metal-organic compounds
N,N-dimethylacetamide-κO)(μ4-5-methylisophthalato-κ5O:O,O′:O′′:O′′′)manganese(II)]
of poly[(aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn
The title compound, poly[(N,N-dimethylacetamide-κO)(μ4-5-methylisophthalato-κ5O,O′:O′,O′′:O′′)manganese(II)], [Mn(C9H6O4)(C3H7NO)]n, was obtained from a mixture containing MnCl2·4H2O and 5-methylisophthalic acid in N,N-dimethylacetamide solution. The Mn2+ ion is coordinated by five O atoms from four bridging 5-methylisophthalate ligands and one O atom from one N,N-dimethylacetamide ligand, defining a considerably distorted with one very long Mn—O bond of 2.623 (2) Å. The Mn2+ ions are joined by carboxylate groups, forming rod-shaped secondary building units along the a axis. The rods are further connected by 5-methylisophthalate ligands to form the pcu (primitive cubic net) structure.
Keywords: crystal structure; manganese(II) coordination polymer; pcu structure; N,N-dimethylacetamide; 5-methylisophthalate.
CCDC reference: 1035658
1. Related literature
For the structures of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates, see: Deng et al. (2013); Jin et al. (2012); Li et al. (2010); Yang et al. (2013); Zhou et al. (2009). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005);. A very closely related poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003; Hill et al., 2005).
2. Experimental
2.1. Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1035658
https://doi.org/10.1107/S2056989014025626/fk2084sup1.cif
contains datablocks I, AE2. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014025626/fk2084Isup2.hkl
We have reported the structures of dozens of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates (Deng et al., 2013; Jin et al., 2012; Li et al. 2010; Yang et al., 2013; Zhou et al., 2009). We found that metal ion is the most important factor that influences the structure of coordination polymer.
The title compound, [Mn(C9H6O4)(C3H7O)]n, (I) was obtained with the same method reported in our previous paper (Yang et al., 2013). The structure feature of I is quite similar to those manganese analogs reported in that paper. The Mn2+ ions are joined by carboxyl groups to form rod-shaped secondary building units (SBUs) along the a axis. Each rod is further connected to four adjacent rods by 5-methylisophthalates to form the rod packing type 2 pcu (primitive cubic net) structure according to the nomenclature for metal-organic frameworks (Rosi et al., 2005). A very closely related molecular structure, poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in PtS (cooperite) topology according to a different analysis approach (Carlucci et al., 2003; Hill et al., 2005).
A mixture containing MnCl2.4H2O (0.039 g, 0.20 mmol) and 5-methylisophthalic acid (H2mip, 0.036 g, 0.20 mmol) in 10 mL N,N-dimethylacetamide (DMF) was heated at 100 °C for 5000 min. Colourless block crystals were generated (0.025 g, 41%).
We have reported the structures of dozens of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates (Deng et al., 2013; Jin et al., 2012; Li et al. 2010; Yang et al., 2013; Zhou et al., 2009). We found that metal ion is the most important factor that influences the structure of coordination polymer.
The title compound, [Mn(C9H6O4)(C3H7O)]n, (I) was obtained with the same method reported in our previous paper (Yang et al., 2013). The structure feature of I is quite similar to those manganese analogs reported in that paper. The Mn2+ ions are joined by carboxyl groups to form rod-shaped secondary building units (SBUs) along the a axis. Each rod is further connected to four adjacent rods by 5-methylisophthalates to form the rod packing type 2 pcu (primitive cubic net) structure according to the nomenclature for metal-organic frameworks (Rosi et al., 2005). A very closely related molecular structure, poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in PtS (cooperite) topology according to a different analysis approach (Carlucci et al., 2003; Hill et al., 2005).
For the structures of coordination polymers comprising first-row transition metal ions and benzene dicarboxylates, see: Deng et al. (2013); Jin et al. (2012); Li et al. (2010); Yang et al. (2013); Zhou et al. (2009). For the nomenclature for metal-organic frameworks, see: Rosi et al. (2005);. A very closely related
poly[(dimethylformamide)(5-methoxybenzene-1,3-dicarboxylato)manganese(II)], was reported recently (Huang, 2013). The author described the structure in a PtS (cooperite) topology according to a different analytical approach (Carlucci et al., 2003; Hill et al., 2005).A mixture containing MnCl2.4H2O (0.039 g, 0.20 mmol) and 5-methylisophthalic acid (H2mip, 0.036 g, 0.20 mmol) in 10 mL N,N-dimethylacetamide (DMF) was heated at 100 °C for 5000 min. Colourless block crystals were generated (0.025 g, 41%).
detailsCrystal data, data collection and structure
details are summarized in Table 1. H atoms bonded to C atoms were positioned geometrically and refined using a riding model (including about the C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Coordination modes in (I). Anisotropic displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i -x, -y + 2, z + 1/2; ii -x + 1/2, y - 1/2, z + 1/2; iii x - 1/2, -y + 3/2, z; iv x + 1/2, -y + 3/2, z; v -x + 1/2, y + 1/2, z - 1/2; vi -x, -y + 2, z - 1/2. | |
Fig. 2. The packing of (I), viewed down the a axis, showing MnO6 in polyhedra. |
[Mn(C9H6O4)(C3H7NO)] | F(000) = 628 |
Mr = 306.17 | Dx = 1.691 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 6647 reflections |
a = 7.281 (5) Å | θ = 2.3–28.7° |
b = 15.148 (11) Å | µ = 1.11 mm−1 |
c = 10.903 (8) Å | T = 200 K |
V = 1202.5 (15) Å3 | Rod, colorless |
Z = 4 | 0.15 × 0.10 × 0.10 mm |
Bruker APEX area-detector diffractometer | 2874 independent reflections |
Radiation source: fine-focus sealed tube | 2768 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scan | θmax = 29.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.851, Tmax = 0.897 | k = −19→19 |
10159 measured reflections | l = −13→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0316P)2 + 0.1079P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2874 reflections | Δρmax = 0.26 e Å−3 |
175 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 0 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.025 (14) |
[Mn(C9H6O4)(C3H7NO)] | V = 1202.5 (15) Å3 |
Mr = 306.17 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 7.281 (5) Å | µ = 1.11 mm−1 |
b = 15.148 (11) Å | T = 200 K |
c = 10.903 (8) Å | 0.15 × 0.10 × 0.10 mm |
Bruker APEX area-detector diffractometer | 2874 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2768 reflections with I > 2σ(I) |
Tmin = 0.851, Tmax = 0.897 | Rint = 0.025 |
10159 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.059 | Δρmax = 0.26 e Å−3 |
S = 1.07 | Δρmin = −0.29 e Å−3 |
2874 reflections | Absolute structure: Flack (1983), 0 Friedel pairs |
175 parameters | Absolute structure parameter: 0.025 (14) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.02668 (3) | 0.718473 (13) | 0.40075 (4) | 0.01733 (7) | |
O1 | 0.21890 (19) | 0.76885 (7) | 0.27699 (13) | 0.0264 (3) | |
O2 | 0.40794 (19) | 0.87833 (8) | 0.28213 (14) | 0.0320 (3) | |
O3 | 0.30783 (16) | 1.12474 (7) | −0.01315 (13) | 0.0244 (3) | |
O4 | 0.02059 (16) | 1.15017 (8) | −0.06146 (13) | 0.0254 (3) | |
O5 | −0.15683 (19) | 0.69631 (9) | 0.55025 (14) | 0.0301 (3) | |
N1 | −0.2451 (2) | 0.61847 (11) | 0.71232 (16) | 0.0323 (4) | |
C1 | 0.1457 (2) | 0.89377 (11) | 0.16063 (16) | 0.0210 (3) | |
C2 | 0.1976 (2) | 0.97512 (10) | 0.11805 (18) | 0.0208 (3) | |
H2A | 0.3104 | 1.0003 | 0.1442 | 0.025* | |
C3 | 0.0878 (2) | 1.02002 (10) | 0.03817 (16) | 0.0196 (3) | |
C4 | −0.0754 (2) | 0.98383 (11) | 0.00205 (17) | 0.0237 (3) | |
H4A | −0.1529 | 1.0157 | −0.0523 | 0.028* | |
C5 | −0.1290 (3) | 0.90257 (12) | 0.04273 (18) | 0.0269 (4) | |
C6 | −0.0157 (3) | 0.85839 (12) | 0.12133 (19) | 0.0261 (4) | |
H6A | −0.0505 | 0.8014 | 0.1494 | 0.031* | |
C7 | 0.2643 (2) | 0.84485 (11) | 0.24625 (17) | 0.0236 (4) | |
C8 | 0.1438 (2) | 1.10570 (10) | −0.01549 (17) | 0.0197 (3) | |
C9 | −0.3076 (3) | 0.86426 (15) | 0.0039 (3) | 0.0448 (6) | |
H9A | −0.2980 | 0.7997 | 0.0020 | 0.067* | |
H9B | −0.3392 | 0.8861 | −0.0780 | 0.067* | |
H9C | −0.4034 | 0.8817 | 0.0623 | 0.067* | |
C10 | −0.1507 (3) | 0.63087 (12) | 0.61313 (19) | 0.0282 (4) | |
H10A | −0.0704 | 0.5849 | 0.5880 | 0.034* | |
C11 | −0.2297 (3) | 0.53842 (16) | 0.7799 (2) | 0.0459 (6) | |
H11A | −0.1283 | 0.5032 | 0.7469 | 0.069* | |
H11B | −0.3446 | 0.5050 | 0.7731 | 0.069* | |
H11C | −0.2057 | 0.5520 | 0.8664 | 0.069* | |
C12 | −0.3792 (4) | 0.68114 (17) | 0.7505 (3) | 0.0545 (7) | |
H12A | −0.3596 | 0.7369 | 0.7069 | 0.082* | |
H12B | −0.3680 | 0.6911 | 0.8390 | 0.082* | |
H12C | −0.5022 | 0.6586 | 0.7319 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01845 (11) | 0.01338 (10) | 0.02015 (12) | 0.00142 (7) | 0.00145 (16) | 0.00084 (12) |
O1 | 0.0343 (7) | 0.0170 (5) | 0.0279 (7) | 0.0074 (5) | 0.0119 (6) | 0.0068 (5) |
O2 | 0.0262 (7) | 0.0330 (7) | 0.0368 (8) | −0.0002 (6) | −0.0060 (6) | 0.0145 (6) |
O3 | 0.0188 (6) | 0.0207 (5) | 0.0336 (7) | −0.0019 (4) | 0.0012 (5) | 0.0087 (5) |
O4 | 0.0232 (6) | 0.0172 (6) | 0.0359 (8) | 0.0006 (4) | −0.0074 (5) | 0.0059 (5) |
O5 | 0.0333 (7) | 0.0266 (6) | 0.0305 (8) | 0.0002 (6) | 0.0079 (6) | 0.0069 (6) |
N1 | 0.0328 (9) | 0.0366 (9) | 0.0274 (10) | −0.0036 (7) | 0.0051 (7) | 0.0065 (7) |
C1 | 0.0227 (8) | 0.0191 (7) | 0.0211 (8) | 0.0021 (6) | 0.0043 (6) | 0.0043 (6) |
C2 | 0.0192 (8) | 0.0193 (7) | 0.0240 (8) | 0.0002 (6) | 0.0026 (6) | 0.0021 (6) |
C3 | 0.0202 (8) | 0.0175 (7) | 0.0212 (8) | 0.0010 (6) | 0.0047 (7) | 0.0019 (6) |
C4 | 0.0217 (8) | 0.0230 (8) | 0.0264 (9) | 0.0006 (6) | 0.0005 (7) | 0.0053 (7) |
C5 | 0.0267 (9) | 0.0274 (9) | 0.0267 (9) | −0.0067 (7) | −0.0001 (7) | 0.0044 (7) |
C6 | 0.0295 (9) | 0.0201 (8) | 0.0286 (10) | −0.0051 (6) | 0.0048 (7) | 0.0040 (7) |
C7 | 0.0262 (8) | 0.0235 (8) | 0.0213 (9) | 0.0070 (7) | 0.0060 (7) | 0.0051 (7) |
C8 | 0.0223 (8) | 0.0168 (7) | 0.0199 (8) | 0.0008 (6) | 0.0000 (6) | 0.0005 (6) |
C9 | 0.0371 (12) | 0.0452 (12) | 0.0521 (14) | −0.0188 (9) | −0.0127 (10) | 0.0132 (11) |
C10 | 0.0253 (9) | 0.0291 (9) | 0.0303 (10) | −0.0008 (7) | 0.0022 (8) | 0.0026 (8) |
C11 | 0.0445 (13) | 0.0526 (13) | 0.0407 (14) | −0.0074 (10) | 0.0018 (11) | 0.0222 (11) |
C12 | 0.0674 (17) | 0.0524 (14) | 0.0437 (15) | 0.0092 (13) | 0.0238 (13) | −0.0037 (12) |
Mn1—O4i | 2.0609 (19) | C2—C3 | 1.364 (2) |
Mn1—O3ii | 2.0855 (15) | C2—H2A | 0.9500 |
Mn1—O1 | 2.0885 (16) | C3—C4 | 1.367 (2) |
Mn1—O5 | 2.1342 (18) | C3—C8 | 1.481 (2) |
Mn1—O2iii | 2.1378 (16) | C4—C5 | 1.365 (2) |
O1—C7 | 1.244 (2) | C4—H4A | 0.9500 |
O2—C7 | 1.226 (2) | C5—C6 | 1.365 (3) |
O2—Mn1iv | 2.1378 (16) | C5—C9 | 1.485 (3) |
O3—C8 | 1.229 (2) | C6—H6A | 0.9500 |
O3—Mn1v | 2.0855 (15) | C9—H9A | 0.9800 |
O4—C8 | 1.228 (2) | C9—H9B | 0.9800 |
O4—Mn1vi | 2.0609 (18) | C9—H9C | 0.9800 |
O5—C10 | 1.206 (2) | C10—H10A | 0.9500 |
N1—C10 | 1.295 (3) | C11—H11A | 0.9800 |
N1—C11 | 1.424 (3) | C11—H11B | 0.9800 |
N1—C12 | 1.424 (3) | C11—H11C | 0.9800 |
C1—C6 | 1.361 (3) | C12—H12A | 0.9800 |
C1—C2 | 1.370 (2) | C12—H12B | 0.9800 |
C1—C7 | 1.472 (2) | C12—H12C | 0.9800 |
O4i—Mn1—O3ii | 131.59 (6) | C4—C5—C9 | 120.65 (19) |
O4i—Mn1—O1 | 83.59 (6) | C1—C6—C5 | 121.77 (17) |
O3ii—Mn1—O1 | 98.77 (7) | C1—C6—H6A | 119.1 |
O4i—Mn1—O5 | 83.95 (6) | C5—C6—H6A | 119.1 |
O3ii—Mn1—O5 | 84.88 (7) | O2—C7—O1 | 121.56 (17) |
O1—Mn1—O5 | 166.04 (5) | O2—C7—C1 | 119.62 (16) |
O4i—Mn1—O2iii | 135.70 (6) | O1—C7—C1 | 118.76 (17) |
O3ii—Mn1—O2iii | 92.23 (7) | O4—C8—O3 | 126.10 (17) |
O1—Mn1—O2iii | 97.51 (7) | O4—C8—C3 | 116.16 (16) |
O5—Mn1—O2iii | 95.80 (7) | O3—C8—C3 | 117.70 (15) |
C7—O1—Mn1 | 133.66 (12) | C5—C9—H9A | 109.5 |
C7—O2—Mn1iv | 104.72 (11) | C5—C9—H9B | 109.5 |
C8—O3—Mn1v | 135.39 (11) | H9A—C9—H9B | 109.5 |
C8—O4—Mn1vi | 137.13 (12) | C5—C9—H9C | 109.5 |
C10—O5—Mn1 | 122.70 (13) | H9A—C9—H9C | 109.5 |
C10—N1—C11 | 120.94 (19) | H9B—C9—H9C | 109.5 |
C10—N1—C12 | 120.75 (18) | O5—C10—N1 | 125.04 (18) |
C11—N1—C12 | 118.1 (2) | O5—C10—H10A | 117.5 |
C6—C1—C2 | 119.04 (17) | N1—C10—H10A | 117.5 |
C6—C1—C7 | 120.53 (16) | N1—C11—H11A | 109.5 |
C2—C1—C7 | 120.42 (17) | N1—C11—H11B | 109.5 |
C3—C2—C1 | 120.22 (17) | H11A—C11—H11B | 109.5 |
C3—C2—H2A | 119.9 | N1—C11—H11C | 109.5 |
C1—C2—H2A | 119.9 | H11A—C11—H11C | 109.5 |
C2—C3—C4 | 119.58 (15) | H11B—C11—H11C | 109.5 |
C2—C3—C8 | 121.87 (16) | N1—C12—H12A | 109.5 |
C4—C3—C8 | 118.50 (15) | N1—C12—H12B | 109.5 |
C5—C4—C3 | 121.09 (17) | H12A—C12—H12B | 109.5 |
C5—C4—H4A | 119.5 | N1—C12—H12C | 109.5 |
C3—C4—H4A | 119.5 | H12A—C12—H12C | 109.5 |
C6—C5—C4 | 118.27 (17) | H12B—C12—H12C | 109.5 |
C6—C5—C9 | 121.07 (18) | ||
O4i—Mn1—O1—C7 | −2.37 (18) | Mn1iv—O2—C7—O1 | −2.1 (2) |
O3ii—Mn1—O1—C7 | −133.56 (19) | Mn1iv—O2—C7—C1 | −179.51 (13) |
O5—Mn1—O1—C7 | −29.3 (4) | Mn1—O1—C7—O2 | 104.6 (2) |
O2iii—Mn1—O1—C7 | 132.99 (19) | Mn1—O1—C7—C1 | −78.0 (2) |
O4i—Mn1—O5—C10 | −152.61 (17) | C6—C1—C7—O2 | −178.90 (18) |
O3ii—Mn1—O5—C10 | −19.79 (16) | C2—C1—C7—O2 | 2.0 (3) |
O1—Mn1—O5—C10 | −125.7 (2) | C6—C1—C7—O1 | 3.7 (3) |
O2iii—Mn1—O5—C10 | 71.94 (17) | C2—C1—C7—O1 | −175.45 (17) |
C6—C1—C2—C3 | 0.5 (3) | Mn1vi—O4—C8—O3 | −26.5 (3) |
C7—C1—C2—C3 | 179.64 (16) | Mn1vi—O4—C8—C3 | 155.59 (13) |
C1—C2—C3—C4 | 0.8 (3) | Mn1v—O3—C8—O4 | −12.1 (3) |
C1—C2—C3—C8 | −176.42 (16) | Mn1v—O3—C8—C3 | 165.74 (13) |
C2—C3—C4—C5 | −1.3 (3) | C2—C3—C8—O4 | −163.04 (17) |
C8—C3—C4—C5 | 176.03 (17) | C4—C3—C8—O4 | 19.7 (2) |
C3—C4—C5—C6 | 0.4 (3) | C2—C3—C8—O3 | 18.9 (2) |
C3—C4—C5—C9 | 179.3 (2) | C4—C3—C8—O3 | −158.37 (17) |
C2—C1—C6—C5 | −1.4 (3) | Mn1—O5—C10—N1 | 172.24 (15) |
C7—C1—C6—C5 | 179.47 (18) | C11—N1—C10—O5 | 179.4 (2) |
C4—C5—C6—C1 | 0.9 (3) | C12—N1—C10—O5 | 5.1 (3) |
C9—C5—C6—C1 | −178.0 (2) |
Symmetry codes: (i) −x, −y+2, z+1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) x−1/2, −y+3/2, z; (iv) x+1/2, −y+3/2, z; (v) −x+1/2, y+1/2, z−1/2; (vi) −x, −y+2, z−1/2. |
Mn1—O4i | 2.0609 (19) | Mn1—O5 | 2.1342 (18) |
Mn1—O3ii | 2.0855 (15) | Mn1—O2iii | 2.1378 (16) |
Mn1—O1 | 2.0885 (16) | ||
O4i—Mn1—O3ii | 131.59 (6) | O1—Mn1—O5 | 166.04 (5) |
O4i—Mn1—O1 | 83.59 (6) | O4i—Mn1—O2iii | 135.70 (6) |
O3ii—Mn1—O1 | 98.77 (7) | O3ii—Mn1—O2iii | 92.23 (7) |
O4i—Mn1—O5 | 83.95 (6) | O1—Mn1—O2iii | 97.51 (7) |
O3ii—Mn1—O5 | 84.88 (7) | O5—Mn1—O2iii | 95.80 (7) |
Symmetry codes: (i) −x, −y+2, z+1/2; (ii) −x+1/2, y−1/2, z+1/2; (iii) x−1/2, −y+3/2, z. |
Acknowledgements
We are grateful for financial support by the National Natural Science Foundation of China (grant Nos. 21071117 and 21471125).
References
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289. Web of Science CrossRef CAS Google Scholar
Deng, X.-L., Yang, S.-Y., Jin, R.-F., Tao, J., Wu, C.-Q., Li, Z.-L., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2013). Polyhedron, 50, 219–228. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hill, R. J., Long, D.-L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350. Web of Science CrossRef Google Scholar
Huang, X.-H. (2013). Acta Cryst. C69, 483–485. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jin, R.-F., Yang, S.-Y., Li, H.-M., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2012). CrystEngComm, 14, 1301–1316. Web of Science CSD CrossRef CAS Google Scholar
Li, H.-M., Yang, S.-Y., Wang, J.-W., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2010). Polyhedron, 29, 2851–2856. Web of Science CSD CrossRef CAS Google Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, S.-Y., Yuan, H.-B., Xu, X.-B. & Huang, R.-B. (2013). Inorg. Chim. Acta, 403, 53–62. Web of Science CSD CrossRef CAS Google Scholar
Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009). CrystEngComm, 11, 2548–2554. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.