organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-bromo-4-di­methyl­amino-1-methyl-1,2,4-triazol-5(4H)-one

aFaculty of Chemistry and Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by L. Farrugia, University of Glasgow, Scotland (Received 27 November 2014; accepted 1 December 2014; online 1 January 2015)

The title compound, C5H9BrN4O, was obtained as a minor by-product in the synthesis of 4-di­methyl­amino-1-methyl-1,2,4-triazolin-5-one. Except for the methyl groups of the 4-dimethylamino moiety, all the non-H atoms lie on a crystallographic mirror plane." In the crystal, the mol­ecules are linked by C—Br⋯O=C inter­actions [Br⋯O = 2.877 (2) Å, C—Br⋯O = 174.6 (1)°] into infinite chains in the c-axis direction.

1. Related literature

For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965[Kröger, C.-F., Hummel, L., Mutscher, M. & Beyer, H. (1965). Chem. Ber. 98, 3025-3033.]). For related structures with Br⋯O=C inter­actions, see: 5-bromo­pyrimidin-2-one (Yathirajan et al., 2007[Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923-o924.]); 3,5-di­bromo­pyran-2-one (Reus et al., 2012[Reus, C., Liu, N.-W., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). J. Org. Chem. 77, 3518-3523.]); N-bromo­saccharin (Dolenc & Modec, 2009[Dolenc, D. & Modec, B. (2009). New J. Chem. 33, 2344-2349.]); N-bromo­succinimide (Jabay et al., 1977[Jabay, O., Pritzkow, H. & Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416-1420.]); dibromantin (Kruszynski, 2007[Kruszynski, R. (2007). Acta Cryst. C63, o389-o391.]). For the theory of halogen inter­actions, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]). For details of the synthesis, see: Schwärzler et al. (2009[Schwärzler, A., Laus, G., Kahlenberg, V., Wurst, K., Gelbrich, T., Kreutz, C., Kopacka, H., Bonn, G. & Schottenberger, H. (2009). Z. Naturforsch. Teil B, 64, 603-616.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H9BrN4O

  • Mr = 221.07

  • Monoclinic, C 2/m

  • a = 15.1993 (6) Å

  • b = 6.9377 (4) Å

  • c = 7.8771 (7) Å

  • β = 93.869 (3)°

  • V = 828.73 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.91 mm−1

  • T = 233 K

  • 0.09 × 0.08 × 0.07 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 2310 measured reflections

  • 806 independent reflections

  • 734 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.07

  • 806 reflections

  • 75 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triazolinones are of relevance due to their wide range of pesticidal activities. The molecular structure of 3-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one is shown in Figure 1. The triazole rings are located in the crystallographic mirror plane (Figure 2), whereas the C4 methyl groups are situated out of this plane. The molecules are linked by short intermolecular C—Br···O=C contacts into infinite chains in the direction of the c axis (Figure 3). The Br···O distance of 2.877 (2) Å is significantly shorter than the sum of van der Waals radii. Theoretical calculations predicted negative ring and positive end cap domains of halogen atoms due to their polarizability (Awwadi et al., 2006). The almost linear C—Br···O angle of 174.6 (1)° indicates an interaction involving the positive end cap of the Br atom. Thus, the Br atom acts as an electron-acceptor (X-bond donor) in this case.

Related literature top

For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965). For related structures with Br···OC interactions, see: 5-bromopyrimidin-2-one (Yathirajan et al., 2007); 3,5-dibromopyran-2-one (Reus et al., 2012); N-bromosaccharin (Dolenc & Modec, 2009); N-bromosuccinimide (Jabay et al., 1977); dibromantin (Kruszynski, 2007). For the theory of halogen interactions, see: Awwadi et al. (2006). For details of the synthesis, see: Schwärzler et al. (2009).

Experimental top

The title compound was obtained as a minor by-product in the synthesis of 4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one by hydrolysis of 5-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolium hexafluorophosphate (Schwärzler et al., 2009) in MeOH/H2O. It is assumed that the 5-bromo compound was contaminated with a trace of the corresponding 3,5-dibromo compound which resulted in the formation of the present 3-bromo-1,2,4-triazolin-5-one.

Refinement top

The H atoms were identified in a difference map and those of the C4 methyl group were idealized and included as rigid groups, allowed to rotate but not tip (C—H = 0.97 Å). The C3 methyl group was found to be disordered over two orientations related by mirror symmetry. Its H positions were refined with restrained C—H and H···H distances of 0.97 (1) Å and 1.58 (2) Å, respectively. The Uiso parameters of all H atoms were set to 1.5 Ueq(C) of the parent carbon atom.

Structure description top

Triazolinones are of relevance due to their wide range of pesticidal activities. The molecular structure of 3-bromo-4-(dimethylamino)-1-methyl-1,2,4-triazolin-5-one is shown in Figure 1. The triazole rings are located in the crystallographic mirror plane (Figure 2), whereas the C4 methyl groups are situated out of this plane. The molecules are linked by short intermolecular C—Br···O=C contacts into infinite chains in the direction of the c axis (Figure 3). The Br···O distance of 2.877 (2) Å is significantly shorter than the sum of van der Waals radii. Theoretical calculations predicted negative ring and positive end cap domains of halogen atoms due to their polarizability (Awwadi et al., 2006). The almost linear C—Br···O angle of 174.6 (1)° indicates an interaction involving the positive end cap of the Br atom. Thus, the Br atom acts as an electron-acceptor (X-bond donor) in this case.

For synthesis of related 4-amino-1-methyl-1,2,4-triazolin-5-ones, see: Kröger et al. (1965). For related structures with Br···OC interactions, see: 5-bromopyrimidin-2-one (Yathirajan et al., 2007); 3,5-dibromopyran-2-one (Reus et al., 2012); N-bromosaccharin (Dolenc & Modec, 2009); N-bromosuccinimide (Jabay et al., 1977); dibromantin (Kruszynski, 2007). For the theory of halogen interactions, see: Awwadi et al. (2006). For details of the synthesis, see: Schwärzler et al. (2009).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (i): x, -y, z.
[Figure 2] Fig. 2. Arrangement of the triazole rings parallel to the ac plane. One component of the disordered C3 methyl group has been omitted for clarity.
[Figure 3] Fig. 3. Infinite chains of molecules linked by Br···O interactions. One component of the disordered C3 methyl group has been omitted for clarity. Symmetry code (ii): x, y, 1 + z; (iii): x, y, -1 + z.
3-Bromo-4-dimethylamino-1-methyl-1,2,4-triazol-5(4H)-one top
Crystal data top
C5H9BrN4OF(000) = 440
Mr = 221.07Dx = 1.772 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 15.1993 (6) ÅCell parameters from 3066 reflections
b = 6.9377 (4) Åθ = 1.0–25.0°
c = 7.8771 (7) ŵ = 4.91 mm1
β = 93.869 (3)°T = 233 K
V = 828.73 (9) Å3Prism, colorless
Z = 40.09 × 0.08 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
734 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.1°, θmin = 2.6°
phi and ω scansh = 1318
2310 measured reflectionsk = 88
806 independent reflectionsl = 98
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.033P)2 + 0.5344P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
806 reflectionsΔρmax = 0.50 e Å3
75 parametersΔρmin = 0.44 e Å3
Crystal data top
C5H9BrN4OV = 828.73 (9) Å3
Mr = 221.07Z = 4
Monoclinic, C2/mMo Kα radiation
a = 15.1993 (6) ŵ = 4.91 mm1
b = 6.9377 (4) ÅT = 233 K
c = 7.8771 (7) Å0.09 × 0.08 × 0.07 mm
β = 93.869 (3)°
Data collection top
Nonius KappaCCD
diffractometer
734 reflections with I > 2σ(I)
2310 measured reflectionsRint = 0.034
806 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
806 reflectionsΔρmin = 0.44 e Å3
75 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.22218 (3)0.00000.18788 (4)0.03459 (19)
O10.17449 (19)0.00000.4649 (3)0.0426 (8)
N10.3186 (2)0.00000.1029 (4)0.0319 (8)
N20.2997 (2)0.00000.2784 (4)0.0302 (8)
N30.1742 (2)0.00000.1669 (4)0.0282 (7)
N40.0841 (2)0.00000.1382 (4)0.0329 (8)
C10.2418 (3)0.00000.0415 (4)0.0269 (9)
C20.2125 (3)0.00000.3221 (4)0.0322 (10)
C30.3694 (3)0.00000.3938 (6)0.0445 (11)
H3A0.352 (3)0.069 (5)0.497 (4)0.067*0.5
H3B0.4248 (19)0.047 (6)0.343 (6)0.067*0.5
H3C0.375 (3)0.136 (2)0.420 (6)0.067*0.5
C40.04175 (19)0.1766 (5)0.2044 (4)0.0478 (8)
H4A0.07260.28770.15500.072*
H4B0.01920.17910.17500.072*
H4C0.04380.18010.32720.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0454 (3)0.0368 (3)0.0211 (3)0.0000.00047 (17)0.000
O10.0429 (17)0.067 (2)0.0181 (14)0.0000.0024 (12)0.000
N10.037 (2)0.0330 (19)0.0255 (17)0.0000.0004 (14)0.000
N20.0279 (19)0.0367 (19)0.0261 (17)0.0000.0020 (13)0.000
N30.0257 (17)0.0392 (19)0.0197 (16)0.0000.0019 (12)0.000
N40.0290 (18)0.044 (2)0.0252 (17)0.0000.0013 (13)0.000
C10.035 (2)0.027 (2)0.019 (2)0.0000.0026 (16)0.000
C20.040 (3)0.032 (2)0.025 (2)0.0000.0051 (18)0.000
C30.036 (3)0.063 (3)0.036 (2)0.0000.0124 (19)0.000
C40.0402 (19)0.059 (2)0.0445 (18)0.0125 (15)0.0051 (14)0.0066 (17)
Geometric parameters (Å, º) top
Br1—C11.851 (4)N4—C41.464 (4)
O1—C21.230 (4)N4—C4i1.464 (4)
N1—C11.292 (5)C3—H3A0.967 (10)
N1—N21.392 (5)C3—H3B0.965 (10)
N2—C21.346 (5)C3—H3C0.969 (10)
N2—C31.442 (5)C4—H4A0.9700
N3—C11.377 (4)C4—H4B0.9700
N3—C21.389 (5)C4—H4C0.9700
N3—N41.403 (4)
Br1···O1ii2.876 (3)
C1—N1—N2103.9 (3)O1—C2—N3127.3 (4)
C2—N2—N1112.8 (3)N2—C2—N3103.8 (3)
C2—N2—C3126.2 (3)N2—C3—H3A111 (4)
N1—N2—C3121.0 (3)N2—C3—H3B113 (3)
C1—N3—C2107.1 (3)H3A—C3—H3B111 (2)
C1—N3—N4125.0 (3)N2—C3—H3C102 (4)
C2—N3—N4127.9 (3)H3A—C3—H3C109 (2)
N3—N4—C4110.6 (2)H3B—C3—H3C110 (2)
N3—N4—C4i110.6 (2)N4—C4—H4A109.5
C4—N4—C4i113.7 (3)N4—C4—H4B109.5
N1—C1—N3112.4 (3)H4A—C4—H4B109.5
N1—C1—Br1125.0 (3)N4—C4—H4C109.5
N3—C1—Br1122.6 (3)H4A—C4—H4C109.5
O1—C2—N2128.9 (4)H4B—C4—H4C109.5
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H9BrN4O
Mr221.07
Crystal system, space groupMonoclinic, C2/m
Temperature (K)233
a, b, c (Å)15.1993 (6), 6.9377 (4), 7.8771 (7)
β (°) 93.869 (3)
V3)828.73 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.91
Crystal size (mm)0.09 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2310, 806, 734
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.07
No. of reflections806
No. of parameters75
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Selected interatomic distances (Å) top
Br1···O1i2.876 (3)
Symmetry code: (i) x, y, z+1.
 

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolenc, D. & Modec, B. (2009). New J. Chem. 33, 2344–2349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJabay, O., Pritzkow, H. & Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416–1420.  Google Scholar
First citationKröger, C.-F., Hummel, L., Mutscher, M. & Beyer, H. (1965). Chem. Ber. 98, 3025–3033.  Google Scholar
First citationKruszynski, R. (2007). Acta Cryst. C63, o389–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReus, C., Liu, N.-W., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). J. Org. Chem. 77, 3518–3523.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchwärzler, A., Laus, G., Kahlenberg, V., Wurst, K., Gelbrich, T., Kreutz, C., Kopacka, H., Bonn, G. & Schottenberger, H. (2009). Z. Naturforsch. Teil B, 64, 603–616.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923–o924.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds