organic compounds
H)-one
of 3-bromo-4-dimethylamino-1-methyl-1,2,4-triazol-5(4aFaculty of Chemistry and Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title compound, C5H9BrN4O, was obtained as a minor by-product in the synthesis of 4-dimethylamino-1-methyl-1,2,4-triazolin-5-one. Except for the methyl groups of the 4-dimethylamino moiety, all the non-H atoms lie on a crystallographic mirror plane." In the crystal, the molecules are linked by C—Br⋯O=C interactions [Br⋯O = 2.877 (2) Å, C—Br⋯O = 174.6 (1)°] into infinite chains in the c-axis direction.
CCDC reference: 1036852
1. Related literature
For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965). For related structures with Br⋯O=C interactions, see: 5-bromopyrimidin-2-one (Yathirajan et al., 2007); 3,5-dibromopyran-2-one (Reus et al., 2012); N-bromosaccharin (Dolenc & Modec, 2009); N-bromosuccinimide (Jabay et al., 1977); dibromantin (Kruszynski, 2007). For the theory of halogen interactions, see: Awwadi et al. (2006). For details of the synthesis, see: Schwärzler et al. (2009).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1036852
https://doi.org/10.1107/S205698901402636X/fj2686sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901402636X/fj2686Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901402636X/fj2686Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S205698901402636X/fj2686Isup4.cml
The title compound was obtained as a minor by-product in the synthesis of 4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one by hydrolysis of 5-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolium hexafluorophosphate (Schwärzler et al., 2009) in MeOH/H2O. It is assumed that the 5-bromo compound was contaminated with a trace of the corresponding 3,5-dibromo compound which resulted in the formation of the present 3-bromo-1,2,4-triazolin-5-one.
The H atoms were identified in a difference map and those of the C4 methyl group were idealized and included as rigid groups, allowed to rotate but not tip (C—H = 0.97 Å). The C3 methyl group was found to be disordered over two orientations related by mirror symmetry. Its H positions were refined with restrained C—H and H···H distances of 0.97 (1) Å and 1.58 (2) Å, respectively. The Uiso parameters of all H atoms were set to 1.5 Ueq(C) of the parent carbon atom.
Triazolinones are of relevance due to their wide range of pesticidal activities. The molecular structure of 3-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one is shown in Figure 1. The triazole rings are located in the crystallographic mirror plane (Figure 2), whereas the C4 methyl groups are situated out of this plane. The molecules are linked by short intermolecular C—Br···O=C contacts into infinite chains in the direction of the c axis (Figure 3). The Br···O distance of 2.877 (2) Å is significantly shorter than the sum of van der Waals radii. Theoretical calculations predicted negative ring and positive end cap domains of halogen atoms due to their polarizability (Awwadi et al., 2006). The almost linear C—Br···O angle of 174.6 (1)° indicates an interaction involving the positive end cap of the Br atom. Thus, the Br atom acts as an electron-acceptor (X-bond donor) in this case.
For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965). For related structures with Br···O═C interactions, see: 5-bromopyrimidin-2-one (Yathirajan et al., 2007); 3,5-dibromopyran-2-one (Reus et al., 2012); N-bromosaccharin (Dolenc & Modec, 2009); N-bromosuccinimide (Jabay et al., 1977); dibromantin (Kruszynski, 2007). For the theory of halogen interactions, see: Awwadi et al. (2006). For details of the synthesis, see: Schwärzler et al. (2009).
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C5H9BrN4O | F(000) = 440 |
Mr = 221.07 | Dx = 1.772 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 15.1993 (6) Å | Cell parameters from 3066 reflections |
b = 6.9377 (4) Å | θ = 1.0–25.0° |
c = 7.8771 (7) Å | µ = 4.91 mm−1 |
β = 93.869 (3)° | T = 233 K |
V = 828.73 (9) Å3 | Prism, colorless |
Z = 4 | 0.09 × 0.08 × 0.07 mm |
Nonius KappaCCD diffractometer | 734 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 25.1°, θmin = 2.6° |
phi and ω scans | h = −13→18 |
2310 measured reflections | k = −8→8 |
806 independent reflections | l = −9→8 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.5344P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
806 reflections | Δρmax = 0.50 e Å−3 |
75 parameters | Δρmin = −0.44 e Å−3 |
C5H9BrN4O | V = 828.73 (9) Å3 |
Mr = 221.07 | Z = 4 |
Monoclinic, C2/m | Mo Kα radiation |
a = 15.1993 (6) Å | µ = 4.91 mm−1 |
b = 6.9377 (4) Å | T = 233 K |
c = 7.8771 (7) Å | 0.09 × 0.08 × 0.07 mm |
β = 93.869 (3)° |
Nonius KappaCCD diffractometer | 734 reflections with I > 2σ(I) |
2310 measured reflections | Rint = 0.034 |
806 independent reflections |
R[F2 > 2σ(F2)] = 0.028 | 6 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.50 e Å−3 |
806 reflections | Δρmin = −0.44 e Å−3 |
75 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.22218 (3) | 0.0000 | 0.18788 (4) | 0.03459 (19) | |
O1 | 0.17449 (19) | 0.0000 | −0.4649 (3) | 0.0426 (8) | |
N1 | 0.3186 (2) | 0.0000 | −0.1029 (4) | 0.0319 (8) | |
N2 | 0.2997 (2) | 0.0000 | −0.2784 (4) | 0.0302 (8) | |
N3 | 0.1742 (2) | 0.0000 | −0.1669 (4) | 0.0282 (7) | |
N4 | 0.0841 (2) | 0.0000 | −0.1382 (4) | 0.0329 (8) | |
C1 | 0.2418 (3) | 0.0000 | −0.0415 (4) | 0.0269 (9) | |
C2 | 0.2125 (3) | 0.0000 | −0.3221 (4) | 0.0322 (10) | |
C3 | 0.3694 (3) | 0.0000 | −0.3938 (6) | 0.0445 (11) | |
H3A | 0.352 (3) | −0.069 (5) | −0.497 (4) | 0.067* | 0.5 |
H3B | 0.4248 (19) | −0.047 (6) | −0.343 (6) | 0.067* | 0.5 |
H3C | 0.375 (3) | 0.136 (2) | −0.420 (6) | 0.067* | 0.5 |
C4 | 0.04175 (19) | 0.1766 (5) | −0.2044 (4) | 0.0478 (8) | |
H4A | 0.0726 | 0.2877 | −0.1550 | 0.072* | |
H4B | −0.0192 | 0.1791 | −0.1750 | 0.072* | |
H4C | 0.0438 | 0.1801 | −0.3272 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0454 (3) | 0.0368 (3) | 0.0211 (3) | 0.000 | −0.00047 (17) | 0.000 |
O1 | 0.0429 (17) | 0.067 (2) | 0.0181 (14) | 0.000 | 0.0024 (12) | 0.000 |
N1 | 0.037 (2) | 0.0330 (19) | 0.0255 (17) | 0.000 | −0.0004 (14) | 0.000 |
N2 | 0.0279 (19) | 0.0367 (19) | 0.0261 (17) | 0.000 | 0.0020 (13) | 0.000 |
N3 | 0.0257 (17) | 0.0392 (19) | 0.0197 (16) | 0.000 | 0.0019 (12) | 0.000 |
N4 | 0.0290 (18) | 0.044 (2) | 0.0252 (17) | 0.000 | 0.0013 (13) | 0.000 |
C1 | 0.035 (2) | 0.027 (2) | 0.019 (2) | 0.000 | −0.0026 (16) | 0.000 |
C2 | 0.040 (3) | 0.032 (2) | 0.025 (2) | 0.000 | 0.0051 (18) | 0.000 |
C3 | 0.036 (3) | 0.063 (3) | 0.036 (2) | 0.000 | 0.0124 (19) | 0.000 |
C4 | 0.0402 (19) | 0.059 (2) | 0.0445 (18) | 0.0125 (15) | 0.0051 (14) | 0.0066 (17) |
Br1—C1 | 1.851 (4) | N4—C4 | 1.464 (4) |
O1—C2 | 1.230 (4) | N4—C4i | 1.464 (4) |
N1—C1 | 1.292 (5) | C3—H3A | 0.967 (10) |
N1—N2 | 1.392 (5) | C3—H3B | 0.965 (10) |
N2—C2 | 1.346 (5) | C3—H3C | 0.969 (10) |
N2—C3 | 1.442 (5) | C4—H4A | 0.9700 |
N3—C1 | 1.377 (4) | C4—H4B | 0.9700 |
N3—C2 | 1.389 (5) | C4—H4C | 0.9700 |
N3—N4 | 1.403 (4) | ||
Br1···O1ii | 2.876 (3) | ||
C1—N1—N2 | 103.9 (3) | O1—C2—N3 | 127.3 (4) |
C2—N2—N1 | 112.8 (3) | N2—C2—N3 | 103.8 (3) |
C2—N2—C3 | 126.2 (3) | N2—C3—H3A | 111 (4) |
N1—N2—C3 | 121.0 (3) | N2—C3—H3B | 113 (3) |
C1—N3—C2 | 107.1 (3) | H3A—C3—H3B | 111 (2) |
C1—N3—N4 | 125.0 (3) | N2—C3—H3C | 102 (4) |
C2—N3—N4 | 127.9 (3) | H3A—C3—H3C | 109 (2) |
N3—N4—C4 | 110.6 (2) | H3B—C3—H3C | 110 (2) |
N3—N4—C4i | 110.6 (2) | N4—C4—H4A | 109.5 |
C4—N4—C4i | 113.7 (3) | N4—C4—H4B | 109.5 |
N1—C1—N3 | 112.4 (3) | H4A—C4—H4B | 109.5 |
N1—C1—Br1 | 125.0 (3) | N4—C4—H4C | 109.5 |
N3—C1—Br1 | 122.6 (3) | H4A—C4—H4C | 109.5 |
O1—C2—N2 | 128.9 (4) | H4B—C4—H4C | 109.5 |
Symmetry codes: (i) x, −y, z; (ii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H9BrN4O |
Mr | 221.07 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 233 |
a, b, c (Å) | 15.1993 (6), 6.9377 (4), 7.8771 (7) |
β (°) | 93.869 (3) |
V (Å3) | 828.73 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.91 |
Crystal size (mm) | 0.09 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2310, 806, 734 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.065, 1.07 |
No. of reflections | 806 |
No. of parameters | 75 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.44 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).
References
Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. Web of Science CrossRef PubMed CAS Google Scholar
Dolenc, D. & Modec, B. (2009). New J. Chem. 33, 2344–2349. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jabay, O., Pritzkow, H. & Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416–1420. Google Scholar
Kröger, C.-F., Hummel, L., Mutscher, M. & Beyer, H. (1965). Chem. Ber. 98, 3025–3033. Google Scholar
Kruszynski, R. (2007). Acta Cryst. C63, o389–o391. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reus, C., Liu, N.-W., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). J. Org. Chem. 77, 3518–3523. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schwärzler, A., Laus, G., Kahlenberg, V., Wurst, K., Gelbrich, T., Kreutz, C., Kopacka, H., Bonn, G. & Schottenberger, H. (2009). Z. Naturforsch. Teil B, 64, 603–616. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923–o924. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Triazolinones are of relevance due to their wide range of pesticidal activities. The molecular structure of 3-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one is shown in Figure 1. The triazole rings are located in the crystallographic mirror plane (Figure 2), whereas the C4 methyl groups are situated out of this plane. The molecules are linked by short intermolecular C—Br···O=C contacts into infinite chains in the direction of the c axis (Figure 3). The Br···O distance of 2.877 (2) Å is significantly shorter than the sum of van der Waals radii. Theoretical calculations predicted negative ring and positive end cap domains of halogen atoms due to their polarizability (Awwadi et al., 2006). The almost linear C—Br···O angle of 174.6 (1)° indicates an interaction involving the positive end cap of the Br atom. Thus, the Br atom acts as an electron-acceptor (X-bond donor) in this case.