research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5,5-bis­­(4-methyl­benz­yl)pyrimidine-2,4,6(1H,3H,5H)-trione monohydrate

aProf. CNR Rao Centre for Advanced Materials and Department of Chemistry, UCS, Tumkur University, Tumkur 572 103, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: vijaykumargr18@yahoo.co.in

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 22 November 2014; accepted 28 November 2014; online 1 January 2015)

The asymmetric unit of the title compound, C20H20N2O3·H2O, contains two independent mol­ecules (A and B), with similar conformations and two independent water mol­ecules. In the crystal, N—H⋯O and Owater—H⋯O hydrogen bonds link all moieties into two crystallographically independent kinds of sheets parallel to the ac plane. These independent sheets, each containing either A or B mol­ecules, are further alternately stacked along the b axis and inter­connected via C—H⋯πar­yl inter­actions.

1. Chemical Context

Barbituric acid and its derivatives have historically been classified as compounds which act on the central nervous system (Barbachyn et al., 2007[Barbachyn, M. R., Bundy, G. L., Dobrowolski, P. J., Hurd, A. R., Martin, G. E., McNamara, D. J., Palmer, J. R., Romero, D. L., Romero, A. G., Ruble, J. C., Sherry, D. A., Thomasco, L. M. & Toogood, P. L. (2007). US Patent 7208490 B2.]). These compounds have been widely used as therapeutic drugs such as anxiolytics, sedatives, hypnotics and anti-convulsants (Coupey, 1997[Coupey, S. M. (1997). Pediatr. Rev. 18, 260-265.]). Recent investigations on barbituric acid derivatives revealed the applications of these compounds as anti­bacterial (Yilmaz et al., 2006[Yilmaz, V. T., Yilmaz, F., Karakaya, H., Büyükgüngör, O. & Harrison, W. T. A. (2006). Polyhedron, 25, 2829-2840.]; Sweidan et al., 2011[Sweidan, K., Engelmann, J., Joshi, R., Mubarak, M. S. & El-Abadelah, M. M. (2011). Lett. Org. Chem. 8, 603-605.]), anti-viral (Clercq, 1986a[Clercq, E. D. (1986a). J. Med. Chem. 29, 1561-1569.],b[Clercq, E. D. (1986b). Anticancer Res. 6, 549-556.]; Baba et al., 1987[Baba, M., Pauwels, R., Herdewijn, P., De Clercq, E., Desmyter, J. & Vandeputte, M. (1987). Biochem. Biophys. Res. Commun. 142, 128-134.]), analgesic (Vida et al., 1975[Vida, J. A., Samour, C. M., O'Dea, M. H. & Reinhard, J. F. (1975). J. Med. Chem. 18, 694-696.]), anti-hypertensive (Bassin & Bleck, 2008[Bassin, S. L. & Bleck, T. P. (2008). Crit. Care, 12, 185-186.]) and as anti-cancer (Humar et al., 2004[Humar, M., Andriopoulos, N., Pischke, S. E., Loop, T., Schmidt, R., Hoetzel, A., Roesslein, M., Pahl, H. L., Geiger, K. K. & Pannen, B. H. (2004). J. Pharmacol. Exp. Ther. 311, 1232-1240.]; Singh et al., 2009[Singh, P., Kaur, M. & Verma, P. (2009). Bioorg. Med. Chem. Lett. 19, 3054-3058.]) agents. 5-Fluoro­uracil is a barbituric acid analogue, which has been widely employed as a clinically useful anti-cancer drug (Heidelberger & Arafield, 1963[Heidelberger, C. & Arafield, F. (1963). J. Cancer Res. 23, 1226.]).

[Scheme 1]

Inspired by the above facts, the title compound was synthesized by Knoevenagel condensation reaction (Prajapati and Gohain, 2006[Prajapati, D. & Gohain, M. (2006). Beilstein J. Org. Chem. 2, 611-617.]). A double-benzyl­ated product of barbituric acid was obtained by using two equivalents of 4-methyl benzyl chloride in the presence of catalytic amounts of 1,8-di­aza­bicyclo­undec-7-ene (DBU) and solvent aceto­nitrile. The obtained compound was characterized by 1H-NMR and mass spectroscopy. We report herein on its crystal structure.

2. Structural commentary

The title compound (I)[link] (Fig. 1[link]) crystallizes with two mol­ecules, A and B, in the asymmetric unit along with two water mol­ecules of crystallization. In both mol­ecules, the pyrimidine rings are nearly planar [r.m.s. deviations of 0.039 and 0.040 Å] and can be considered as a pseudo-mirror plane for each mol­ecule. In A, the benzene rings form dihedral angles of 49.70 (17) and 51.66 (17)° with the pyrimidine ring and are inclined each to other by 62.9 (2)°. In B, the corresponding angles are 50.44 (18), 69.90 (19) and 59.8 (2)°, respectively. In the related compound 5,5-di­benzyl­barbituric acid monohydrate (II) (Bhatt et al., 2007[Bhatt, P. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o771-o772.]), which crystallizes with one independent mol­ecule and one water molecule in the asymmetric unit, the dihedral angles between the pyrimidine and two benzene rings are 54.09 (11) and 62.71 (11)°.

[Figure 1]
Figure 1
A view of (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the first level of packing, the independent mol­ecules are linked directly to their symmetry equivalents via strong N2—HN2⋯O4 (A) and N3—HN3⋯O7 (B) hydrogen bonds (Table 1[link]), forming chains running along a-axis direction. Thus, the graph set motif is C(6)C(6). Six chains pass through the unit cell. These chains are linked via water mol­ecules through N1—H1⋯O1 and O1—H1B⋯O5 (for A) and N4—HN4⋯O2 and O2—H2A⋯O8 (for B) hydrogen bonds (Table 1[link]), each forming graph set motif D(2). In addition, the symmetry-dependent parallel chains are inter­connected via bridging water mol­ecules through O—H⋯O3 and O1—HIB⋯O5 (for A) and O2—H2B⋯O6 and O2—H2A⋯O8 (for B) hydrogen bonds (Table 1[link]), forming sheets parallel to the ac plane (Fig. 2[link]). The alternate sheets formed by A or B mol­ecules and water mol­ecules are inter­connected via C—H⋯π inter­actions (Fig. 3[link], Table 1[link]), thus forming a three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.86 1.94 2.787 (4) 167
O1—H1A⋯O3i 0.84 (3) 2.13 (3) 2.949 (3) 162
O1—H1B⋯O5ii 0.90 (3) 1.90 (3) 2.794 (4) 175
N2—HN2⋯O4iii 0.86 1.94 2.767 (2) 162
O2—H2A⋯O8iv 0.86 (6) 1.88 (6) 2.739 (4) 177
O2—H2B⋯O6v 0.82 (3) 2.16 (3) 2.961 (3) 169
N3—HN3⋯O7vi 0.86 1.90 2.739 (2) 164
N4—HN4⋯O2 0.86 1.92 2.761 (4) 166
C22—H22⋯Cgvii 0.93 2.97 3.5693 124
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [-x+2, -y+2, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+2, z]; (iv) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+1, z]; (vi) [x+{\script{1\over 2}}, -y+1, z]; (vii) [-x+1, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A portion of the crystal packing viewed along [100] and showing two kinds of hydrogen-bonded (thin blue lines) sheets, each containing either A or B mol­ecules. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A portion of the crystal packing viewed along [100] and showing C—H⋯π inter­actions as dotted lines. Magenta dots show the centroids of aryl rings. Thin blue lines denote hydrogen bonds. H atoms not involved in inter­molecular inter­actions were omitted for clarity.

There are several inter­esting differences between the two chemically closely related structures (I)[link] and (II) (differing only by a methyl group on the two benzene rings). Firstly, (I)[link] crystallizes in the ortho­rhom­bic space group Pca21, whereas (II) crystallizes in the monoclinic space group P21/n. Secondly, (I)[link] crystallizes with two mol­ecules in its asymmetric unit, while (II) crystallizes with one independent mol­ecule. Lastly, in the crystal of compound (II), hydrogen bonding leads to a two-dimensional network in contrast to the three-dimensional architecture formed in (I)[link].

4. Synthesis and crystallization

To an ice-cooled stirring solution of acetonitrile (5 ml), 4-methyl benzyl chloride (0.5 g, 0.0035 mol), 1,8-diazabicycloundec-7-ene (DBU) (0.5 g, 0.0035 mol) and barbituric acid (0.22 g, 0.0017 mol) were added. The reaction mixture was stirred to the room temperature and then refluxed for 8 h. Thin-layer chromatography showed the absence of any starting material. The reaction mixture was cooled and poured into ice-cold water. The solid obtained was extracted with ethyl acetate and the organic layer was washed with saturated ammonium chloride solution and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to give the title compound as a white solid (Yield 0.54 g, 91.83%).

Colourless prisms of the title compound suitable for diffraction studies were grown from an ethyl acetate–petroleum ether solvent system in the ratio 2.5:7.5, by the solvent evaporation technique.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water H atoms were located in a difference Fourier map and freely refined. The amino and C-bound H atoms were fixed geometrically (N—H = 0.86, C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H20N2O3·H2O
Mr 354.40
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 13.0920 (17), 19.198 (3), 15.827 (2)
V3) 3978.1 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.39 × 0.27 × 0.19
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.973, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 61392, 8543, 4909
Rint 0.057
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 0.98
No. of reflections 8543
No. of parameters 489
No. of restraints 29
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.14
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4587 Friedel pairs
Absolute structure parameter 0.1 (1)
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

5,5-Bis(4-methylbenzyl)pyrimidine-2,4,6(1H,3H,5H)-trione monohydrate top
Crystal data top
C20H20N2O3·H2OPrism
Mr = 354.40Dx = 1.183 Mg m3
Orthorhombic, Pca21Melting point: 443 K
Hall symbol: P 2c -2acMo Kα radiation, λ = 0.71073 Å
a = 13.0920 (17) ÅCell parameters from 138 reflections
b = 19.198 (3) Åθ = 1.9–27.5°
c = 15.827 (2) ŵ = 0.08 mm1
V = 3978.1 (9) Å3T = 296 K
Z = 8Prism, colourless
F(000) = 15040.39 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII
diffractometer
4909 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
phi and φ scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2424
Tmin = 0.973, Tmax = 0.984l = 1920
61392 measured reflections1 standard reflections every 1 reflections
8543 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0724P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
8543 reflectionsΔρmax = 0.20 e Å3
489 parametersΔρmin = 0.14 e Å3
29 restraintsAbsolute structure: Flack (1983), 4587 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (1)
Special details top

Experimental. All the solvents employed were of analytical grade. Starting materials and reagents were purchased from Sigma Chemical co. (Saint Louis, USA). The reaction progress was monitored by thin layer chromatography using TLC Silica gel 60 F254 (Merck), and spots were visualized by using ultraviolet light of 254 nm. Melting point was determined by using open capillary and uncorrected value is given. 1H-NMR spectrum was recorded on Jeol-400 MHz NMR instrument using CDCl3/DMSO-d6 as solvent. Chemical shift values were expressed in δ (p.p.m.) relative to tetramethylsilane (TMS) as an internal reference standard. Mass spectrum of the compound was recorded on Shimadzu LC-2010EV with ESI probe.

1H-NMR spectral data of I clearly indicated the formation of I. In the spectrum, a singlet at δ (p.p.m.) value 2.23 corresponds to the two para-methyl groups, while, a singlet signal at δ (p.p.m.) value 3.22 is for four alkyl protons (two CH2 groups) and two doublets at 6.93 and 7.07 corresponds to the eight aromatic protons. Two NH protons of the barbituric acid moiety appeared at δ value 7.85 as a singlet. Mass spectrum of I gave a peak with (m/z) value = 335.0 which exactly matches with its calculated mass.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.8772 (3)0.7536 (2)0.0448 (3)0.1148 (12)
H60.80980.73820.04480.138*
C190.9200 (4)0.6505 (2)0.1358 (3)0.174 (2)
H19A0.93400.65680.19490.262*
H19B0.95950.61220.11470.262*
H19C0.84870.64090.12810.262*
C390.8413 (4)0.8470 (2)0.2588 (3)0.205 (3)
H39A0.82570.88610.29440.308*
H39B0.80450.85120.20660.308*
H39C0.91330.84610.24740.308*
C400.7798 (5)0.1883 (2)0.2643 (4)0.192 (2)
H40A0.81050.15760.30490.288*
H40B0.82630.19560.21820.288*
H40C0.71790.16780.24340.288*
H2B0.520 (2)0.5106 (14)0.109 (2)0.088 (10)*
H2A0.583 (3)0.513 (2)0.036 (4)0.156 (19)*
H1A1.225 (2)0.9802 (12)0.272 (2)0.092 (10)*
H1B1.1706 (19)1.0021 (12)0.342 (2)0.070 (8)*
C10.9482 (4)0.7161 (2)0.0883 (3)0.1193 (12)
C21.0471 (4)0.7405 (2)0.0846 (2)0.1205 (13)
H21.09820.71520.11150.145*
C31.0739 (3)0.8016 (2)0.0421 (2)0.1027 (11)
H31.14130.81680.04270.123*
C41.0001 (2)0.83994 (14)0.00130 (15)0.0727 (7)
C50.9012 (2)0.81420 (17)0.0001 (2)0.0877 (9)
H50.85000.83760.02910.105*
C71.02806 (17)0.90622 (13)0.04658 (16)0.0715 (7)
H7A0.99010.90820.09920.086*
H7B1.10010.90440.06080.086*
C81.00757 (17)0.97436 (13)0.00349 (16)0.0563 (6)
C90.89331 (16)0.98272 (13)0.01741 (17)0.0522 (6)
C100.91876 (18)1.00450 (11)0.1679 (2)0.0510 (6)
C111.06796 (15)0.97321 (12)0.08499 (16)0.0561 (6)
C121.04400 (17)1.03834 (13)0.04920 (18)0.0678 (7)
H12A1.11741.03500.05650.081*
H12B1.01321.03560.10480.081*
C131.01968 (17)1.10829 (15)0.01215 (17)0.0685 (7)
C140.9285 (2)1.14188 (16)0.0302 (2)0.0845 (8)
H140.88281.12100.06730.101*
C150.9035 (3)1.2049 (2)0.0051 (3)0.1032 (11)
H150.84151.22570.00850.124*
C160.9688 (4)1.23778 (19)0.0602 (3)0.1149 (12)
C171.0608 (4)1.2054 (2)0.0784 (3)0.1245 (14)
H171.10661.22680.11520.149*
C181.0859 (2)1.14120 (18)0.0425 (2)0.0941 (9)
H181.14811.12040.05560.113*
C200.9419 (4)1.3093 (2)0.0984 (4)0.180 (2)
H20A0.97121.31310.15380.270*
H20B0.86901.31390.10220.270*
H20C0.96871.34560.06290.270*
C210.8100 (4)0.7794 (2)0.3035 (3)0.1294 (14)
C220.8734 (3)0.7433 (2)0.3546 (3)0.1207 (12)
H220.93910.75980.36420.145*
C230.8418 (2)0.68184 (19)0.3932 (2)0.0984 (11)
H230.88690.65850.42870.118*
C240.7465 (2)0.65484 (16)0.38039 (18)0.0820 (8)
C250.6804 (3)0.6924 (2)0.3298 (2)0.1110 (12)
H250.61420.67640.32100.133*
C260.7127 (4)0.7546 (2)0.2916 (3)0.1376 (16)
H260.66740.77940.25770.165*
C270.71252 (17)0.58865 (16)0.42374 (18)0.0824 (9)
H27A0.63970.59160.43420.099*
H27B0.74640.58570.47810.099*
C280.73450 (17)0.52040 (14)0.37356 (17)0.0655 (7)
C290.67384 (16)0.52234 (14)0.29184 (18)0.0635 (6)
C300.82374 (18)0.49247 (12)0.20860 (19)0.0514 (6)
C310.84770 (17)0.51243 (15)0.35966 (18)0.0630 (7)
C320.69710 (19)0.45597 (16)0.42547 (17)0.0812 (8)
H32A0.72950.45710.48060.097*
H32B0.62400.46010.43420.097*
C330.7185 (2)0.38700 (16)0.38549 (18)0.0784 (8)
C340.8099 (2)0.3523 (2)0.3962 (2)0.1020 (10)
H340.85960.37160.43110.122*
C350.8296 (4)0.2887 (3)0.3557 (4)0.1307 (16)
H350.89280.26730.36220.157*
C360.7556 (5)0.2579 (2)0.3061 (3)0.1243 (12)
C370.6641 (4)0.2918 (2)0.2993 (3)0.1226 (13)
H370.61270.27110.26760.147*
C380.6443 (2)0.3541 (2)0.3365 (2)0.0993 (10)
H380.58080.37500.32930.119*
N11.01988 (13)0.98950 (10)0.15858 (17)0.0572 (6)
HN11.05680.99040.20350.069*
N20.85962 (14)0.99882 (10)0.09608 (16)0.0534 (5)
HN20.79521.00620.10170.064*
N30.88084 (14)0.49787 (10)0.28006 (15)0.0558 (6)
HN30.94550.49130.27430.067*
N40.72171 (13)0.50664 (10)0.21786 (16)0.0584 (6)
HN40.68470.50550.17300.070*
O11.16630 (18)0.99390 (14)0.2863 (2)0.0976 (8)
O20.57806 (19)0.51299 (15)0.0904 (2)0.1084 (10)
O30.88202 (13)1.02084 (10)0.23583 (12)0.0709 (5)
O41.15820 (10)0.95863 (10)0.08464 (13)0.0775 (5)
O50.83276 (12)0.97775 (9)0.04055 (11)0.0726 (5)
O60.86065 (13)0.47823 (10)0.14088 (12)0.0709 (5)
O70.58342 (12)0.53645 (12)0.29178 (14)0.0953 (6)
O80.90867 (13)0.51705 (12)0.41774 (13)0.0874 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.137 (3)0.088 (3)0.119 (3)0.038 (2)0.003 (2)0.026 (2)
C190.312 (6)0.093 (3)0.119 (3)0.044 (3)0.006 (4)0.005 (2)
C390.362 (8)0.094 (3)0.159 (4)0.046 (4)0.014 (5)0.006 (3)
C400.294 (7)0.109 (3)0.172 (5)0.019 (4)0.044 (5)0.025 (3)
C10.190 (4)0.088 (3)0.080 (2)0.001 (3)0.010 (3)0.019 (2)
C20.179 (4)0.103 (3)0.079 (2)0.028 (3)0.022 (3)0.003 (2)
C30.113 (2)0.108 (3)0.087 (2)0.022 (2)0.009 (2)0.009 (2)
C40.0893 (18)0.0841 (18)0.0448 (15)0.0125 (16)0.0001 (14)0.0115 (14)
C50.094 (2)0.087 (2)0.082 (2)0.0126 (17)0.0143 (17)0.0221 (18)
C70.0651 (14)0.105 (2)0.0445 (16)0.0115 (13)0.0061 (12)0.0133 (15)
C80.0431 (11)0.0879 (17)0.0379 (13)0.0012 (12)0.0014 (10)0.0050 (13)
C90.0401 (12)0.0792 (15)0.0375 (16)0.0035 (10)0.0045 (11)0.0052 (11)
C100.0432 (12)0.0672 (15)0.0426 (18)0.0026 (9)0.0024 (13)0.0077 (11)
C110.0365 (11)0.0798 (16)0.0520 (15)0.0043 (11)0.0038 (11)0.0030 (13)
C120.0529 (12)0.097 (2)0.0537 (16)0.0022 (12)0.0092 (12)0.0155 (15)
C130.0573 (13)0.094 (2)0.0543 (18)0.0113 (13)0.0003 (12)0.0191 (15)
C140.0796 (18)0.086 (2)0.088 (2)0.0055 (15)0.0074 (15)0.0160 (17)
C150.101 (2)0.099 (3)0.110 (3)0.002 (2)0.006 (2)0.029 (2)
C160.172 (4)0.086 (3)0.086 (3)0.002 (3)0.017 (3)0.014 (2)
C170.178 (4)0.114 (3)0.082 (3)0.035 (3)0.038 (3)0.011 (2)
C180.095 (2)0.098 (2)0.089 (2)0.0124 (18)0.0202 (17)0.0148 (18)
C200.275 (6)0.117 (3)0.148 (4)0.007 (3)0.036 (4)0.011 (3)
C210.192 (4)0.114 (3)0.083 (3)0.010 (3)0.015 (3)0.039 (2)
C220.140 (3)0.099 (3)0.123 (3)0.013 (2)0.010 (3)0.030 (3)
C230.095 (2)0.108 (3)0.091 (3)0.004 (2)0.0182 (18)0.036 (2)
C240.0795 (17)0.115 (2)0.0511 (16)0.0048 (17)0.0033 (15)0.0236 (17)
C250.114 (2)0.130 (3)0.089 (3)0.009 (2)0.034 (2)0.026 (2)
C260.203 (5)0.109 (3)0.100 (3)0.015 (3)0.054 (3)0.018 (3)
C270.0600 (15)0.135 (3)0.0525 (18)0.0095 (15)0.0060 (12)0.0218 (18)
C280.0446 (12)0.114 (2)0.0377 (15)0.0038 (13)0.0058 (11)0.0082 (15)
C290.0391 (12)0.1030 (19)0.0486 (15)0.0098 (12)0.0013 (11)0.0014 (14)
C300.0467 (13)0.0750 (16)0.0327 (16)0.0054 (10)0.0042 (12)0.0004 (10)
C310.0447 (13)0.108 (2)0.0363 (16)0.0031 (12)0.0027 (12)0.0025 (13)
C320.0672 (14)0.133 (3)0.0432 (15)0.0126 (16)0.0118 (13)0.0041 (17)
C330.0753 (17)0.112 (2)0.0479 (17)0.0106 (16)0.0049 (14)0.0165 (17)
C340.084 (2)0.125 (3)0.096 (2)0.0012 (19)0.0010 (18)0.034 (2)
C350.127 (3)0.118 (4)0.147 (4)0.027 (3)0.024 (3)0.053 (3)
C360.171 (4)0.105 (3)0.097 (3)0.002 (3)0.026 (3)0.011 (2)
C370.146 (4)0.123 (3)0.099 (3)0.004 (3)0.008 (3)0.008 (3)
C380.101 (2)0.113 (3)0.084 (2)0.0056 (19)0.0081 (18)0.004 (2)
N10.0406 (10)0.0901 (14)0.0408 (15)0.0008 (8)0.0098 (10)0.0026 (10)
N20.0325 (9)0.0872 (14)0.0405 (14)0.0011 (7)0.0005 (10)0.0027 (8)
N30.0336 (10)0.0979 (15)0.0360 (15)0.0022 (8)0.0001 (10)0.0017 (9)
N40.0423 (11)0.0982 (15)0.0347 (14)0.0044 (8)0.0038 (10)0.0027 (9)
O10.0577 (12)0.192 (2)0.0431 (15)0.0075 (11)0.0041 (12)0.0181 (12)
O20.0582 (13)0.223 (3)0.0443 (16)0.0125 (12)0.0046 (12)0.0058 (14)
O30.0593 (10)0.1132 (14)0.0402 (11)0.0041 (9)0.0053 (8)0.0093 (9)
O40.0389 (8)0.1202 (15)0.0733 (12)0.0012 (8)0.0007 (8)0.0006 (11)
O50.0535 (9)0.1195 (15)0.0448 (11)0.0020 (9)0.0080 (9)0.0004 (10)
O60.0649 (10)0.1105 (14)0.0373 (11)0.0007 (9)0.0047 (8)0.0088 (10)
O70.0366 (9)0.174 (2)0.0751 (13)0.0020 (10)0.0013 (9)0.0119 (13)
O80.0517 (9)0.1655 (18)0.0449 (11)0.0017 (10)0.0126 (9)0.0159 (11)
Geometric parameters (Å, º) top
C6—C11.363 (5)C16—C201.541 (6)
C6—C51.397 (5)C17—C181.396 (5)
C19—C11.513 (6)C21—C221.351 (6)
C39—C211.534 (6)C21—C261.373 (5)
C40—C361.524 (6)C22—C231.392 (5)
C1—C21.378 (6)C23—C241.367 (4)
C2—C31.396 (5)C24—C251.383 (5)
C3—C41.396 (4)C24—C271.511 (4)
C4—C51.386 (4)C25—C261.403 (6)
C4—C71.506 (4)C27—C281.559 (4)
C7—C81.553 (3)C28—C311.506 (3)
C8—C111.513 (3)C28—C291.518 (4)
C8—C91.521 (3)C28—C321.564 (4)
C8—C121.559 (4)C29—O71.214 (3)
C9—O51.216 (3)C29—N41.362 (4)
C9—N21.357 (3)C30—O61.207 (3)
C10—O31.218 (3)C30—N31.360 (3)
C10—N11.363 (3)C30—N41.371 (3)
C10—N21.380 (4)C31—O81.221 (3)
C11—O41.214 (2)C31—N31.361 (4)
C11—N11.360 (3)C32—C331.494 (4)
C12—C131.500 (4)C33—C341.380 (4)
C13—C181.378 (4)C33—C381.393 (4)
C13—C141.386 (4)C34—C351.403 (6)
C14—C151.372 (5)C35—C361.380 (6)
C15—C161.374 (5)C36—C371.368 (6)
C16—C171.387 (6)C37—C381.358 (6)
C1—C6—C5122.8 (4)C26—C21—C39118.6 (5)
C6—C1—C2116.1 (4)C21—C22—C23121.0 (4)
C6—C1—C19121.7 (5)C24—C23—C22121.9 (3)
C2—C1—C19122.2 (5)C23—C24—C25117.3 (3)
C1—C2—C3122.8 (4)C23—C24—C27121.4 (3)
C4—C3—C2120.4 (4)C25—C24—C27121.2 (3)
C5—C4—C3116.8 (3)C24—C25—C26120.4 (4)
C5—C4—C7122.4 (3)C21—C26—C25121.0 (4)
C3—C4—C7120.8 (3)C24—C27—C28114.9 (2)
C4—C5—C6121.0 (3)C31—C28—C29113.1 (2)
C4—C7—C8115.3 (2)C31—C28—C27110.0 (2)
C11—C8—C9113.1 (2)C29—C28—C27108.5 (2)
C11—C8—C7109.4 (2)C31—C28—C32107.7 (2)
C9—C8—C7109.44 (19)C29—C28—C32107.7 (2)
C11—C8—C12107.91 (19)C27—C28—C32109.8 (2)
C9—C8—C12107.17 (18)O7—C29—N4119.8 (2)
C7—C8—C12109.7 (2)O7—C29—C28121.1 (2)
O5—C9—N2119.9 (2)N4—C29—C28119.10 (19)
O5—C9—C8121.6 (2)O6—C30—N3122.4 (2)
N2—C9—C8118.5 (2)O6—C30—N4122.0 (2)
O3—C10—N1122.3 (3)N3—C30—N4115.6 (2)
O3—C10—N2121.7 (2)O8—C31—N3120.2 (2)
N1—C10—N2116.0 (2)O8—C31—C28121.7 (2)
O4—C11—N1120.5 (2)N3—C31—C28118.0 (2)
O4—C11—C8120.5 (2)C33—C32—C28114.8 (2)
N1—C11—C8119.00 (18)C34—C33—C38117.0 (3)
C13—C12—C8115.6 (2)C34—C33—C32122.5 (3)
C18—C13—C14117.2 (3)C38—C33—C32120.5 (3)
C18—C13—C12121.5 (2)C33—C34—C35121.6 (4)
C14—C13—C12121.3 (3)C36—C35—C34120.3 (4)
C15—C14—C13122.2 (3)C37—C36—C35117.0 (4)
C14—C15—C16121.0 (4)C37—C36—C40124.4 (6)
C15—C16—C17117.8 (4)C35—C36—C40118.5 (6)
C15—C16—C20121.1 (4)C38—C37—C36123.6 (4)
C17—C16—C20121.1 (5)C37—C38—C33120.5 (3)
C16—C17—C18121.0 (4)C11—N1—C10126.2 (2)
C13—C18—C17120.8 (3)C9—N2—C10126.29 (19)
C22—C21—C26118.3 (5)C30—N3—C31127.6 (2)
C22—C21—C39123.1 (5)C29—N4—C30125.7 (2)
C5—C6—C1—C21.3 (5)C39—C21—C26—C25179.0 (4)
C5—C6—C1—C19179.7 (3)C24—C25—C26—C210.0 (6)
C6—C1—C2—C32.7 (6)C23—C24—C27—C2890.5 (3)
C19—C1—C2—C3178.9 (3)C25—C24—C27—C2893.0 (3)
C1—C2—C3—C42.0 (5)C24—C27—C28—C3160.9 (3)
C2—C3—C4—C50.2 (4)C24—C27—C28—C2963.3 (3)
C2—C3—C4—C7179.4 (3)C24—C27—C28—C32179.3 (2)
C3—C4—C5—C61.5 (4)C31—C28—C29—O7171.5 (3)
C7—C4—C5—C6178.1 (3)C27—C28—C29—O749.2 (3)
C1—C6—C5—C40.7 (5)C32—C28—C29—O769.6 (3)
C5—C4—C7—C882.6 (3)C31—C28—C29—N49.8 (3)
C3—C4—C7—C897.0 (3)C27—C28—C29—N4132.0 (2)
C4—C7—C8—C1159.5 (3)C32—C28—C29—N4109.2 (3)
C4—C7—C8—C964.9 (3)C29—C28—C31—O8172.4 (3)
C4—C7—C8—C12177.7 (2)C27—C28—C31—O850.9 (3)
C11—C8—C9—O5172.6 (2)C32—C28—C31—O868.7 (3)
C7—C8—C9—O550.3 (3)C29—C28—C31—N39.4 (3)
C12—C8—C9—O568.6 (3)C27—C28—C31—N3130.8 (3)
C11—C8—C9—N210.0 (3)C32—C28—C31—N3109.5 (3)
C7—C8—C9—N2132.3 (2)C31—C28—C32—C3357.5 (3)
C12—C8—C9—N2108.8 (2)C29—C28—C32—C3364.8 (3)
C9—C8—C11—O4171.2 (2)C27—C28—C32—C33177.3 (2)
C7—C8—C11—O448.9 (3)C28—C32—C33—C3486.1 (3)
C12—C8—C11—O470.4 (3)C28—C32—C33—C3895.3 (3)
C9—C8—C11—N19.5 (3)C38—C33—C34—C353.6 (5)
C7—C8—C11—N1131.8 (2)C32—C33—C34—C35177.7 (3)
C12—C8—C11—N1108.9 (2)C33—C34—C35—C362.5 (6)
C11—C8—C12—C1366.5 (2)C34—C35—C36—C370.3 (7)
C9—C8—C12—C1355.6 (3)C34—C35—C36—C40179.1 (4)
C7—C8—C12—C13174.32 (19)C35—C36—C37—C381.9 (7)
C8—C12—C13—C1889.4 (3)C40—C36—C37—C38179.4 (4)
C8—C12—C13—C1489.2 (3)C36—C37—C38—C330.6 (7)
C18—C13—C14—C150.7 (4)C34—C33—C38—C372.1 (5)
C12—C13—C14—C15178.0 (3)C32—C33—C38—C37179.2 (3)
C13—C14—C15—C160.2 (5)O4—C11—N1—C10177.7 (2)
C14—C15—C16—C170.5 (6)C8—C11—N1—C103.0 (3)
C14—C15—C16—C20178.6 (4)O3—C10—N1—C11177.6 (2)
C15—C16—C17—C180.6 (6)N2—C10—N1—C113.6 (3)
C20—C16—C17—C18178.7 (4)O5—C9—N2—C10178.3 (2)
C14—C13—C18—C170.6 (4)C8—C9—N2—C104.3 (3)
C12—C13—C18—C17178.1 (3)O3—C10—N2—C9178.3 (2)
C16—C17—C18—C130.0 (6)N1—C10—N2—C92.9 (3)
C26—C21—C22—C231.2 (6)O6—C30—N3—C31178.9 (3)
C39—C21—C22—C23179.4 (4)N4—C30—N3—C313.3 (3)
C21—C22—C23—C240.8 (6)O8—C31—N3—C30178.5 (2)
C22—C23—C24—C252.4 (5)C28—C31—N3—C303.3 (4)
C22—C23—C24—C27179.0 (3)O7—C29—N4—C30177.3 (2)
C23—C24—C25—C261.9 (5)C28—C29—N4—C303.9 (4)
C27—C24—C25—C26178.5 (3)O6—C30—N4—C29179.2 (2)
C22—C21—C26—C251.6 (6)N3—C30—N4—C292.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.861.942.787 (4)167
O1—H1A···O3i0.84 (3)2.13 (3)2.949 (3)162
O1—H1B···O5ii0.90 (3)1.90 (3)2.794 (4)175
N2—HN2···O4iii0.861.942.767 (2)162
O2—H2A···O8iv0.86 (6)1.88 (6)2.739 (4)177
O2—H2B···O6v0.82 (3)2.16 (3)2.961 (3)169
N3—HN3···O7vi0.861.902.739 (2)164
N4—HN4···O20.861.922.761 (4)166
C22—H22···Cgvii0.932.973.5693124
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+2, y+2, z+1/2; (iii) x1/2, y+2, z; (iv) x+3/2, y, z1/2; (v) x1/2, y+1, z; (vi) x+1/2, y+1, z; (vii) x+1, y, z+1/2.
 

Acknowledgements

The authors thank the Department of Science and Technology, New Delhi, for financial support under the DST–SERB scheme (grant No. SR/FT/CS-145/2010). The support and encouragement of Tumkur University administration is also acknowledged. In addition, the authors thank Sapala Organics Pvt. Ltd, Hyderabad, for recording the 1H NMR and MS spectra of the title compound.

References

First citationBaba, M., Pauwels, R., Herdewijn, P., De Clercq, E., Desmyter, J. & Vandeputte, M. (1987). Biochem. Biophys. Res. Commun. 142, 128–134.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBarbachyn, M. R., Bundy, G. L., Dobrowolski, P. J., Hurd, A. R., Martin, G. E., McNamara, D. J., Palmer, J. R., Romero, D. L., Romero, A. G., Ruble, J. C., Sherry, D. A., Thomasco, L. M. & Toogood, P. L. (2007). US Patent 7208490 B2.  Google Scholar
First citationBassin, S. L. & Bleck, T. P. (2008). Crit. Care, 12, 185–186.  Web of Science CrossRef PubMed Google Scholar
First citationBhatt, P. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o771–o772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClercq, E. D. (1986a). J. Med. Chem. 29, 1561–1569.  PubMed Web of Science Google Scholar
First citationClercq, E. D. (1986b). Anticancer Res. 6, 549–556.  PubMed Web of Science Google Scholar
First citationCoupey, S. M. (1997). Pediatr. Rev. 18, 260–265.  CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeidelberger, C. & Arafield, F. (1963). J. Cancer Res. 23, 1226.  Google Scholar
First citationHumar, M., Andriopoulos, N., Pischke, S. E., Loop, T., Schmidt, R., Hoetzel, A., Roesslein, M., Pahl, H. L., Geiger, K. K. & Pannen, B. H. (2004). J. Pharmacol. Exp. Ther. 311, 1232–1240.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrajapati, D. & Gohain, M. (2006). Beilstein J. Org. Chem. 2, 611–617.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Kaur, M. & Verma, P. (2009). Bioorg. Med. Chem. Lett. 19, 3054–3058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSweidan, K., Engelmann, J., Joshi, R., Mubarak, M. S. & El-Abadelah, M. M. (2011). Lett. Org. Chem. 8, 603–605.  CrossRef CAS Google Scholar
First citationVida, J. A., Samour, C. M., O'Dea, M. H. & Reinhard, J. F. (1975). J. Med. Chem. 18, 694–696.  CrossRef PubMed CAS Google Scholar
First citationYilmaz, V. T., Yilmaz, F., Karakaya, H., Büyükgüngör, O. & Harrison, W. T. A. (2006). Polyhedron, 25, 2829–2840.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds