-dimethoxy-1,2,3,4-tetrachlorocydopentadiene. The fused pyrrolidine ring systems are frequently encountered structural units in many synthetically challenging and biologically active alkaloids. The interest of constructing skeletons of this type was further enlightened by the recent disclosure that the rigid arylcyclo analogues having azatricyclo ring systems show anti-HIV-1, anti-cancer, antiviral, and antibacterial activities (Kossakowski et al., 2006).

In (I), the configuration of the cycloalkene skeleton is endo, cis. The dihedral angle of pyrrolidine ring and benzene ring is 58.94 (8)°. Two carbonyl groups play a key role in the crystal packing (Fig. 2). One carbonyl group is involved in dipole-dipole interactions, with C3···O1(-x+2, -y+2, -z) distance of 3.017 (3) Å, which link two adjacent enantiomers into inversion dimers. The other carbonyl group provides an acceptor for two weak intermolecular C—H···O hydrogen bonds (Table 1). These intermoleclular interactions link these dimers into layers parallel to (011).

For related crystal structures, see: Shan et al. (2012); Kossakowski et al. (2009). For the biological activity of related compounds, see: Kossakowski et al. (2006, 2008); Struga et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along [01-1]. The dipole-dipole and intermolecular C—H···O interactions are shown by dashed lines. H atoms not involved in C—H···O interactions are omitted for clarity.
1,7,8,9-Tetrachloro-4-(3,5-dichlorobenzyl)-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione top
Crystal data top
C17H11Cl6NO4Z = 2
Mr = 505.97F(000) = 508
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9905 (18) ÅCell parameters from 4035 reflections
b = 11.351 (2) Åθ = 3.0–27.3°
c = 11.482 (2) ŵ = 0.87 mm1
α = 119.52 (3)°T = 296 K
β = 94.51 (3)°Column, colourless
γ = 90.23 (3)°0.25 × 0.20 × 0.15 mm
V = 1015.2 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3865 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1011
10037 measured reflectionsk = 1414
4611 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.6429P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4611 reflectionsΔρmax = 0.70 e Å3
254 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (3)
Crystal data top
C17H11Cl6NO4γ = 90.23 (3)°
Mr = 505.97V = 1015.2 (4) Å3
Triclinic, P1Z = 2
a = 8.9905 (18) ÅMo Kα radiation
b = 11.351 (2) ŵ = 0.87 mm1
c = 11.482 (2) ÅT = 296 K
α = 119.52 (3)°0.25 × 0.20 × 0.15 mm
β = 94.51 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3865 reflections with I > 2σ(I)
10037 measured reflectionsRint = 0.036
4611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
4611 reflectionsΔρmin = 0.64 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86211 (7)0.64648 (6)0.01529 (7)0.04952 (18)
Cl20.42071 (6)1.01968 (7)0.22921 (7)0.04994 (18)
Cl30.68066 (8)1.06565 (7)0.47167 (6)0.05378 (19)
Cl40.95541 (7)0.84784 (7)0.33571 (7)0.05465 (19)
Cl51.13965 (11)1.59013 (7)0.35138 (9)0.0729 (3)
Cl61.36383 (11)1.31140 (9)0.58471 (9)0.0808 (3)
O11.08016 (17)0.94674 (16)0.09979 (18)0.0439 (4)
O20.72222 (19)1.24926 (16)0.29413 (19)0.0498 (4)
O30.54476 (19)0.70159 (18)0.11801 (19)0.0484 (4)
O40.53317 (18)0.77943 (16)0.03513 (15)0.0412 (4)
N40.92584 (19)1.11941 (17)0.21831 (17)0.0314 (4)
C10.7734 (2)0.8000 (2)0.1025 (2)0.0314 (4)
C20.8098 (2)0.9081 (2)0.0613 (2)0.0298 (4)
H2A0.80170.86810.03670.036*
C30.9573 (2)0.9867 (2)0.1245 (2)0.0314 (4)
C50.7731 (2)1.1424 (2)0.2225 (2)0.0330 (4)
C60.6890 (2)1.0109 (2)0.1241 (2)0.0299 (4)
H6A0.62701.02030.05530.036*
C70.5955 (2)0.9495 (2)0.1918 (2)0.0323 (4)
C80.6949 (2)0.9539 (2)0.3068 (2)0.0335 (4)
C90.8003 (2)0.8677 (2)0.2542 (2)0.0343 (5)
C100.5982 (2)0.7951 (2)0.0854 (2)0.0340 (5)
C111.0373 (2)1.2261 (2)0.2981 (2)0.0333 (4)
C121.0362 (3)1.3406 (2)0.2843 (2)0.0409 (5)
H12A0.96841.34670.22220.049*
C131.1394 (3)1.4455 (2)0.3660 (3)0.0449 (6)
C141.2412 (3)1.4386 (2)0.4583 (3)0.0472 (6)
H14A1.30941.51040.51280.057*
C151.2391 (3)1.3220 (2)0.4674 (2)0.0438 (5)
C161.1374 (2)1.2143 (2)0.3883 (2)0.0371 (5)
H16A1.13691.13650.39600.044*
C170.3854 (3)0.6908 (4)0.1208 (4)0.0770 (10)
H17A0.36170.62260.14360.115*
H17B0.33660.66630.03390.115*
H17C0.35160.77630.18660.115*
C180.5309 (4)0.6462 (3)0.1513 (3)0.0659 (9)
H18A0.48370.64810.22820.099*
H18B0.47610.58330.13560.099*
H18C0.63140.61830.16730.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0530 (4)0.0289 (3)0.0557 (4)0.0074 (2)0.0005 (3)0.0132 (3)
Cl20.0286 (3)0.0601 (4)0.0557 (4)0.0069 (2)0.0054 (3)0.0243 (3)
Cl30.0559 (4)0.0620 (4)0.0311 (3)0.0005 (3)0.0030 (3)0.0138 (3)
Cl40.0498 (4)0.0656 (4)0.0509 (4)0.0087 (3)0.0132 (3)0.0330 (3)
Cl50.1059 (7)0.0302 (3)0.0815 (5)0.0056 (3)0.0087 (5)0.0269 (3)
Cl60.0848 (6)0.0607 (5)0.0737 (5)0.0117 (4)0.0449 (4)0.0228 (4)
O10.0299 (8)0.0397 (9)0.0530 (10)0.0028 (6)0.0050 (7)0.0157 (8)
O20.0422 (9)0.0303 (8)0.0605 (11)0.0061 (7)0.0023 (8)0.0103 (8)
O30.0439 (9)0.0454 (10)0.0604 (11)0.0151 (7)0.0078 (8)0.0314 (9)
O40.0420 (9)0.0352 (8)0.0356 (8)0.0046 (6)0.0142 (7)0.0117 (7)
N40.0293 (9)0.0271 (8)0.0332 (9)0.0022 (6)0.0018 (7)0.0121 (7)
C10.0332 (10)0.0242 (9)0.0327 (10)0.0013 (7)0.0050 (8)0.0120 (8)
C20.0312 (10)0.0291 (10)0.0269 (9)0.0003 (8)0.0012 (8)0.0127 (8)
C30.0327 (11)0.0302 (10)0.0304 (10)0.0008 (8)0.0009 (8)0.0147 (8)
C50.0340 (11)0.0291 (10)0.0357 (10)0.0007 (8)0.0008 (9)0.0163 (9)
C60.0289 (10)0.0287 (10)0.0308 (10)0.0007 (7)0.0033 (8)0.0147 (8)
C70.0259 (10)0.0343 (11)0.0328 (10)0.0009 (8)0.0019 (8)0.0143 (9)
C80.0329 (11)0.0382 (11)0.0295 (10)0.0052 (8)0.0013 (8)0.0175 (9)
C90.0345 (11)0.0368 (11)0.0354 (11)0.0046 (8)0.0063 (9)0.0222 (9)
C100.0326 (11)0.0315 (10)0.0352 (10)0.0053 (8)0.0068 (9)0.0159 (9)
C110.0337 (11)0.0279 (10)0.0329 (10)0.0038 (8)0.0024 (8)0.0109 (8)
C120.0456 (13)0.0327 (11)0.0433 (12)0.0004 (9)0.0026 (10)0.0183 (10)
C130.0556 (15)0.0258 (10)0.0477 (13)0.0016 (9)0.0114 (12)0.0128 (10)
C140.0459 (14)0.0309 (11)0.0450 (13)0.0068 (9)0.0004 (11)0.0041 (10)
C150.0429 (13)0.0364 (12)0.0381 (11)0.0010 (9)0.0052 (10)0.0089 (10)
C160.0394 (12)0.0309 (11)0.0360 (11)0.0017 (8)0.0003 (9)0.0134 (9)
C170.0500 (17)0.078 (2)0.113 (3)0.0235 (16)0.0000 (18)0.056 (2)
C180.076 (2)0.0465 (16)0.0449 (15)0.0048 (14)0.0211 (14)0.0028 (13)
Geometric parameters (Å, º) top
Cl1—C11.758 (2)C5—C61.507 (3)
Cl2—C71.752 (2)C6—C71.558 (3)
Cl3—C81.698 (2)C6—H6A0.9800
Cl4—C91.696 (2)C7—C81.514 (3)
Cl5—C131.730 (2)C7—C101.568 (3)
Cl6—C151.735 (3)C8—C91.318 (3)
O1—C31.197 (3)C11—C161.375 (3)
O2—C51.199 (3)C11—C121.385 (3)
O3—C101.383 (3)C12—C131.383 (3)
O3—C171.442 (3)C12—H12A0.9300
O4—C101.385 (3)C13—C141.377 (4)
O4—C181.440 (3)C14—C151.379 (4)
N4—C51.399 (3)C14—H14A0.9300
N4—C31.400 (3)C15—C161.386 (3)
N4—C111.436 (3)C16—H16A0.9300
C1—C91.515 (3)C17—H17A0.9600
C1—C21.558 (3)C17—H17B0.9600
C1—C101.569 (3)C17—H17C0.9600
C2—C31.511 (3)C18—H18A0.9600
C2—C61.538 (3)C18—H18B0.9600
C2—H2A0.9800C18—H18C0.9600
C10—O3—C17117.0 (2)C8—C9—Cl4127.64 (18)
C10—O4—C18117.17 (19)C1—C9—Cl4123.58 (17)
C5—N4—C3113.59 (17)O3—C10—O4113.93 (18)
C5—N4—C11121.92 (17)O3—C10—C7118.24 (19)
C3—N4—C11124.39 (18)O4—C10—C7106.81 (17)
C9—C1—C2107.61 (16)O3—C10—C1108.32 (17)
C9—C1—C10100.14 (17)O4—C10—C1116.35 (18)
C2—C1—C10100.16 (16)C7—C10—C191.53 (15)
C9—C1—Cl1114.51 (15)C16—C11—C12122.2 (2)
C2—C1—Cl1114.82 (15)C16—C11—N4119.76 (19)
C10—C1—Cl1117.67 (14)C12—C11—N4118.0 (2)
C3—C2—C6105.59 (16)C13—C12—C11117.7 (2)
C3—C2—C1114.53 (17)C13—C12—H12A121.2
C6—C2—C1102.43 (16)C11—C12—H12A121.2
C3—C2—H2A111.3C14—C13—C12122.2 (2)
C6—C2—H2A111.3C14—C13—Cl5119.21 (19)
C1—C2—H2A111.3C12—C13—Cl5118.6 (2)
O1—C3—N4124.78 (19)C13—C14—C15118.0 (2)
O1—C3—C2127.70 (19)C13—C14—H14A121.0
N4—C3—C2107.52 (17)C15—C14—H14A121.0
O2—C5—N4124.4 (2)C14—C15—C16122.0 (2)
O2—C5—C6127.7 (2)C14—C15—Cl6119.06 (19)
N4—C5—C6107.93 (17)C16—C15—Cl6118.9 (2)
C5—C6—C2105.31 (16)C11—C16—C15117.9 (2)
C5—C6—C7113.74 (17)C11—C16—H16A121.0
C2—C6—C7103.90 (16)C15—C16—H16A121.0
C5—C6—H6A111.2O3—C17—H17A109.5
C2—C6—H6A111.2O3—C17—H17B109.5
C7—C6—H6A111.2H17A—C17—H17B109.5
C8—C7—C6107.50 (16)O3—C17—H17C109.5
C8—C7—C10100.17 (17)H17A—C17—H17C109.5
C6—C7—C1099.80 (16)H17B—C17—H17C109.5
C8—C7—Cl2116.77 (15)O4—C18—H18A109.5
C6—C7—Cl2112.98 (15)O4—C18—H18B109.5
C10—C7—Cl2117.57 (15)H18A—C18—H18B109.5
C9—C8—C7107.49 (18)O4—C18—H18C109.5
C9—C8—Cl3127.66 (18)H18A—C18—H18C109.5
C7—C8—Cl3124.45 (16)H18B—C18—H18C109.5
C8—C9—C1108.25 (19)
C9—C1—C2—C348.4 (2)Cl1—C1—C9—C8160.38 (16)
C10—C1—C2—C3152.57 (17)C2—C1—C9—Cl4101.47 (19)
Cl1—C1—C2—C380.38 (19)C10—C1—C9—Cl4154.36 (16)
C9—C1—C2—C665.4 (2)Cl1—C1—C9—Cl427.5 (2)
C10—C1—C2—C638.79 (18)C17—O3—C10—O454.4 (3)
Cl1—C1—C2—C6165.84 (13)C17—O3—C10—C772.3 (3)
C5—N4—C3—O1176.3 (2)C17—O3—C10—C1174.4 (2)
C11—N4—C3—O10.1 (3)C18—O4—C10—O351.2 (3)
C5—N4—C3—C22.6 (2)C18—O4—C10—C7176.3 (2)
C11—N4—C3—C2178.97 (18)C18—O4—C10—C175.9 (3)
C6—C2—C3—O1176.5 (2)C8—C7—C10—O360.5 (2)
C1—C2—C3—O171.6 (3)C6—C7—C10—O3170.41 (18)
C6—C2—C3—N42.3 (2)Cl2—C7—C10—O367.1 (2)
C1—C2—C3—N4109.57 (19)C8—C7—C10—O4169.50 (16)
C3—N4—C5—O2178.8 (2)C6—C7—C10—O459.55 (19)
C11—N4—C5—O22.4 (3)Cl2—C7—C10—O462.9 (2)
C3—N4—C5—C61.8 (2)C8—C7—C10—C151.33 (17)
C11—N4—C5—C6178.21 (18)C6—C7—C10—C158.61 (17)
O2—C5—C6—C2179.5 (2)Cl2—C7—C10—C1178.91 (15)
N4—C5—C6—C20.1 (2)C9—C1—C10—O370.1 (2)
O2—C5—C6—C766.4 (3)C2—C1—C10—O3179.76 (16)
N4—C5—C6—C7112.96 (19)Cl1—C1—C10—O354.6 (2)
C3—C2—C6—C51.3 (2)C9—C1—C10—O4160.04 (18)
C1—C2—C6—C5118.88 (17)C2—C1—C10—O449.9 (2)
C3—C2—C6—C7121.17 (17)Cl1—C1—C10—O475.2 (2)
C1—C2—C6—C70.97 (19)C9—C1—C10—C750.40 (18)
C5—C6—C7—C847.1 (2)C2—C1—C10—C759.74 (17)
C2—C6—C7—C866.9 (2)Cl1—C1—C10—C7175.13 (15)
C5—C6—C7—C10151.10 (17)C5—N4—C11—C16121.4 (2)
C2—C6—C7—C1037.14 (18)C3—N4—C11—C1662.5 (3)
C5—C6—C7—Cl283.22 (19)C5—N4—C11—C1256.3 (3)
C2—C6—C7—Cl2162.83 (13)C3—N4—C11—C12119.8 (2)
C6—C7—C8—C968.0 (2)C16—C11—C12—C130.6 (3)
C10—C7—C8—C935.8 (2)N4—C11—C12—C13177.0 (2)
Cl2—C7—C8—C9163.88 (16)C11—C12—C13—C140.2 (4)
C6—C7—C8—Cl3105.23 (19)C11—C12—C13—Cl5179.64 (17)
C10—C7—C8—Cl3151.01 (16)C12—C13—C14—C150.4 (4)
Cl2—C7—C8—Cl322.9 (2)Cl5—C13—C14—C15179.70 (19)
C7—C8—C9—C11.3 (2)C13—C14—C15—C160.8 (4)
Cl3—C8—C9—C1174.27 (16)C13—C14—C15—Cl6178.90 (19)
C7—C8—C9—Cl4170.36 (16)C12—C11—C16—C150.3 (3)
Cl3—C8—C9—Cl42.6 (3)N4—C11—C16—C15177.3 (2)
C2—C1—C9—C870.7 (2)C14—C15—C16—C110.4 (4)
C10—C1—C9—C833.5 (2)Cl6—C15—C16—C11178.55 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.573.265 (4)132
C18—H18A···O2ii0.962.453.260 (4)141
Symmetry codes: (i) x+2, y+3, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.932.573.265 (4)132
C18—H18A···O2ii0.962.453.260 (4)141
Symmetry codes: (i) x+2, y+3, z+1; (ii) x+1, y+2, z.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Sciencce Foundation of China (No. 81072530).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKossakowski, J., Bielenica, A., Mirosław, B., Kozioł, A. E., Dybała, I. & Struga, M. (2008). Molecules, 13, 1570–1583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKossakowski, J., Pakosinska-Parys, M., Struga, M., Dybala, I., Koziol, A. E., La Colla, P., Marongiu, L. E., Ibba, C., Collu, D. & Loddo, R. (2009). Molecules, 14, 5189–5202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKossakowski, J., Wojciechowkai, A. & Kozio, A. E. (2006). Acta Pol. Pharm. Drug Res. 63, 261–264.  CAS Google Scholar
First citationShan, W.-Z., Gu, S.-J. & Liu, H. (2012). Chin. J. Struct. Chem. 31, 1524–1527.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds