metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[(N,N-di­methyl­acetamide-κO)(μ4-5-methyl­isophthalato-κ5O:O,O′:O′′:O′′′)manganese(II)]

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn

Edited by U. Flörke, University of Paderborn, Germany (Received 19 November 2014; accepted 23 November 2014; online 1 January 2015)

The title compound, poly[(N,N-di­methyl­acetamide-κO)(μ4-5-methyl­isophthalato-κ5O,O′:O′,O′′:O′′)manganese(II)], [Mn(C9H6O4)(C3H7NO)]n, was obtained from a mixture containing MnCl2·4H2O and 5-methyl­isophthalic acid in N,N-di­methyl­acetamide solution. The Mn2+ ion is coordinated by five O atoms from four bridging 5-methyl­isophthalate ligands and one O atom from one N,N-di­methyl­acetamide ligand, defining a considerably distorted coordination polyhedron with one very long Mn—O bond of 2.623 (2) Å. The Mn2+ ions are joined by carboxyl­ate groups, forming rod-shaped secondary building units along the a axis. The rods are further connected by 5-methyl­isophthalate ligands to form the pcu (primitive cubic net) structure.

1. Related literature

For the structures of coordination polymers comprising first-row transition metal ions and benzene di­carboxyl­ates, see: Deng et al. (2013[Deng, X.-L., Yang, S.-Y., Jin, R.-F., Tao, J., Wu, C.-Q., Li, Z.-L., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2013). Polyhedron, 50, 219-228.]); Jin et al. (2012[Jin, R.-F., Yang, S.-Y., Li, H.-M., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2012). CrystEngComm, 14, 1301-1316.]); Li et al. (2010[Li, H.-M., Yang, S.-Y., Wang, J.-W., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2010). Polyhedron, 29, 2851-2856.]); Yang et al. (2013[Yang, S.-Y., Yuan, H.-B., Xu, X.-B. & Huang, R.-B. (2013). Inorg. Chim. Acta, 403, 53-62.]); Zhou et al. (2009[Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009). CrystEngComm, 11, 2548-2554.]). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005[Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.]);. A very closely related crystal structure, poly[(di­methyl­formamide)(5-meth­oxy­benzene-1,3-di­carboxyl­ato)manganese(II)], was reported recently (Huang, 2013[Huang, X.-H. (2013). Acta Cryst. C69, 483-485.]). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]; Hill et al., 2005[Hill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337-350.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(C9H6O4)(C3H7NO)]

  • Mr = 306.17

  • Orthorhombic, P n a 21

  • a = 7.281 (5) Å

  • b = 15.148 (11) Å

  • c = 10.903 (8) Å

  • V = 1202.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 200 K

  • 0.15 × 0.10 × 0.10 mm

2.2. Data collection

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.897

  • 10159 measured reflections

  • 2874 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.07

  • 2874 reflections

  • 175 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 0 Friedel pairs

  • Absolute structure parameter: 0.025 (14)

Table 1
Selected geometric parameters (Å, °)

Mn1—O4i 2.0609 (19)
Mn1—O3ii 2.0855 (15)
Mn1—O1 2.0885 (16)
Mn1—O5 2.1342 (18)
Mn1—O2iii 2.1378 (16)
O4i—Mn1—O3ii 131.59 (6)
O4i—Mn1—O1 83.59 (6)
O3ii—Mn1—O1 98.77 (7)
O4i—Mn1—O5 83.95 (6)
O3ii—Mn1—O5 84.88 (7)
O1—Mn1—O5 166.04 (5)
O4i—Mn1—O2iii 135.70 (6)
O3ii—Mn1—O2iii 92.23 (7)
O1—Mn1—O2iii 97.51 (7)
O5—Mn1—O2iii 95.80 (7)
Symmetry codes: (i) [-x, -y+2, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

We have reported the structures of dozens of coordination polymers comprising first-row transition metal ions and benzene di­carboxyl­ates (Deng et al., 2013; Jin et al., 2012; Li et al. 2010; Yang et al., 2013; Zhou et al., 2009). We found that metal ion is the most important factor that influences the structure of coordination polymer.

The title compound, [Mn(C9H6O4)(C3H7O)]n, (I) was obtained with the same method reported in our previous paper (Yang et al., 2013). The structure feature of I is quite similar to those manganese analogs reported in that paper. The Mn2+ ions are joined by carboxyl groups to form rod-shaped secondary building units (SBUs) along the a axis. Each rod is further connected to four adjacent rods by 5-methyl­isophthalates to form the rod packing type 2 pcu (primitive cubic net) structure according to the nomenclature for metal-organic frameworks (Rosi et al., 2005). A very closely related molecular structure, poly[(di­methyl­formamide)(5-meth­oxy­benzene-1,3-di­carboxyl­ato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in PtS (cooperite) topology according to a different analysis approach (Carlucci et al., 2003; Hill et al., 2005).

Synthesis and crystallization top

A mixture containing MnCl2.4H2O (0.039 g, 0.20 mmol) and 5-methyl­isophthalic acid (H2mip, 0.036 g, 0.20 mmol) in 10 mL N,N-di­methyl­acetamide (DMF) was heated at 100 °C for 5000 min. Colourless block crystals were generated (0.025 g, 41%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Related literature top

For the structures of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates, see: Deng et al. (2013); Jin et al. (2012); Li et al. (2010); Yang et al. (2013); Zhou et al. (2009). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005);. A very closely related crystal structure, poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003; Hill et al., 2005).

Structure description top

We have reported the structures of dozens of coordination polymers comprising first-row transition metal ions and benzene di­carboxyl­ates (Deng et al., 2013; Jin et al., 2012; Li et al. 2010; Yang et al., 2013; Zhou et al., 2009). We found that metal ion is the most important factor that influences the structure of coordination polymer.

The title compound, [Mn(C9H6O4)(C3H7O)]n, (I) was obtained with the same method reported in our previous paper (Yang et al., 2013). The structure feature of I is quite similar to those manganese analogs reported in that paper. The Mn2+ ions are joined by carboxyl groups to form rod-shaped secondary building units (SBUs) along the a axis. Each rod is further connected to four adjacent rods by 5-methyl­isophthalates to form the rod packing type 2 pcu (primitive cubic net) structure according to the nomenclature for metal-organic frameworks (Rosi et al., 2005). A very closely related molecular structure, poly[(di­methyl­formamide)(5-meth­oxy­benzene-1,3-di­carboxyl­ato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in PtS (cooperite) topology according to a different analysis approach (Carlucci et al., 2003; Hill et al., 2005).

For the structures of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates, see: Deng et al. (2013); Jin et al. (2012); Li et al. (2010); Yang et al. (2013); Zhou et al. (2009). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005);. A very closely related crystal structure, poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003; Hill et al., 2005).

Synthesis and crystallization top

A mixture containing MnCl2.4H2O (0.039 g, 0.20 mmol) and 5-methyl­isophthalic acid (H2mip, 0.036 g, 0.20 mmol) in 10 mL N,N-di­methyl­acetamide (DMF) was heated at 100 °C for 5000 min. Colourless block crystals were generated (0.025 g, 41%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to C atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination modes in (I). Anisotropic displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i -x, -y + 2, z + 1/2; ii -x + 1/2, y - 1/2, z + 1/2; iii x - 1/2, -y + 3/2, z; iv x + 1/2, -y + 3/2, z; v -x + 1/2, y + 1/2, z - 1/2; vi -x, -y + 2, z - 1/2.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, showing MnO6 in polyhedra.
Poly[(N,N-dimethylacetamide-κO)(µ4-5-methylisophthalato-κ5O:O,O':O'':O''')manganese(II)] top
Crystal data top
[Mn(C9H6O4)(C3H7NO)]F(000) = 628
Mr = 306.17Dx = 1.691 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6647 reflections
a = 7.281 (5) Åθ = 2.3–28.7°
b = 15.148 (11) ŵ = 1.11 mm1
c = 10.903 (8) ÅT = 200 K
V = 1202.5 (15) Å3Rod, colorless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEX area-detector
diffractometer
2874 independent reflections
Radiation source: fine-focus sealed tube2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scanθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.851, Tmax = 0.897k = 1919
10159 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.1079P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2874 reflectionsΔρmax = 0.26 e Å3
175 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 0 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (14)
Crystal data top
[Mn(C9H6O4)(C3H7NO)]V = 1202.5 (15) Å3
Mr = 306.17Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.281 (5) ŵ = 1.11 mm1
b = 15.148 (11) ÅT = 200 K
c = 10.903 (8) Å0.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEX area-detector
diffractometer
2874 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2768 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.897Rint = 0.025
10159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.29 e Å3
2874 reflectionsAbsolute structure: Flack (1983), 0 Friedel pairs
175 parametersAbsolute structure parameter: 0.025 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.02668 (3)0.718473 (13)0.40075 (4)0.01733 (7)
O10.21890 (19)0.76885 (7)0.27699 (13)0.0264 (3)
O20.40794 (19)0.87833 (8)0.28213 (14)0.0320 (3)
O30.30783 (16)1.12474 (7)0.01315 (13)0.0244 (3)
O40.02059 (16)1.15017 (8)0.06146 (13)0.0254 (3)
O50.15683 (19)0.69631 (9)0.55025 (14)0.0301 (3)
N10.2451 (2)0.61847 (11)0.71232 (16)0.0323 (4)
C10.1457 (2)0.89377 (11)0.16063 (16)0.0210 (3)
C20.1976 (2)0.97512 (10)0.11805 (18)0.0208 (3)
H2A0.31041.00030.14420.025*
C30.0878 (2)1.02002 (10)0.03817 (16)0.0196 (3)
C40.0754 (2)0.98383 (11)0.00205 (17)0.0237 (3)
H4A0.15291.01570.05230.028*
C50.1290 (3)0.90257 (12)0.04273 (18)0.0269 (4)
C60.0157 (3)0.85839 (12)0.12133 (19)0.0261 (4)
H6A0.05050.80140.14940.031*
C70.2643 (2)0.84485 (11)0.24625 (17)0.0236 (4)
C80.1438 (2)1.10570 (10)0.01549 (17)0.0197 (3)
C90.3076 (3)0.86426 (15)0.0039 (3)0.0448 (6)
H9A0.29800.79970.00200.067*
H9B0.33920.88610.07800.067*
H9C0.40340.88170.06230.067*
C100.1507 (3)0.63087 (12)0.61313 (19)0.0282 (4)
H10A0.07040.58490.58800.034*
C110.2297 (3)0.53842 (16)0.7799 (2)0.0459 (6)
H11A0.12830.50320.74690.069*
H11B0.34460.50500.77310.069*
H11C0.20570.55200.86640.069*
C120.3792 (4)0.68114 (17)0.7505 (3)0.0545 (7)
H12A0.35960.73690.70690.082*
H12B0.36800.69110.83900.082*
H12C0.50220.65860.73190.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01845 (11)0.01338 (10)0.02015 (12)0.00142 (7)0.00145 (16)0.00084 (12)
O10.0343 (7)0.0170 (5)0.0279 (7)0.0074 (5)0.0119 (6)0.0068 (5)
O20.0262 (7)0.0330 (7)0.0368 (8)0.0002 (6)0.0060 (6)0.0145 (6)
O30.0188 (6)0.0207 (5)0.0336 (7)0.0019 (4)0.0012 (5)0.0087 (5)
O40.0232 (6)0.0172 (6)0.0359 (8)0.0006 (4)0.0074 (5)0.0059 (5)
O50.0333 (7)0.0266 (6)0.0305 (8)0.0002 (6)0.0079 (6)0.0069 (6)
N10.0328 (9)0.0366 (9)0.0274 (10)0.0036 (7)0.0051 (7)0.0065 (7)
C10.0227 (8)0.0191 (7)0.0211 (8)0.0021 (6)0.0043 (6)0.0043 (6)
C20.0192 (8)0.0193 (7)0.0240 (8)0.0002 (6)0.0026 (6)0.0021 (6)
C30.0202 (8)0.0175 (7)0.0212 (8)0.0010 (6)0.0047 (7)0.0019 (6)
C40.0217 (8)0.0230 (8)0.0264 (9)0.0006 (6)0.0005 (7)0.0053 (7)
C50.0267 (9)0.0274 (9)0.0267 (9)0.0067 (7)0.0001 (7)0.0044 (7)
C60.0295 (9)0.0201 (8)0.0286 (10)0.0051 (6)0.0048 (7)0.0040 (7)
C70.0262 (8)0.0235 (8)0.0213 (9)0.0070 (7)0.0060 (7)0.0051 (7)
C80.0223 (8)0.0168 (7)0.0199 (8)0.0008 (6)0.0000 (6)0.0005 (6)
C90.0371 (12)0.0452 (12)0.0521 (14)0.0188 (9)0.0127 (10)0.0132 (11)
C100.0253 (9)0.0291 (9)0.0303 (10)0.0008 (7)0.0022 (8)0.0026 (8)
C110.0445 (13)0.0526 (13)0.0407 (14)0.0074 (10)0.0018 (11)0.0222 (11)
C120.0674 (17)0.0524 (14)0.0437 (15)0.0092 (13)0.0238 (13)0.0037 (12)
Geometric parameters (Å, º) top
Mn1—O4i2.0609 (19)C2—C31.364 (2)
Mn1—O3ii2.0855 (15)C2—H2A0.9500
Mn1—O12.0885 (16)C3—C41.367 (2)
Mn1—O52.1342 (18)C3—C81.481 (2)
Mn1—O2iii2.1378 (16)C4—C51.365 (2)
O1—C71.244 (2)C4—H4A0.9500
O2—C71.226 (2)C5—C61.365 (3)
O2—Mn1iv2.1378 (16)C5—C91.485 (3)
O3—C81.229 (2)C6—H6A0.9500
O3—Mn1v2.0855 (15)C9—H9A0.9800
O4—C81.228 (2)C9—H9B0.9800
O4—Mn1vi2.0609 (18)C9—H9C0.9800
O5—C101.206 (2)C10—H10A0.9500
N1—C101.295 (3)C11—H11A0.9800
N1—C111.424 (3)C11—H11B0.9800
N1—C121.424 (3)C11—H11C0.9800
C1—C61.361 (3)C12—H12A0.9800
C1—C21.370 (2)C12—H12B0.9800
C1—C71.472 (2)C12—H12C0.9800
O4i—Mn1—O3ii131.59 (6)C4—C5—C9120.65 (19)
O4i—Mn1—O183.59 (6)C1—C6—C5121.77 (17)
O3ii—Mn1—O198.77 (7)C1—C6—H6A119.1
O4i—Mn1—O583.95 (6)C5—C6—H6A119.1
O3ii—Mn1—O584.88 (7)O2—C7—O1121.56 (17)
O1—Mn1—O5166.04 (5)O2—C7—C1119.62 (16)
O4i—Mn1—O2iii135.70 (6)O1—C7—C1118.76 (17)
O3ii—Mn1—O2iii92.23 (7)O4—C8—O3126.10 (17)
O1—Mn1—O2iii97.51 (7)O4—C8—C3116.16 (16)
O5—Mn1—O2iii95.80 (7)O3—C8—C3117.70 (15)
C7—O1—Mn1133.66 (12)C5—C9—H9A109.5
C7—O2—Mn1iv104.72 (11)C5—C9—H9B109.5
C8—O3—Mn1v135.39 (11)H9A—C9—H9B109.5
C8—O4—Mn1vi137.13 (12)C5—C9—H9C109.5
C10—O5—Mn1122.70 (13)H9A—C9—H9C109.5
C10—N1—C11120.94 (19)H9B—C9—H9C109.5
C10—N1—C12120.75 (18)O5—C10—N1125.04 (18)
C11—N1—C12118.1 (2)O5—C10—H10A117.5
C6—C1—C2119.04 (17)N1—C10—H10A117.5
C6—C1—C7120.53 (16)N1—C11—H11A109.5
C2—C1—C7120.42 (17)N1—C11—H11B109.5
C3—C2—C1120.22 (17)H11A—C11—H11B109.5
C3—C2—H2A119.9N1—C11—H11C109.5
C1—C2—H2A119.9H11A—C11—H11C109.5
C2—C3—C4119.58 (15)H11B—C11—H11C109.5
C2—C3—C8121.87 (16)N1—C12—H12A109.5
C4—C3—C8118.50 (15)N1—C12—H12B109.5
C5—C4—C3121.09 (17)H12A—C12—H12B109.5
C5—C4—H4A119.5N1—C12—H12C109.5
C3—C4—H4A119.5H12A—C12—H12C109.5
C6—C5—C4118.27 (17)H12B—C12—H12C109.5
C6—C5—C9121.07 (18)
O4i—Mn1—O1—C72.37 (18)Mn1iv—O2—C7—O12.1 (2)
O3ii—Mn1—O1—C7133.56 (19)Mn1iv—O2—C7—C1179.51 (13)
O5—Mn1—O1—C729.3 (4)Mn1—O1—C7—O2104.6 (2)
O2iii—Mn1—O1—C7132.99 (19)Mn1—O1—C7—C178.0 (2)
O4i—Mn1—O5—C10152.61 (17)C6—C1—C7—O2178.90 (18)
O3ii—Mn1—O5—C1019.79 (16)C2—C1—C7—O22.0 (3)
O1—Mn1—O5—C10125.7 (2)C6—C1—C7—O13.7 (3)
O2iii—Mn1—O5—C1071.94 (17)C2—C1—C7—O1175.45 (17)
C6—C1—C2—C30.5 (3)Mn1vi—O4—C8—O326.5 (3)
C7—C1—C2—C3179.64 (16)Mn1vi—O4—C8—C3155.59 (13)
C1—C2—C3—C40.8 (3)Mn1v—O3—C8—O412.1 (3)
C1—C2—C3—C8176.42 (16)Mn1v—O3—C8—C3165.74 (13)
C2—C3—C4—C51.3 (3)C2—C3—C8—O4163.04 (17)
C8—C3—C4—C5176.03 (17)C4—C3—C8—O419.7 (2)
C3—C4—C5—C60.4 (3)C2—C3—C8—O318.9 (2)
C3—C4—C5—C9179.3 (2)C4—C3—C8—O3158.37 (17)
C2—C1—C6—C51.4 (3)Mn1—O5—C10—N1172.24 (15)
C7—C1—C6—C5179.47 (18)C11—N1—C10—O5179.4 (2)
C4—C5—C6—C10.9 (3)C12—N1—C10—O55.1 (3)
C9—C5—C6—C1178.0 (2)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z1/2; (vi) x, y+2, z1/2.
Selected geometric parameters (Å, º) top
Mn1—O4i2.0609 (19)Mn1—O52.1342 (18)
Mn1—O3ii2.0855 (15)Mn1—O2iii2.1378 (16)
Mn1—O12.0885 (16)
O4i—Mn1—O3ii131.59 (6)O1—Mn1—O5166.04 (5)
O4i—Mn1—O183.59 (6)O4i—Mn1—O2iii135.70 (6)
O3ii—Mn1—O198.77 (7)O3ii—Mn1—O2iii92.23 (7)
O4i—Mn1—O583.95 (6)O1—Mn1—O2iii97.51 (7)
O3ii—Mn1—O584.88 (7)O5—Mn1—O2iii95.80 (7)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z.
 

Acknowledgements

We are grateful for financial support by the National Natural Science Foundation of China (grant Nos. 21071117 and 21471125).

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationDeng, X.-L., Yang, S.-Y., Jin, R.-F., Tao, J., Wu, C.-Q., Li, Z.-L., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2013). Polyhedron, 50, 219–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350.  Web of Science CrossRef Google Scholar
First citationHuang, X.-H. (2013). Acta Cryst. C69, 483–485.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJin, R.-F., Yang, S.-Y., Li, H.-M., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2012). CrystEngComm, 14, 1301–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H.-M., Yang, S.-Y., Wang, J.-W., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2010). Polyhedron, 29, 2851–2856.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-Y., Yuan, H.-B., Xu, X.-B. & Huang, R.-B. (2013). Inorg. Chim. Acta, 403, 53–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009). CrystEngComm, 11, 2548–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds