organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(4-chloro­phen­­oxy)-4-(2-nitro­phen­yl)azetidin-2-one with an unknown solvate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakir, Turkey, and, Science and Technology Application and Research Center, Dicle University, 21280, Diyarbakir, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 November 2014; accepted 26 November 2014; online 1 January 2015)

In the title compound, C15H11ClN2O4, the central β-lactam ring is approximately planar [maximum deviation = 0.044 (2) Å for the N atom from the mean plane] and subtends dihedral angles of 61.17 (11) and 40.21 (12) °, respectively, with the nitro and chloro­benzene rings. Both substituents lie to the same side of the β-lactam core. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [010]. The chains are cross-linked by C—H⋯O and weak C—H⋯π inter­actions, generating a three-dimensional network. The solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155], which indicated a solvent cavity of volume 318 Å3 containing approximately 114 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

1. Related literature

For the application of N-unsubstituted 2-azetidinones in the synthesis of β-lactam anti­biotics, see: Cossio et al. (1987[Cossio, F. P., Lecea, B. & Palomo, C. (1987). J. Chem. Soc. Chem. Commun. pp. 1743-1744.]); Jarrahpour & Zarei (2007[Jarrahpour, A. & Zarei, M. (2007). Molecules, 12, 2364-2379.], 2008[Jarrahpour, A. & Zarei, M. (2008). Synth. Commun. 38, 1837-1845.]). For a related structure with a β-lactam ring, see: Butcher et al. (2011[Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101-o1102.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H11ClN2O4

  • Mr = 318.71

  • Monoclinic, P 21 /n

  • a = 16.9505 (4) Å

  • b = 4.6517 (1) Å

  • c = 21.7167 (6) Å

  • β = 99.757 (1)°

  • V = 1687.56 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 16293 measured reflections

  • 4358 independent reflections

  • 3158 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.04

  • 4358 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the nitro­benzene ring (C4–C9).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.09 2.936 (2) 166
C8—H8⋯O3ii 0.93 2.53 3.307 (2) 142
C15—H15⋯O2iii 0.93 2.51 3.338 (2) 149
C3—H3⋯Cg2iv 0.98 2.70 3.5118 (19) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y-1, z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Unsubstituted 2-azetidinones offer major synthetic opportunities in the synthesis of β-lactam antibiotics such as the carbapenems, penams, monobactams, nocardicins, and the glutamine synthetase inhibitor, tabtoxin (Cossio, et al., 1987) The application of N-unsubstituted 2-azetidinones in the semi-synthesis of the anticancer agents, Taxol and Taxotere has also been reported (Jarrahpour, et al., 2007). N-Unsubstituted 2-azetidinones have been prepared by several methods. Among these methods, oxidative cleavage by ceric ammonium nitrate (CAN) of p-alkoxyphenyl moiety attached to the nitrogen of the β-lactam ring offers the most direct synthesis of N-unsubstituted β-lactams (Jarrahpour, et al., 2008).

In the title compound (Fig. 1), the β-lactam ring is nearly planar with a maximum deviation of 0.044 (2) Å for N1 from the mean plane. The carboxyl O atom O1 attached to the β-lactam ring deviates by -0.137 (1) Å from the mean plane of the ring. The β-lactam ring makes dihedral angles of 61.17 (11) and 40.21 (12) ° with the nitro and choloro-benzene rings, respectively.

All bond lengths and angles are comparable with those reported in a related structure (Butcher et al., 2011).

In the crystal, molecules are linked into [010] C(4) chains by N—H···O hydrogen bonds. C—H···O hydrogen bonds (Fig. 2) and weak C—H···π interactions link the chains into a three-dimensional network (Table 1).

Related literature top

For the application of N-unsubstituted 2-azetidinones in the synthesis of β-lactam antibiotics, see: Cossio et al. (1987); Jarrahpour & Zarei (2007, 2008). For a related structure with a β-lactam ring, see: Butcher et al. (2011).

Experimental top

A solution of (NH4)2Ce(NO3)6 (CAN) (3.00 mmol) in water (15.00 ml) was added dropwise to a solution of β-lactam (1.00 mmol) in CH3CN (30.00 ml) at room temperature and stirred for 45 min. Then water (30.00 ml) was added and the mixture was extracted with EtOAc (3 × 20 ml) and washed with 10% of NaHCO3 (40 ml). The aqueous layer of NaHCO3 was extracted again with EtOAc (15 ml), and all organic extracts were combined and washed successively with 10% NaHSO3 (2×30 ml), 10% NaHCO3 (20 ml), brine (20 ml) and then dried over sodium sulfate. After filtration and evaporation of the solvent in vacuo, the crude product was purified by column chromatography or recrystallization from hexane/EtOAc (4:6) solution to give colourless prisms (Yield 75%). Mp 350–352 K IR (KBr, cm-1): 1774 (CO β-lactam), 3217 (NH). 1H NMR (250 MHz, DMSO-d6) δ(p.p.m.): 5.74 (H-3, d, 1H, J=5.5 Hz), 6.23 (H-4, d, 1H, J=5.5 Hz), 7.27–8.15 (aromatic H, m, 8H), 9.13 (NH, brs, 1H). 13C NMR (62.9 MHz, DMSO-d6) δ(p.p.m.): 54.60 (C-4), 83.18 (C-3), 117.5, 124.7, 125.9, 128.7, 128.9, 129.1, 132.8, 134.4, 147.4, 155.8 (aromatic carbons), 165.90 (CO, β- lactam). Analysis calculated for C15H11ClN2O4: C, 51.01; H, 2.85; N, 7.93%. Found: C, 51.03; H, 2.87; N, 7.91%.

Refinement top

C and N-bound H atoms were positioned geometrically (C—H = 0.93 - 0.98 Å and N—H =0.86 Å), and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). The twenty two reflections were omitted owing to bad disagreement. The crystal quality and data was not good enough. A region of disordered electron density, most probably disordered solvent molecules, occupying voids of ca 318 Å3 for an electron count of 114, was removed with the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155] following unsuccessful attempts to model it as a plausible solvent molecule. Their formula mass and unit-cell characteristics were not taken into account during refinement.

Structure description top

N-Unsubstituted 2-azetidinones offer major synthetic opportunities in the synthesis of β-lactam antibiotics such as the carbapenems, penams, monobactams, nocardicins, and the glutamine synthetase inhibitor, tabtoxin (Cossio, et al., 1987) The application of N-unsubstituted 2-azetidinones in the semi-synthesis of the anticancer agents, Taxol and Taxotere has also been reported (Jarrahpour, et al., 2007). N-Unsubstituted 2-azetidinones have been prepared by several methods. Among these methods, oxidative cleavage by ceric ammonium nitrate (CAN) of p-alkoxyphenyl moiety attached to the nitrogen of the β-lactam ring offers the most direct synthesis of N-unsubstituted β-lactams (Jarrahpour, et al., 2008).

In the title compound (Fig. 1), the β-lactam ring is nearly planar with a maximum deviation of 0.044 (2) Å for N1 from the mean plane. The carboxyl O atom O1 attached to the β-lactam ring deviates by -0.137 (1) Å from the mean plane of the ring. The β-lactam ring makes dihedral angles of 61.17 (11) and 40.21 (12) ° with the nitro and choloro-benzene rings, respectively.

All bond lengths and angles are comparable with those reported in a related structure (Butcher et al., 2011).

In the crystal, molecules are linked into [010] C(4) chains by N—H···O hydrogen bonds. C—H···O hydrogen bonds (Fig. 2) and weak C—H···π interactions link the chains into a three-dimensional network (Table 1).

For the application of N-unsubstituted 2-azetidinones in the synthesis of β-lactam antibiotics, see: Cossio et al. (1987); Jarrahpour & Zarei (2007, 2008). For a related structure with a β-lactam ring, see: Butcher et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding of the title compound along b axis. Only H atoms involved in H bonding are shown.
3-(4-chlorophenoxy)-4-(2-nitrophenyl)azetidin-2-one top
Crystal data top
C15H11ClN2O4F(000) = 656
Mr = 318.71Dx = 1.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6230 reflections
a = 16.9505 (4) Åθ = 2.4–28.7°
b = 4.6517 (1) ŵ = 0.24 mm1
c = 21.7167 (6) ÅT = 296 K
β = 99.757 (1)°Prism, colourless
V = 1687.56 (7) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3158 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.8°, θmin = 1.7°
φ and ω scansh = 2122
16293 measured reflectionsk = 66
4358 independent reflectionsl = 2829
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.3362P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4358 reflectionsΔρmax = 0.35 e Å3
199 parametersΔρmin = 0.23 e Å3
Crystal data top
C15H11ClN2O4V = 1687.56 (7) Å3
Mr = 318.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.9505 (4) ŵ = 0.24 mm1
b = 4.6517 (1) ÅT = 296 K
c = 21.7167 (6) Å0.30 × 0.20 × 0.15 mm
β = 99.757 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3158 reflections with I > 2σ(I)
16293 measured reflectionsRint = 0.022
4358 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4358 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77735 (3)0.02466 (16)0.86934 (3)0.0896 (2)
O10.34325 (8)0.4694 (3)0.80529 (6)0.0684 (5)
O20.49880 (7)0.6846 (3)0.60857 (6)0.0615 (5)
O30.53550 (8)0.3225 (3)0.55969 (6)0.0686 (5)
O40.46717 (6)0.2832 (2)0.71337 (5)0.0437 (3)
N10.30955 (8)0.6612 (4)0.70465 (6)0.0523 (5)
N20.48444 (8)0.4599 (3)0.58069 (6)0.0440 (4)
C10.35588 (9)0.5438 (4)0.75408 (7)0.0462 (5)
C20.42874 (8)0.5444 (3)0.72098 (7)0.0374 (4)
C30.36874 (9)0.6469 (4)0.66256 (7)0.0399 (5)
C40.34857 (9)0.4352 (3)0.60981 (7)0.0377 (4)
C50.27331 (10)0.3099 (4)0.59775 (8)0.0503 (5)
C60.25251 (11)0.1159 (5)0.54958 (9)0.0632 (7)
C70.30631 (13)0.0396 (4)0.51201 (9)0.0625 (7)
C80.38224 (11)0.1547 (4)0.52289 (7)0.0509 (6)
C90.40248 (9)0.3484 (3)0.57097 (7)0.0387 (5)
C100.54003 (8)0.2358 (3)0.75211 (7)0.0387 (4)
C110.55796 (12)0.3387 (5)0.81220 (8)0.0661 (7)
C120.63188 (13)0.2760 (6)0.84797 (8)0.0733 (8)
C130.68458 (10)0.1055 (5)0.82418 (8)0.0559 (6)
C140.66690 (10)0.0022 (4)0.76469 (9)0.0555 (6)
C150.59401 (9)0.0697 (4)0.72819 (8)0.0470 (5)
H10.261200.724200.699200.0630*
H20.467000.695500.737100.0450*
H30.382300.837200.648000.0480*
H50.235800.357700.622800.0600*
H60.201400.036400.542600.0760*
H70.291600.089200.479300.0750*
H80.419500.102200.498000.0610*
H110.520900.449300.828700.0790*
H120.645300.350500.888100.0880*
H140.703500.112800.748700.0670*
H150.581900.001900.687400.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0624 (3)0.1234 (6)0.0723 (3)0.0190 (3)0.0193 (3)0.0066 (3)
O10.0550 (7)0.1050 (12)0.0494 (7)0.0149 (7)0.0209 (6)0.0013 (7)
O20.0577 (7)0.0584 (9)0.0733 (8)0.0162 (6)0.0251 (6)0.0204 (7)
O30.0539 (7)0.0755 (10)0.0824 (9)0.0055 (7)0.0291 (7)0.0164 (8)
O40.0356 (5)0.0379 (7)0.0547 (6)0.0017 (5)0.0002 (4)0.0061 (5)
N10.0371 (7)0.0678 (11)0.0547 (8)0.0115 (7)0.0153 (6)0.0048 (7)
N20.0467 (7)0.0474 (9)0.0407 (6)0.0008 (6)0.0152 (5)0.0008 (6)
C10.0378 (8)0.0556 (11)0.0471 (8)0.0065 (7)0.0130 (6)0.0086 (8)
C20.0338 (7)0.0349 (9)0.0448 (7)0.0034 (6)0.0107 (6)0.0054 (6)
C30.0388 (7)0.0364 (9)0.0468 (8)0.0046 (6)0.0139 (6)0.0006 (7)
C40.0385 (7)0.0336 (8)0.0408 (7)0.0029 (6)0.0058 (6)0.0060 (6)
C50.0383 (8)0.0536 (11)0.0582 (9)0.0017 (7)0.0057 (7)0.0038 (8)
C60.0496 (10)0.0607 (13)0.0722 (12)0.0118 (9)0.0102 (9)0.0016 (10)
C70.0732 (13)0.0551 (12)0.0522 (9)0.0058 (10)0.0093 (9)0.0082 (9)
C80.0623 (10)0.0483 (11)0.0408 (8)0.0036 (9)0.0051 (7)0.0030 (7)
C90.0431 (8)0.0354 (9)0.0375 (7)0.0016 (7)0.0065 (6)0.0032 (6)
C100.0348 (7)0.0390 (9)0.0424 (7)0.0039 (6)0.0069 (6)0.0008 (6)
C110.0613 (11)0.0918 (17)0.0446 (9)0.0206 (11)0.0075 (8)0.0113 (10)
C120.0692 (12)0.1051 (19)0.0405 (9)0.0120 (12)0.0056 (8)0.0085 (10)
C130.0451 (9)0.0680 (13)0.0511 (9)0.0025 (9)0.0021 (7)0.0074 (9)
C140.0402 (8)0.0628 (13)0.0621 (10)0.0075 (8)0.0050 (7)0.0067 (9)
C150.0396 (8)0.0516 (11)0.0481 (8)0.0014 (7)0.0030 (6)0.0101 (8)
Geometric parameters (Å, º) top
Cl1—C131.7474 (18)C8—C91.378 (2)
O1—C11.218 (2)C10—C151.366 (2)
O2—N21.2118 (19)C10—C111.375 (2)
O3—N21.2245 (19)C11—C121.389 (3)
O4—C21.4016 (17)C12—C131.360 (3)
O4—C101.3891 (18)C13—C141.363 (3)
N1—C11.335 (2)C14—C151.386 (2)
N1—C31.469 (2)C2—H20.9800
N2—C91.464 (2)C3—H30.9800
C1—C21.531 (2)C5—H50.9300
N1—H10.8600C6—H60.9300
C2—C31.560 (2)C7—H70.9300
C3—C41.505 (2)C8—H80.9300
C4—C51.387 (2)C11—H110.9300
C4—C91.404 (2)C12—H120.9300
C5—C61.381 (3)C14—H140.9300
C6—C71.370 (3)C15—H150.9300
C7—C81.377 (3)
C2—O4—C10116.71 (11)C10—C11—C12119.42 (18)
C1—N1—C396.38 (13)C11—C12—C13119.89 (18)
O2—N2—O3122.79 (14)Cl1—C13—C14119.24 (15)
O2—N2—C9118.87 (13)Cl1—C13—C12119.92 (14)
O3—N2—C9118.34 (13)C12—C13—C14120.82 (17)
O1—C1—N1132.86 (15)C13—C14—C15119.57 (17)
O1—C1—C2135.24 (15)C10—C15—C14120.02 (16)
N1—C1—C291.90 (12)O4—C2—H2112.00
C1—N1—H1132.00C1—C2—H2112.00
C3—N1—H1132.00C3—C2—H2112.00
O4—C2—C1118.81 (12)N1—C3—H3112.00
O4—C2—C3114.90 (12)C2—C3—H3112.00
C1—C2—C385.17 (11)C4—C3—H3112.00
N1—C3—C285.85 (11)C4—C5—H5119.00
C2—C3—C4116.85 (14)C6—C5—H5119.00
N1—C3—C4114.34 (14)C5—C6—H6120.00
C3—C4—C9123.94 (14)C7—C6—H6120.00
C3—C4—C5120.12 (14)C6—C7—H7120.00
C5—C4—C9115.94 (14)C8—C7—H7120.00
C4—C5—C6121.75 (16)C7—C8—H8120.00
C5—C6—C7120.68 (18)C9—C8—H8120.00
C6—C7—C8119.63 (18)C10—C11—H11120.00
C7—C8—C9119.33 (16)C12—C11—H11120.00
N2—C9—C8116.69 (14)C11—C12—H12120.00
C4—C9—C8122.66 (15)C13—C12—H12120.00
N2—C9—C4120.65 (13)C13—C14—H14120.00
C11—C10—C15120.23 (15)C15—C14—H14120.00
O4—C10—C11123.40 (14)C10—C15—H15120.00
O4—C10—C15116.34 (13)C14—C15—H15120.00
C10—O4—C2—C3156.31 (12)C2—C3—C4—C970.06 (19)
C2—O4—C10—C1132.5 (2)C3—C4—C9—N21.0 (2)
C2—O4—C10—C15149.62 (14)C3—C4—C9—C8179.81 (15)
C10—O4—C2—C1105.11 (15)C3—C4—C5—C6179.68 (17)
C3—N1—C1—C26.71 (14)C9—C4—C5—C61.2 (2)
C3—N1—C1—O1173.8 (2)C5—C4—C9—N2178.08 (14)
C1—N1—C3—C26.60 (14)C5—C4—C9—C81.1 (2)
C1—N1—C3—C4111.06 (16)C4—C5—C6—C70.3 (3)
O3—N2—C9—C4158.62 (14)C5—C6—C7—C80.8 (3)
O2—N2—C9—C8158.71 (15)C6—C7—C8—C90.9 (3)
O3—N2—C9—C820.7 (2)C7—C8—C9—C40.1 (2)
O2—N2—C9—C422.0 (2)C7—C8—C9—N2179.17 (15)
N1—C1—C2—C36.30 (14)O4—C10—C11—C12178.78 (18)
N1—C1—C2—O4122.13 (15)C15—C10—C11—C121.0 (3)
O1—C1—C2—O458.4 (3)O4—C10—C15—C14177.37 (15)
O1—C1—C2—C3174.2 (2)C11—C10—C15—C140.6 (3)
O4—C2—C3—N1125.34 (13)C10—C11—C12—C132.4 (3)
C1—C2—C3—N15.73 (12)C11—C12—C13—Cl1179.60 (18)
C1—C2—C3—C4109.51 (14)C11—C12—C13—C142.2 (4)
O4—C2—C3—C410.09 (19)Cl1—C13—C14—C15178.84 (15)
N1—C3—C4—C9168.11 (14)C12—C13—C14—C150.6 (3)
C2—C3—C4—C5108.95 (17)C13—C14—C15—C100.8 (3)
N1—C3—C4—C510.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the nitrobenzene ring (C4–C9).
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.936 (2)166
C8—H8···O3ii0.932.533.307 (2)142
C15—H15···O2iii0.932.513.338 (2)149
C3—H3···Cg2iv0.982.703.5118 (19)141
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the nitrobenzene ring (C4–C9).
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.936 (2)166
C8—H8···O3ii0.932.533.307 (2)142
C15—H15···O2iii0.932.513.338 (2)149
C3—H3···Cg2iv0.982.703.5118 (19)141
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. AJ and HAS thank the Shiraz University Research Council for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCossio, F. P., Lecea, B. & Palomo, C. (1987). J. Chem. Soc. Chem. Commun. pp. 1743–1744.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Zarei, M. (2007). Molecules, 12, 2364–2379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A. & Zarei, M. (2008). Synth. Commun. 38, 1837–1845.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds