research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 8-[7,8-bis­­(4-chloro­benzo­yl)-7H-cyclo­penta­[a]ace­naphthylen-9-yl]naphthalene-1-carb­­oxy­lic acid

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2014; accepted 1 December 2014; online 1 January 2015)

The title compound, C40H22Cl2O4, was formed by a Michael–Aldol domino reaction sequence, which coupled acenaphthene­quinone with 4-chloro­aceto­phenone in the presence of KOH in methanol. The dihedral angles between the central cyclo­penta­[a]ace­naphthyl­ene fused-ring system (r.m.s. deviation = 0.066 Å) and the 4-chloro­benzoyl rings are 62.25 (10) and 70.19 (10)°. The dihedral angle between the central ring system and the naphthoic acid grouping is 62.46 (7)°. This twisting of the pendant rings facilitates the formation of an intra­molecular aromatic ππ stacking inter­action between the 4-chloro­benzoyl and naphthoic acid rings, with centroid–centroid distances of 3.4533 (16) and 3.5311 (16) Å, and a C—H⋯π inter­action between one of the H atoms of the central moiety and the 4-chloro­benzoyl ring with an H⋯π distance of 2.57 Å. In the crystal, carb­oxy­lic acid inversion dimers generate R22(8) loops. The dimers are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions, generating a three-dimensional architecture.

1. Chemical context

Domino reactions (Sousa et al., 2014[Sousa, M. C., Berthet, J., Delbaere, S. & Coelho, J. P. (2014). J. Org. Chem. 79, 5781-5786.]; Kumar & Perumal 2014[Kumar, S. & Perumal, S. (2014). Tetrahedron Lett. 55, 3761-3764.]; Pokhodylo et al., 2014[Pokhodylo, N. T., Savka, R. D. & Obushak, M. D. (2014). Chem. Heterocycl. Compd, 50, 544-549.]; Feng et al. 2014[Feng, X., Wang, H., Yang, B. & Fan, R. (2014). Org. Lett. 16, 3600-3603.]; Ramachandran et al., 2014[Ramachandran, G., Raman, A., Easwaramoorthi, S., Rathore, R. S. & Sathiyanarayanan, K. (2014). RSC Adv. 4, 29276-29280.]; Basetti et al., 2014[Basetti, V., Pallepati, R., Thadi, E., Hosahalli, S. & Potluri, V. (2014). Heterocycl. Commun. 20, 207-214.]), also called cascade or tandem reactions, are usually carried out to enable the efficient construction of complex mol­ecules from simple substrates with high atom economy. In this reaction, multiple C—C or C—H bonds are formed in the same vessel, including different reaction mechanisms to form complex mol­ecules without the purification of inter­mediates. These reactions are often used in medical or combinatorial chemistry to synthesize complex active drug mol­ecules (Sudhapriya et al., 2014[Sudhapriya, N., Perumal, P. T., Balachandran, C., Ignacimuthu, S., Sangeetha, M. & Doble, M. (2014). Eur. J. Med. Chem. 83, 190-207.]; Tietze et al., 2014[Tietze, F. L., Jackenkroll, S., Hierold, J., Ma, L. & Waldecker, B. (2014). Chem. Eur. J. 20, 8628-8635.]; Fu et al., 2013[Fu, L. P., Shi, Q. Q., Shi, Y., Jiang, B. & Tu, S. J. (2013). ACS Comb. Sci. 15, 135-140.]; Shestopalov et al., 2013[Shestopalov, A. M., Larionova, N. A., Fedorov, A. E., Rodinovskaya, L. A., Mortikov, V. Y., Zubarev, A. A. & Bushmarinov, I. S. (2013). ACS Comb. Sci. 15, 541-545.]; Zohreh & Alizadeh, 2013[Zohreh, N. & Alizadeh, A. (2013). ACS Comb. Sci. 15, 278-286.]; Renault et al., 2007[Renault, S., Bertrand, S., Carreaux, F. & Bazureau, J. P. (2007). J. Comb. Chem. 9, 935-942.]). Domino reactions are classified as homo-domino processes and hetero-domino processes (Nesi et al., 1999[Nesi, R., Turchi, S., Giomi, D. & Danesi, A. (1999). Tetrahedron, 55, 13809-13818.]).

One of the attractive strategies for constructing complex mol­ecules (Filippini et al., 1995[Filippini, M. H., Faure, R. & Rodriguez, J. (1995). J. Org. Chem. 60, 6872-6882.]; List et al., 2000[List, B., Lerner, R. A. & Barbas, C. F. III (2000). J. Am. Chem. Soc. 122, 2395-2396.]; Wang et al., 2007[Wang, J., Li, H., Xie, H., Zu, L., Shen, X. & Wang, W. (2007). Angew. Chem. Int. Ed. 46, 9050-9053.]) is a domino sequence of Michael addition and aldol condensation. In this article, we report the formation of the title compound (4) through a domino reaction sequence involving Claisen–Schmidt condensation and benzil–benzilic acid rearrangement between acenaphthene­quinone (1) and 4-chloro­aceto­phenone (2) in the presence of methano­lic KOH (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme showing the synthesis of the title compound (4).

2. Structural commentary

In the title compound, the 4-chloro­benzoyl units are approximately coplanar with slight twisting [dihedral angle, 18.49 (13)°] and nearly parallel to the plane of naphthoic acid moiety with dihedral angles of 8.82 (11) and 12.06 (11)°. The C=O oxygen atoms of the two 4-chloro­benzoyl moieties point toward each other. The central cyclo­penta­[a]ace­naphthylene ring system makes dihedral angles of 62.25 (10) and 70.19 (10)° with the 4-chloro­benzoyl units and 62.46 (7)° with the naphthoic acid grouping. This twisting minimizes steric inter­actions among the substituents (Fig. 2[link]) and facilitates the formation of intra­molecular ππ inter­actions between the 4-chloro­benzoyl and naphthoic acid rings with centroid centroid distances of 3.4533 (16) and 3.5311 (16) Å and a C—H⋯π inter­action between one of the hydrogen atoms of the central moiety and the 4-chloro­benzoyl ring.

[Figure 2]
Figure 2
ORTEP view of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

There are four inter­molecular hydrogen-bonding inter­actions present in the crystal. The carbonyl oxygen atoms (O2 and O3) accept three hydrogen bonds; one with the hydrogen atom from a carb­oxy­lic acid group of a neighboring mol­ecule with DA distance of 2.649 (3) Å (−x, 1 − y, 2 − z) and the other two with the hydrogen atoms attached to atoms C32 and C26 of the naphthoic acid and cyclo­penta­[a]ace­naphthylene rings, respectively, of adjacent mol­ecules with DA distances of 3.301 (4) (1 + x, y, z) and 3.416 (4) Å (1 − x, 1 − y, 2 − z) (Fig. 3[link]). The fourth inter­action is between the H atom attached to the naphthoic acid ring and a chlorine atom of the 4-chloro­benzoyl moiety with a D⋯A distance of 3.619 (3) Å (1 − x, −y, 3 − z). Furthermore, there are two C—H⋯π inter­actions found between hydrogen atoms (H2 and H12) and the five- and six-membered rings of the cyclo­penta­[a]ace­naphthylene and 4-cholorobenzoyl moieties of neighbouring mol­ecules (Fig. 4[link]), with H⋯π distances of 2.87 and 2.84 Å (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C20/C28/C29 ring, Cg2 is the centroid of the C24–C29 ring and Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4′⋯O3i 0.84 (1) 1.81 (1) 2.649 (3) 178 (4)
C26—H26⋯O3ii 0.93 2.52 3.416 (4) 163
C32—H32⋯O2iii 0.93 2.47 3.301 (4) 149
C35—H35⋯Cl2iv 0.93 2.74 3.619 (3) 157
C2—H2⋯Cg1v 0.93 2.87 3.577 (3) 134
C12—H12⋯Cg2vi 0.93 2.84 3.725 (3) 160
C21—H21⋯Cg3 0.93 2.57 3.425 (3) 152
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) -x+1, -y, -z+3; (v) -x+1, -y, -z+2; (vi) x-1, y, z.
[Figure 3]
Figure 3
Hydrogen-bonding inter­actions (dashed lines) in the title compound.
[Figure 4]
Figure 4
C—H⋯π and ππ inter­actions found in the title compound.

The packing appears to be controlled by classical and non-classical hydrogen bonds and three C—H⋯π inter­actions (Mathew et al., 2013[Mathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1165.]). Fig. 5[link] shows the packing of the title compound viewed along the a axis.

[Figure 5]
Figure 5
A packing diagram of the title compound viewed along the a axis.

4. Synthesis and crystallization

A mixture of acenaphthene­quinone (1) (4.6 g, 25 mmol), 4-chloro­aceto­phenone (2) (4.2 g, 27 mmol) and powdered potassium hydroxide (1.0 g) in methanol (30 ml) was stirred around 333 K for 4 h and later kept in a refrigerator for 48 h. The reaction mixture was concentrated and the residue was chromatographed over silica gel. Product (3) was obtained (Vadakkan et al., 2003[Vadakkan, J. J., Raman, V., Fernandez, N. B., Prathapan, S. & Jose, B. (2003). New J. Chem. 27, 239-241.]) by elution with a mixture (9:1) of hexane and ethyl acetate. Elution with a mixture of (1:1) methanol and ethyl acetate yielded the product (4) (Fig. 1[link]). Red blocks of compound (4) were recrystallized from a solvent mixture of ethyl acetate and di­chloro­methane.

Yield 0.8 g (5%); m.p. >523 K; IR (KBr, νmax): 3370 (OH), 1732 (C=O) cm−1; 1H NMR (CDCl3): δ 8.00–5.30 (m, 20H, aromatic); 13C NMR (CDCl3): δ 207.57, 190.82, 179.39, 138.71, 135.57, 134.23, 134.17, 133.77, 132.57, 131.94, 131.69, 131.31, 130.40, 130.29, 129.90, 129.58, 129.22, 128.90, 128.85, 128.42, 128.06, 127.74, 127.66, 127.23, 126.54, 125.76, 125.64, 124.94, 124.38, 119.77, 103.38, 70.96; MS: m/z 636 (M+); Analysis calculated for C40H22Cl2O4: C: 75.36, H: 3.48; found: C: 75.26, H: 3.30.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned as Uiso(H) = 1.2Ueq(C). Hydrogen atom H4′ of the naphthoic acid group was located from a difference Fourier map and refined with a distance restraint of O—H = 0.84 (1) Å. The low-angle reflections (001), ([\overline{1}]01) and (0[\overline{1}]1) were omitted from the refinement owing to bad agreement.

Table 2
Experimental details

Crystal data
Chemical formula C40H22Cl2O4
Mr 637.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.1617 (6), 12.5518 (8), 13.9305 (8)
α, β, γ (°) 84.669 (3), 88.468 (3), 72.364 (3)
V3) 1520.05 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.891, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 19996, 5287, 4251
Rint 0.033
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.12
No. of reflections 5287
No. of parameters 419
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.78
Computer programs:APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

8-[7,8-Bis(4-chlorobenzoyl)-7H-cyclopenta[a]acenaphthylen-9-yl]naphthalene-1-carboxylic acid top
Crystal data top
C40H22Cl2O4Z = 2
Mr = 637.47F(000) = 656
Triclinic, P1Dx = 1.393 Mg m3
a = 9.1617 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5518 (8) ÅCell parameters from 9963 reflections
c = 13.9305 (8) Åθ = 2.4–28.1°
α = 84.669 (3)°µ = 0.26 mm1
β = 88.468 (3)°T = 296 K
γ = 72.364 (3)°Block, red
V = 1520.05 (17) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker axs kappa apex2 CCD Diffractometer4251 reflections with I > 2σ(I)
ω and φ scanRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.2°
Tmin = 0.891, Tmax = 0.908h = 1010
19996 measured reflectionsk = 1414
5287 independent reflectionsl = 1616
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0529P)2 + 1.3725P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
5287 reflectionsΔρmax = 0.51 e Å3
419 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3710 (3)0.0055 (2)1.14118 (19)0.0423 (6)
H10.41500.01041.08020.051*
C20.4574 (3)0.0622 (2)1.2201 (2)0.0494 (7)
H20.55840.10611.21290.059*
C30.3904 (4)0.0521 (3)1.3095 (2)0.0534 (7)
C40.2397 (4)0.0087 (2)1.32183 (19)0.0497 (7)
H40.19650.01321.38310.060*
C50.1536 (3)0.0630 (2)1.24211 (18)0.0410 (6)
H50.05080.10271.24920.049*
C60.2204 (3)0.0584 (2)1.15107 (17)0.0346 (5)
C70.1283 (3)0.1184 (2)1.06661 (18)0.0389 (6)
C80.1805 (3)0.1835 (2)0.99406 (16)0.0354 (5)
C90.1165 (3)0.2180 (2)0.89523 (16)0.0355 (5)
H90.18240.14780.87260.043*
C100.0153 (3)0.1981 (2)0.85791 (18)0.0429 (6)
C110.0373 (3)0.2001 (2)0.75185 (18)0.0395 (6)
C120.1801 (3)0.2556 (2)0.7114 (2)0.0491 (7)
H120.25950.29380.75010.059*
C130.2052 (3)0.2546 (3)0.6143 (2)0.0525 (7)
H130.29980.29390.58670.063*
C140.0878 (3)0.1946 (2)0.55900 (19)0.0476 (7)
C150.0539 (3)0.1368 (3)0.5976 (2)0.0494 (7)
H150.13150.09580.55920.059*
C160.0788 (3)0.1407 (2)0.6946 (2)0.0458 (6)
H160.17450.10310.72150.055*
C170.3071 (3)0.2282 (2)1.00154 (16)0.0356 (5)
C180.3212 (3)0.2850 (2)0.91319 (17)0.0370 (6)
C190.2079 (3)0.2776 (2)0.84755 (16)0.0369 (6)
C200.2216 (3)0.3468 (2)0.75736 (17)0.0395 (6)
C210.1484 (4)0.3781 (2)0.66922 (19)0.0513 (7)
H210.06740.35210.65470.062*
C220.1988 (4)0.4506 (3)0.6011 (2)0.0585 (8)
H220.15140.46950.54110.070*
C230.3133 (4)0.4933 (3)0.6199 (2)0.0620 (9)
H230.34230.54050.57290.074*
C240.3892 (4)0.4669 (2)0.7103 (2)0.0500 (7)
C250.5021 (4)0.5104 (3)0.7430 (3)0.0631 (9)
H250.53720.56030.70220.076*
C260.5604 (4)0.4798 (3)0.8343 (3)0.0616 (8)
H260.63380.51040.85440.074*
C270.5130 (3)0.4036 (2)0.8989 (2)0.0491 (7)
H270.55510.38370.96040.059*
C280.4040 (3)0.3594 (2)0.86951 (17)0.0390 (6)
C290.3416 (3)0.3925 (2)0.77553 (18)0.0410 (6)
C300.4027 (3)0.2227 (2)1.08743 (17)0.0359 (5)
C310.5582 (3)0.1748 (3)1.0823 (2)0.0483 (7)
H310.60340.15921.02260.058*
C320.6509 (3)0.1488 (3)1.1650 (2)0.0596 (8)
H320.75660.11891.15950.072*
C330.5861 (3)0.1672 (3)1.2529 (2)0.0560 (8)
H330.64660.14331.30800.067*
C340.4282 (3)0.2221 (2)1.26200 (18)0.0424 (6)
C350.3591 (4)0.2439 (3)1.35317 (19)0.0553 (8)
H350.41900.21991.40850.066*
C360.2086 (4)0.2987 (3)1.3618 (2)0.0601 (9)
H360.16420.30731.42250.072*
C370.1190 (4)0.3425 (2)1.2789 (2)0.0529 (7)
H370.01630.38301.28500.063*
C380.1818 (3)0.3261 (2)1.18879 (17)0.0376 (6)
C390.3359 (3)0.2582 (2)1.17763 (16)0.0337 (5)
C400.0952 (3)0.3994 (2)1.10642 (19)0.0402 (6)
O10.1211 (2)0.1783 (2)0.90948 (15)0.0642 (6)
O20.0068 (2)0.1055 (2)1.06624 (14)0.0571 (6)
O30.1576 (2)0.45386 (16)1.05156 (14)0.0489 (5)
O40.0494 (2)0.40610 (19)1.10215 (16)0.0585 (6)
Cl10.12238 (12)0.18916 (9)0.43778 (6)0.0775 (3)
Cl20.50109 (14)0.11781 (11)1.40953 (8)0.1010 (4)
H4'0.082 (5)0.451 (3)1.053 (2)0.100 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (15)0.0426 (14)0.0383 (14)0.0109 (12)0.0040 (11)0.0090 (11)
C20.0440 (16)0.0444 (15)0.0557 (17)0.0074 (13)0.0055 (13)0.0022 (13)
C30.062 (2)0.0541 (17)0.0449 (16)0.0218 (15)0.0142 (14)0.0106 (13)
C40.0630 (19)0.0581 (17)0.0326 (14)0.0273 (15)0.0041 (13)0.0017 (12)
C50.0403 (14)0.0481 (15)0.0349 (13)0.0148 (12)0.0042 (11)0.0010 (11)
C60.0394 (14)0.0367 (13)0.0318 (12)0.0176 (11)0.0012 (10)0.0030 (10)
C70.0382 (14)0.0475 (15)0.0328 (13)0.0149 (12)0.0010 (10)0.0056 (11)
C80.0358 (13)0.0457 (14)0.0264 (11)0.0139 (11)0.0019 (10)0.0060 (10)
C90.0369 (13)0.0408 (13)0.0289 (12)0.0116 (11)0.0029 (10)0.0040 (10)
C100.0442 (15)0.0511 (15)0.0349 (13)0.0162 (13)0.0055 (11)0.0041 (11)
C110.0399 (14)0.0447 (14)0.0375 (13)0.0169 (12)0.0076 (11)0.0053 (11)
C120.0461 (16)0.0570 (17)0.0407 (15)0.0079 (13)0.0055 (12)0.0112 (13)
C130.0477 (17)0.0632 (18)0.0433 (15)0.0114 (14)0.0118 (13)0.0026 (13)
C140.0561 (18)0.0574 (17)0.0345 (14)0.0233 (14)0.0061 (12)0.0076 (12)
C150.0497 (17)0.0569 (17)0.0436 (15)0.0156 (14)0.0018 (13)0.0169 (13)
C160.0395 (15)0.0504 (16)0.0471 (15)0.0114 (13)0.0096 (12)0.0063 (12)
C170.0381 (14)0.0432 (13)0.0262 (11)0.0121 (11)0.0011 (10)0.0062 (10)
C180.0424 (14)0.0433 (14)0.0274 (12)0.0146 (11)0.0014 (10)0.0081 (10)
C190.0452 (15)0.0424 (14)0.0249 (11)0.0146 (12)0.0007 (10)0.0065 (10)
C200.0532 (16)0.0360 (13)0.0300 (12)0.0139 (12)0.0002 (11)0.0056 (10)
C210.071 (2)0.0480 (16)0.0335 (14)0.0162 (15)0.0075 (13)0.0021 (12)
C220.087 (2)0.0489 (17)0.0355 (15)0.0166 (17)0.0058 (15)0.0035 (12)
C230.093 (3)0.0475 (17)0.0427 (16)0.0210 (17)0.0091 (16)0.0076 (13)
C240.069 (2)0.0363 (14)0.0459 (16)0.0185 (14)0.0091 (14)0.0044 (12)
C250.080 (2)0.0496 (17)0.068 (2)0.0344 (17)0.0146 (18)0.0007 (15)
C260.069 (2)0.0560 (18)0.073 (2)0.0374 (17)0.0065 (17)0.0108 (16)
C270.0566 (18)0.0527 (16)0.0451 (15)0.0253 (14)0.0013 (13)0.0109 (13)
C280.0458 (15)0.0416 (14)0.0324 (13)0.0164 (12)0.0048 (11)0.0083 (10)
C290.0531 (16)0.0366 (13)0.0353 (13)0.0157 (12)0.0069 (11)0.0074 (10)
C300.0350 (13)0.0437 (14)0.0303 (12)0.0138 (11)0.0048 (10)0.0015 (10)
C310.0374 (15)0.0632 (18)0.0455 (15)0.0170 (13)0.0016 (12)0.0058 (13)
C320.0335 (15)0.079 (2)0.065 (2)0.0185 (15)0.0123 (14)0.0072 (17)
C330.0492 (18)0.069 (2)0.0524 (18)0.0242 (15)0.0258 (14)0.0110 (15)
C340.0545 (17)0.0419 (14)0.0343 (13)0.0204 (13)0.0119 (12)0.0024 (11)
C350.085 (2)0.0581 (18)0.0294 (14)0.0312 (18)0.0151 (14)0.0025 (12)
C360.093 (3)0.0601 (19)0.0286 (14)0.0247 (19)0.0057 (15)0.0093 (13)
C370.067 (2)0.0442 (15)0.0418 (15)0.0078 (14)0.0091 (14)0.0083 (12)
C380.0475 (15)0.0338 (13)0.0317 (12)0.0121 (11)0.0002 (11)0.0038 (10)
C390.0401 (14)0.0356 (12)0.0281 (12)0.0157 (11)0.0053 (10)0.0005 (9)
C400.0396 (15)0.0392 (14)0.0385 (14)0.0064 (11)0.0022 (11)0.0046 (11)
O10.0481 (12)0.1076 (19)0.0438 (11)0.0367 (13)0.0076 (9)0.0055 (11)
O20.0446 (12)0.0895 (16)0.0437 (11)0.0339 (11)0.0035 (9)0.0091 (10)
O30.0452 (11)0.0517 (11)0.0462 (11)0.0126 (9)0.0090 (9)0.0099 (9)
O40.0407 (12)0.0666 (14)0.0605 (14)0.0107 (10)0.0047 (10)0.0153 (11)
Cl10.0868 (7)0.1123 (8)0.0380 (4)0.0333 (6)0.0096 (4)0.0165 (4)
Cl20.0940 (8)0.1317 (10)0.0678 (6)0.0311 (7)0.0373 (6)0.0394 (6)
Geometric parameters (Å, º) top
C1—C21.379 (4)C20—C291.423 (4)
C1—C61.380 (4)C21—C221.418 (4)
C1—H10.9300C21—H210.9300
C2—C31.373 (4)C22—C231.355 (5)
C2—H20.9300C22—H220.9300
C3—C41.376 (4)C23—C241.418 (4)
C3—Cl21.734 (3)C23—H230.9300
C4—C51.378 (4)C24—C291.398 (4)
C4—H40.9300C24—C251.411 (5)
C5—C61.392 (3)C25—C261.368 (5)
C5—H50.9300C25—H250.9300
C6—C71.472 (3)C26—C271.408 (4)
C7—O21.297 (3)C26—H260.9300
C7—C81.405 (3)C27—C281.369 (4)
C8—C171.443 (3)C27—H270.9300
C8—C91.485 (3)C28—C291.417 (4)
C9—C191.399 (3)C30—C311.372 (4)
C9—C101.425 (4)C30—C391.431 (3)
C9—H90.9800C31—C321.403 (4)
C10—O11.262 (3)C31—H310.9300
C10—C111.493 (3)C32—C331.355 (5)
C11—C161.381 (4)C32—H320.9300
C11—C121.389 (4)C33—C341.409 (4)
C12—C131.381 (4)C33—H330.9300
C12—H120.9300C34—C351.416 (4)
C13—C141.375 (4)C34—C391.423 (3)
C13—H130.9300C35—C361.350 (5)
C14—C151.377 (4)C35—H350.9300
C14—Cl11.738 (3)C36—C371.403 (4)
C15—C161.385 (4)C36—H360.9300
C15—H150.9300C37—C381.373 (4)
C16—H160.9300C37—H370.9300
C17—C181.387 (3)C38—C391.424 (4)
C17—C301.486 (3)C38—C401.484 (4)
C18—C191.431 (3)C40—O31.222 (3)
C18—C281.455 (4)C40—O41.305 (3)
C19—C201.485 (3)O4—H4'0.842 (10)
C20—C211.381 (4)
C2—C1—C6121.2 (3)C29—C20—C19105.0 (2)
C2—C1—H1119.4C20—C21—C22118.9 (3)
C6—C1—H1119.4C20—C21—H21120.6
C3—C2—C1118.2 (3)C22—C21—H21120.6
C3—C2—H2120.9C23—C22—C21122.8 (3)
C1—C2—H2120.9C23—C22—H22118.6
C2—C3—C4122.1 (3)C21—C22—H22118.6
C2—C3—Cl2118.4 (3)C22—C23—C24120.7 (3)
C4—C3—Cl2119.4 (2)C22—C23—H23119.6
C3—C4—C5119.0 (3)C24—C23—H23119.6
C3—C4—H4120.5C29—C24—C25116.7 (3)
C5—C4—H4120.5C29—C24—C23115.8 (3)
C4—C5—C6120.1 (3)C25—C24—C23127.5 (3)
C4—C5—H5120.0C26—C25—C24120.5 (3)
C6—C5—H5120.0C26—C25—H25119.7
C1—C6—C5119.3 (2)C24—C25—H25119.7
C1—C6—C7121.1 (2)C25—C26—C27122.3 (3)
C5—C6—C7119.6 (2)C25—C26—H26118.9
O2—C7—C8123.3 (2)C27—C26—H26118.9
O2—C7—C6112.9 (2)C28—C27—C26118.8 (3)
C8—C7—C6123.7 (2)C28—C27—H27120.6
C7—C8—C17126.3 (2)C26—C27—H27120.6
C7—C8—C9126.3 (2)C27—C28—C29119.0 (2)
C17—C8—C9107.4 (2)C27—C28—C18136.0 (2)
C19—C9—C10127.0 (2)C29—C28—C18104.9 (2)
C19—C9—C8106.3 (2)C24—C29—C28122.7 (3)
C10—C9—C8126.7 (2)C24—C29—C20124.3 (3)
C19—C9—H990.7C28—C29—C20112.9 (2)
C10—C9—H990.7C31—C30—C39118.9 (2)
C8—C9—H990.7C31—C30—C17119.2 (2)
O1—C10—C9124.1 (2)C39—C30—C17121.7 (2)
O1—C10—C11114.9 (2)C30—C31—C32121.6 (3)
C9—C10—C11121.0 (2)C30—C31—H31119.2
C16—C11—C12119.5 (2)C32—C31—H31119.2
C16—C11—C10121.0 (2)C33—C32—C31119.8 (3)
C12—C11—C10119.4 (2)C33—C32—H32120.1
C13—C12—C11120.5 (3)C31—C32—H32120.1
C13—C12—H12119.7C32—C33—C34120.9 (3)
C11—C12—H12119.7C32—C33—H33119.6
C14—C13—C12118.8 (3)C34—C33—H33119.6
C14—C13—H13120.6C33—C34—C35121.6 (3)
C12—C13—H13120.6C33—C34—C39119.4 (3)
C13—C14—C15121.9 (3)C35—C34—C39119.0 (3)
C13—C14—Cl1118.6 (2)C36—C35—C34121.6 (3)
C15—C14—Cl1119.5 (2)C36—C35—H35119.2
C14—C15—C16118.8 (3)C34—C35—H35119.2
C14—C15—H15120.6C35—C36—C37119.8 (3)
C16—C15—H15120.6C35—C36—H36120.1
C11—C16—C15120.5 (3)C37—C36—H36120.1
C11—C16—H16119.7C38—C37—C36120.6 (3)
C15—C16—H16119.7C38—C37—H37119.7
C18—C17—C8107.4 (2)C36—C37—H37119.7
C18—C17—C30124.2 (2)C37—C38—C39120.7 (2)
C8—C17—C30128.3 (2)C37—C38—C40117.1 (2)
C17—C18—C19110.0 (2)C39—C38—C40121.0 (2)
C17—C18—C28139.7 (2)C34—C39—C38117.6 (2)
C19—C18—C28109.9 (2)C34—C39—C30118.2 (2)
C9—C19—C18108.9 (2)C38—C39—C30124.2 (2)
C9—C19—C20143.3 (2)O3—C40—O4124.3 (2)
C18—C19—C20107.2 (2)O3—C40—C38120.0 (2)
C21—C20—C29117.4 (2)O4—C40—C38115.5 (2)
C21—C20—C19137.5 (3)C40—O4—H4'104 (3)
C6—C1—C2—C31.0 (4)C29—C20—C21—C221.8 (4)
C1—C2—C3—C42.5 (5)C19—C20—C21—C22178.7 (3)
C1—C2—C3—Cl2177.0 (2)C20—C21—C22—C232.0 (5)
C2—C3—C4—C51.1 (5)C21—C22—C23—C240.0 (5)
Cl2—C3—C4—C5178.4 (2)C22—C23—C24—C292.0 (5)
C3—C4—C5—C61.8 (4)C22—C23—C24—C25175.2 (3)
C2—C1—C6—C51.8 (4)C29—C24—C25—C260.1 (5)
C2—C1—C6—C7179.7 (2)C23—C24—C25—C26177.3 (3)
C4—C5—C6—C13.2 (4)C24—C25—C26—C270.8 (5)
C4—C5—C6—C7178.8 (2)C25—C26—C27—C280.5 (5)
C1—C6—C7—O2133.8 (3)C26—C27—C28—C290.6 (4)
C5—C6—C7—O244.1 (3)C26—C27—C28—C18176.6 (3)
C1—C6—C7—C846.5 (4)C17—C18—C28—C273.0 (6)
C5—C6—C7—C8135.6 (3)C19—C18—C28—C27174.3 (3)
O2—C7—C8—C17161.1 (3)C17—C18—C28—C29173.4 (3)
C6—C7—C8—C1718.6 (4)C19—C18—C28—C292.2 (3)
O2—C7—C8—C919.6 (4)C25—C24—C29—C281.2 (4)
C6—C7—C8—C9160.8 (2)C23—C24—C29—C28178.8 (3)
C7—C8—C9—C19177.7 (2)C25—C24—C29—C20175.4 (3)
C17—C8—C9—C191.8 (3)C23—C24—C29—C202.2 (4)
C7—C8—C9—C104.5 (4)C27—C28—C29—C241.5 (4)
C17—C8—C9—C10176.0 (3)C18—C28—C29—C24178.7 (2)
C19—C9—C10—O1155.4 (3)C27—C28—C29—C20175.5 (2)
C8—C9—C10—O121.9 (5)C18—C28—C29—C201.7 (3)
C19—C9—C10—C1124.2 (4)C21—C20—C29—C240.3 (4)
C8—C9—C10—C11158.5 (2)C19—C20—C29—C24177.5 (2)
O1—C10—C11—C16131.2 (3)C21—C20—C29—C28177.2 (2)
C9—C10—C11—C1649.2 (4)C19—C20—C29—C280.6 (3)
O1—C10—C11—C1244.0 (4)C18—C17—C30—C3161.0 (4)
C9—C10—C11—C12135.7 (3)C8—C17—C30—C31122.7 (3)
C16—C11—C12—C132.0 (4)C18—C17—C30—C39123.9 (3)
C10—C11—C12—C13177.2 (3)C8—C17—C30—C3952.3 (4)
C11—C12—C13—C142.2 (5)C39—C30—C31—C327.0 (4)
C12—C13—C14—C150.7 (5)C17—C30—C31—C32168.2 (3)
C12—C13—C14—Cl1177.5 (2)C30—C31—C32—C332.4 (5)
C13—C14—C15—C160.9 (5)C31—C32—C33—C346.1 (5)
Cl1—C14—C15—C16179.1 (2)C32—C33—C34—C35178.8 (3)
C12—C11—C16—C150.3 (4)C32—C33—C34—C390.3 (4)
C10—C11—C16—C15175.5 (3)C33—C34—C35—C36178.6 (3)
C14—C15—C16—C111.1 (4)C39—C34—C35—C360.6 (4)
C7—C8—C17—C18178.7 (2)C34—C35—C36—C374.6 (5)
C9—C8—C17—C180.7 (3)C35—C36—C37—C382.8 (5)
C7—C8—C17—C304.5 (4)C36—C37—C38—C394.2 (4)
C9—C8—C17—C30176.1 (2)C36—C37—C38—C40163.6 (3)
C8—C17—C18—C190.6 (3)C33—C34—C39—C38171.9 (2)
C30—C17—C18—C19177.5 (2)C35—C34—C39—C387.2 (4)
C8—C17—C18—C28170.7 (3)C33—C34—C39—C308.9 (4)
C30—C17—C18—C286.3 (5)C35—C34—C39—C30171.9 (2)
C10—C9—C19—C18175.7 (3)C37—C38—C39—C349.1 (4)
C8—C9—C19—C182.1 (3)C40—C38—C39—C34158.2 (2)
C10—C9—C19—C205.2 (6)C37—C38—C39—C30170.0 (3)
C8—C9—C19—C20172.6 (3)C40—C38—C39—C3022.7 (4)
C17—C18—C19—C91.8 (3)C31—C30—C39—C3412.4 (4)
C28—C18—C19—C9172.2 (2)C17—C30—C39—C34162.6 (2)
C17—C18—C19—C20175.8 (2)C31—C30—C39—C38168.5 (2)
C28—C18—C19—C201.8 (3)C17—C30—C39—C3816.5 (4)
C9—C19—C20—C217.3 (6)C37—C38—C40—O3125.5 (3)
C18—C19—C20—C21177.9 (3)C39—C38—C40—O342.2 (4)
C9—C19—C20—C29169.8 (3)C37—C38—C40—O450.1 (3)
C18—C19—C20—C290.7 (3)C39—C38—C40—O4142.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C20/C28/C29 ring, Cg2 is the centroid of the C24–C29 ring and Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.84 (1)1.81 (1)2.649 (3)177 (5)
C26—H26)···O3ii0.932.523.416 (4)163
C32—H32···O2iii0.932.473.301 (4)149
C35—H35···Cl2iv0.932.743.619 (3)157
C2—H2···Cg1v0.932.873.577 (3)134
C12—H12···Cg2vi0.932.843.725 (3)160
C21—H21···Cg30.932.573.425 (3)152
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y, z+3; (v) x+1, y, z+2; (vi) x1, y, z.
 

Acknowledgements

JPJ and CK are obliged to Dr S. Prathapan for introducing them to the field of domino reactions. SAIF (STIC) CUSAT, Kochi, India, provided spectroscopic, analytical and single crystal X-ray diffraction data.

References

First citationBasetti, V., Pallepati, R., Thadi, E., Hosahalli, S. & Potluri, V. (2014). Heterocycl. Commun. 20, 207–214.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, X., Wang, H., Yang, B. & Fan, R. (2014). Org. Lett. 16, 3600–3603.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFilippini, M. H., Faure, R. & Rodriguez, J. (1995). J. Org. Chem. 60, 6872–6882.  CrossRef CAS Web of Science Google Scholar
First citationFu, L. P., Shi, Q. Q., Shi, Y., Jiang, B. & Tu, S. J. (2013). ACS Comb. Sci. 15, 135–140.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKumar, S. & Perumal, S. (2014). Tetrahedron Lett. 55, 3761–3764.  Google Scholar
First citationList, B., Lerner, R. A. & Barbas, C. F. III (2000). J. Am. Chem. Soc. 122, 2395–2396.  Web of Science CrossRef CAS Google Scholar
First citationMathew, E. M., Sithambaresan, M., Unnikrishnan, P. A. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1165.  CSD CrossRef IUCr Journals Google Scholar
First citationNesi, R., Turchi, S., Giomi, D. & Danesi, A. (1999). Tetrahedron, 55, 13809–13818.  Web of Science CrossRef CAS Google Scholar
First citationPokhodylo, N. T., Savka, R. D. & Obushak, M. D. (2014). Chem. Heterocycl. Compd, 50, 544–549.  Web of Science CrossRef CAS Google Scholar
First citationRamachandran, G., Raman, A., Easwaramoorthi, S., Rathore, R. S. & Sathiyanarayanan, K. (2014). RSC Adv. 4, 29276–29280.  Web of Science CSD CrossRef CAS Google Scholar
First citationRenault, S., Bertrand, S., Carreaux, F. & Bazureau, J. P. (2007). J. Comb. Chem. 9, 935–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShestopalov, A. M., Larionova, N. A., Fedorov, A. E., Rodinovskaya, L. A., Mortikov, V. Y., Zubarev, A. A. & Bushmarinov, I. S. (2013). ACS Comb. Sci. 15, 541–545.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSousa, M. C., Berthet, J., Delbaere, S. & Coelho, J. P. (2014). J. Org. Chem. 79, 5781–5786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSudhapriya, N., Perumal, P. T., Balachandran, C., Ignacimuthu, S., Sangeetha, M. & Doble, M. (2014). Eur. J. Med. Chem. 83, 190–207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTietze, F. L., Jackenkroll, S., Hierold, J., Ma, L. & Waldecker, B. (2014). Chem. Eur. J. 20, 8628–8635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVadakkan, J. J., Raman, V., Fernandez, N. B., Prathapan, S. & Jose, B. (2003). New J. Chem. 27, 239–241.  Web of Science CrossRef CAS Google Scholar
First citationWang, J., Li, H., Xie, H., Zu, L., Shen, X. & Wang, W. (2007). Angew. Chem. Int. Ed. 46, 9050–9053.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZohreh, N. & Alizadeh, A. (2013). ACS Comb. Sci. 15, 278–286.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds