organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-[2-((1E)-{(1E)-2-[2-(2-eth­­oxy-2-oxoeth­­oxy)benzyl­­idene]hydrazin-1-yl­­idene}meth­yl)phen­­oxy]acetate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: abdala_15@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 November 2014; accepted 23 November 2014; online 1 January 2015)

The complete mol­ecule of the title compound, C22H24N2O6, is generated by crystallographic inversion symmetry and is approximately planar (r.m.s. deviation of the non-H atoms = 0.134 Å). The packing consists of inter-digitated sheets inclined at 25.9 (4)° to one another and linked by short C—H⋯O hydrogen bonds.

1. Related literature

For background to the properties and applications of imines see: Sun et al. (2001[Sun, B., Chen, J., Hu, J. Y. & Lix, J. (2001). Chin. Chem. Lett. 12, 1043-1047.]); Boghaei & Mohebi (2002[Boghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357-5366.]); Liu et al. (2006[Liu, J., Wu, B., Zhang, B. & Liu, Y. (2006). Turk. J. Chem. 30, 41-48.]); Britovsek et al. (2001[Britovsek, G. J. P., Gibson, V. V., Mastroianni, S., Oakes, D. C. H., Red, S. C., Solan, G. A., White, A. J. P. & Williams, D. J. (2001). Eur. J. Inorg. Chem. 2, 431-437.]); Budakoti et al. (2006[Budakoti, A., Abid, M. & Azam, A. (2006). Eur. J. Med. Chem. 41, 63-70.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H24N2O6

  • Mr = 412.43

  • Monoclinic, C 2/c

  • a = 18.2073 (5) Å

  • b = 11.7758 (3) Å

  • c = 9.9950 (3) Å

  • β = 93.226 (1)°

  • V = 2139.59 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 150 K

  • 0.16 × 0.15 × 0.07 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.94

  • 12339 measured reflections

  • 2124 independent reflections

  • 1801 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 2124 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.34 3.2802 (14) 168
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Imines are used as catalysts, in medicine as antibiotics and anti-inflammatory agents and in industry as anticorrosion agents (Sun et al., 2001; Boghaei & Mohebi, 2002; Liu et al., 2006; Britovsek et al., 2001; Budakoti et al., 2006). Based on these finding we report here the synthesis and crystal structure of the title compound.

The title molecule has crystallographically imposed centrosymmetry with an "extended" conformation in which the central portion is almost planar. Intermolecular C6—H6···O2 hydrogen bonds (Table 1) assemble the molecules into interpenetrating sheets which are inclined to (100) by 24.0 and 24.3° and to one another by 25.9° (Figs. 2 and 3).

Related literature top

For background to the properties and applications of imines see: Sun et al. (2001); Boghaei & Mohebi (2002); Liu et al. (2006); Britovsek et al. (2001); Budakoti et al. (2006).

Experimental top

A mixture of 1 mmol (326 mg) of ethyl (2-{(Z)-[(2E)-(2-hydroxybenzylidene)hydrazono]methyl}phenoxy)acetate and 1 mmol (167 mg) of ethyl bromoacetate in 30 ml of ethanol was heated under reflux for 24 h. The resulting solid product was filtered off, dried and recrystallized from dichlomethane solution to furnish pale yellow blocks in 90% yield (m.p. 383 K).

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Structure description top

Imines are used as catalysts, in medicine as antibiotics and anti-inflammatory agents and in industry as anticorrosion agents (Sun et al., 2001; Boghaei & Mohebi, 2002; Liu et al., 2006; Britovsek et al., 2001; Budakoti et al., 2006). Based on these finding we report here the synthesis and crystal structure of the title compound.

The title molecule has crystallographically imposed centrosymmetry with an "extended" conformation in which the central portion is almost planar. Intermolecular C6—H6···O2 hydrogen bonds (Table 1) assemble the molecules into interpenetrating sheets which are inclined to (100) by 24.0 and 24.3° and to one another by 25.9° (Figs. 2 and 3).

For background to the properties and applications of imines see: Sun et al. (2001); Boghaei & Mohebi (2002); Liu et al. (2006); Britovsek et al. (2001); Budakoti et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2014).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability ellipsoids. Primed atoms are related to their unprimed counterparts by the crystallographic center.
[Figure 2] Fig. 2. Packing viewed down the a axis with C—H···O interactions shown by dotted lines.
[Figure 3] Fig. 3. Elevation view of the interpentrating layer packing.
Ethyl 2-[2-((1E)-{(1E)-2-[2-(2-ethoxy-2-oxoethoxy)benzylidene]hydrazin-1-ylidene}methyl)phenoxy]acetate top
Crystal data top
C22H24N2O6F(000) = 872
Mr = 412.43Dx = 1.280 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 18.2073 (5) ÅCell parameters from 7734 reflections
b = 11.7758 (3) Åθ = 4.5–72.3°
c = 9.9950 (3) ŵ = 0.78 mm1
β = 93.226 (1)°T = 150 K
V = 2139.59 (10) Å3Block, pale yellow
Z = 40.16 × 0.15 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2124 independent reflections
Radiation source: INCOATEC IµS micro-focus source1801 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 4.5°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1314
Tmin = 0.88, Tmax = 0.94l = 1212
12339 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.7328P]
where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H24N2O6V = 2139.59 (10) Å3
Mr = 412.43Z = 4
Monoclinic, C2/cCu Kα radiation
a = 18.2073 (5) ŵ = 0.78 mm1
b = 11.7758 (3) ÅT = 150 K
c = 9.9950 (3) Å0.16 × 0.15 × 0.07 mm
β = 93.226 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1801 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.94Rint = 0.032
12339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2124 reflectionsΔρmin = 0.21 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65269 (5)0.39734 (7)0.64113 (8)0.0303 (2)
O20.60379 (5)0.59761 (8)0.72472 (8)0.0394 (2)
O30.57361 (5)0.65089 (7)0.51290 (8)0.0310 (2)
N10.74455 (5)0.21539 (8)0.94262 (9)0.0274 (2)
C10.66504 (6)0.28591 (9)0.60919 (11)0.0247 (2)
C20.69652 (6)0.21893 (9)0.71363 (10)0.0240 (2)
C30.70953 (6)0.10397 (10)0.68869 (12)0.0283 (3)
H30.73110.05770.75810.034*
C40.69152 (7)0.05673 (10)0.56450 (12)0.0314 (3)
H40.69960.02180.54920.038*
C50.66146 (7)0.12522 (11)0.46220 (12)0.0308 (3)
H50.64970.09300.37650.037*
C60.64838 (6)0.23969 (10)0.48302 (11)0.0277 (3)
H60.62830.28590.41210.033*
C70.71462 (6)0.27139 (9)0.84382 (11)0.0253 (2)
H70.70390.34960.85570.030*
C80.61552 (7)0.46587 (10)0.54257 (11)0.0284 (3)
H8A0.56960.42820.50850.034*
H8B0.64700.47840.46640.034*
C90.59814 (6)0.57753 (10)0.60731 (11)0.0274 (3)
C100.55682 (7)0.76451 (11)0.55916 (13)0.0378 (3)
H10A0.60040.79790.60810.045*
H10B0.51590.76180.62030.045*
C110.53530 (8)0.83464 (12)0.43762 (16)0.0463 (4)
H11A0.57670.83870.37930.069*
H11B0.52210.91140.46560.069*
H11C0.49300.79950.38870.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (5)0.0230 (4)0.0226 (4)0.0049 (3)0.0062 (3)0.0004 (3)
O20.0579 (6)0.0364 (5)0.0234 (4)0.0062 (4)0.0031 (4)0.0042 (4)
O30.0402 (5)0.0251 (4)0.0273 (4)0.0064 (3)0.0017 (3)0.0001 (3)
N10.0353 (5)0.0252 (5)0.0214 (5)0.0008 (4)0.0014 (4)0.0006 (4)
C10.0270 (5)0.0233 (6)0.0241 (5)0.0009 (4)0.0031 (4)0.0011 (4)
C20.0257 (5)0.0250 (6)0.0215 (5)0.0021 (4)0.0025 (4)0.0017 (4)
C30.0310 (6)0.0254 (6)0.0285 (6)0.0003 (4)0.0015 (4)0.0041 (4)
C40.0381 (7)0.0235 (6)0.0327 (6)0.0008 (5)0.0018 (5)0.0033 (5)
C50.0359 (6)0.0323 (6)0.0242 (6)0.0000 (5)0.0010 (5)0.0049 (5)
C60.0320 (6)0.0294 (6)0.0217 (5)0.0002 (4)0.0000 (4)0.0015 (4)
C70.0295 (6)0.0229 (5)0.0234 (5)0.0010 (4)0.0020 (4)0.0020 (4)
C80.0366 (6)0.0258 (6)0.0221 (5)0.0030 (4)0.0036 (4)0.0017 (4)
C90.0293 (6)0.0280 (6)0.0245 (5)0.0003 (4)0.0018 (4)0.0001 (4)
C100.0436 (7)0.0268 (6)0.0432 (7)0.0086 (5)0.0032 (6)0.0040 (5)
C110.0472 (8)0.0350 (7)0.0578 (9)0.0141 (6)0.0135 (7)0.0127 (7)
Geometric parameters (Å, º) top
O1—C11.3720 (14)C4—H40.9500
O1—C81.4159 (13)C5—C61.3867 (17)
O2—C91.1958 (14)C5—H50.9500
O3—C91.3374 (14)C6—H60.9500
O3—C101.4537 (14)C7—H70.9500
N1—C71.2831 (14)C8—C91.5070 (15)
N1—N1i1.4121 (18)C8—H8A0.9900
C1—C61.3912 (15)C8—H8B0.9900
C1—C21.4046 (15)C10—C111.5025 (19)
C2—C31.3991 (16)C10—H10A0.9900
C2—C71.4613 (15)C10—H10B0.9900
C3—C41.3827 (16)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.3901 (17)C11—H11C0.9800
C1—O1—C8117.47 (9)C2—C7—H7118.9
C9—O3—C10115.97 (9)O1—C8—C9107.59 (9)
C7—N1—N1i111.26 (12)O1—C8—H8A110.2
O1—C1—C6123.70 (10)C9—C8—H8A110.2
O1—C1—C2115.44 (9)O1—C8—H8B110.2
C6—C1—C2120.86 (10)C9—C8—H8B110.2
C3—C2—C1118.49 (10)H8A—C8—H8B108.5
C3—C2—C7122.39 (10)O2—C9—O3124.86 (11)
C1—C2—C7119.11 (10)O2—C9—C8125.82 (11)
C4—C3—C2121.01 (11)O3—C9—C8109.30 (9)
C4—C3—H3119.5O3—C10—C11107.37 (11)
C2—C3—H3119.5O3—C10—H10A110.2
C3—C4—C5119.38 (11)C11—C10—H10A110.2
C3—C4—H4120.3O3—C10—H10B110.2
C5—C4—H4120.3C11—C10—H10B110.2
C6—C5—C4121.16 (11)H10A—C10—H10B108.5
C6—C5—H5119.4C10—C11—H11A109.5
C4—C5—H5119.4C10—C11—H11B109.5
C5—C6—C1119.07 (11)H11A—C11—H11B109.5
C5—C6—H6120.5C10—C11—H11C109.5
C1—C6—H6120.5H11A—C11—H11C109.5
N1—C7—C2122.19 (10)H11B—C11—H11C109.5
N1—C7—H7118.9
C8—O1—C1—C65.25 (16)O1—C1—C6—C5178.46 (10)
C8—O1—C1—C2174.91 (9)C2—C1—C6—C51.71 (17)
O1—C1—C2—C3178.99 (9)N1i—N1—C7—C2179.14 (10)
C6—C1—C2—C31.17 (16)C3—C2—C7—N11.02 (17)
O1—C1—C2—C71.15 (15)C1—C2—C7—N1178.84 (10)
C6—C1—C2—C7178.69 (10)C1—O1—C8—C9171.36 (9)
C1—C2—C3—C40.39 (17)C10—O3—C9—O23.46 (17)
C7—C2—C3—C4179.75 (10)C10—O3—C9—C8177.91 (10)
C2—C3—C4—C51.38 (18)O1—C8—C9—O211.11 (17)
C3—C4—C5—C60.83 (18)O1—C8—C9—O3170.27 (9)
C4—C5—C6—C10.70 (18)C9—O3—C10—C11176.28 (10)
Symmetry code: (i) x+3/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2ii0.952.343.2802 (14)168
Symmetry code: (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.343.2802 (14)168
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBoghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357–5366.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBritovsek, G. J. P., Gibson, V. V., Mastroianni, S., Oakes, D. C. H., Red, S. C., Solan, G. A., White, A. J. P. & Williams, D. J. (2001). Eur. J. Inorg. Chem. 2, 431–437.  CSD CrossRef Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudakoti, A., Abid, M. & Azam, A. (2006). Eur. J. Med. Chem. 41, 63–70.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J., Wu, B., Zhang, B. & Liu, Y. (2006). Turk. J. Chem. 30, 41–48.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, B., Chen, J., Hu, J. Y. & Lix, J. (2001). Chin. Chem. Lett. 12, 1043–1047.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds