organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­(4-methyl­benz­yl)-1H-1,3-benzimidazol-3-ium bromide monohydrate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakir, Turkey, and, Science and Technology Application and Research Center, Dicle University, 21280, Diyarbakir, Turkey, cDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2014; accepted 26 November 2014; online 1 January 2015)

In the title hydrated symetrically substituted 1,3-bis­(4-methyl­benz­yl)benzimidazolium salt, C23H23N2+·Br·H2O, the dihedral angles between the benzimidazole ring system (r.m.s. deviation = 0.003 Å) and the pendant benzene rings are 73.18 (16) and 77.52 (16)°. Both benzene rings lie to the same side of the benzimidazole ring system, giving the cation an overall U-shape. In the crystal, the cation is linked to the water mol­ecule by a short C—H⋯O hydrogen bond and the water mol­ecule forms O—H⋯Br hydrogen bonds. Together, these inter­actions lead to [010] chains. The packing is consolidated by C—H⋯Br hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distances = 3.5401 (17) and 3.8815 (18) Å], generating a three-dimensional network.

1. Related literature

For general background to N-heterocyclic carbenes (NHCs), which have been frequently used as ligands in organometallic and coordination chemistry, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Akkoç & Gök (2013[Akkoç, S. & Gök, Y. (2013). J. Coord. Chem. 66, 1396-1404.]); Akkoç et al. (2014[Akkoç, S., Gök, Y., Akkurt, M. & Tahir, M. N. (2014). Inorg. Chim. Acta, 413, 221-230.]); Berding et al. (2009[Berding, J., Kooijman, H., Spek, A. L. & Bouwman, E. (2009). J. Organomet. Chem. 694, 2217-2221.]); Gök et al. (2014[Gök, Y., Akkoç, S., Albayrak, S., Akkurt, M. & Tahir, M. N. (2014). Appl. Organomet. Chem. 28, 244-251.]). For related structures, see: Akkurt et al. (2011[Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1179.], 2012[Akkurt, M., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718-o2719.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H23N2+·Br·H2O

  • Mr = 425.35

  • Triclinic, [P \overline 1]

  • a = 9.3846 (3) Å

  • b = 9.7174 (3) Å

  • c = 12.5603 (4) Å

  • α = 76.405 (2)°

  • β = 84.739 (2)°

  • γ = 72.696 (2)°

  • V = 1062.65 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 296 K

  • 0.15 × 0.10 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 22302 measured reflections

  • 4342 independent reflections

  • 3144 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.06

  • 4342 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Br1i 0.83 (5) 2.47 (5) 3.261 (3) 162 (5)
O1—H2W⋯Br1 0.82 (5) 2.51 (5) 3.318 (3) 171 (4)
C7—H7⋯O1 0.93 2.30 3.210 (4) 166
C8—H8B⋯Br1 0.97 2.79 3.730 (3) 163
C16—H16A⋯Br1i 0.97 2.91 3.875 (4) 173
C16—H16B⋯Br1ii 0.97 2.79 3.741 (4) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-heterocyclic carbenes (NHCs), on which many studies have been conducted over the past 40 years, have been frequently used as ligands in organometallic and coordination chemistry (Arduengo et al., 1991; Akkoç & Gök, 2013; Akkoç et al. 2014; Berding et al., 2009; Gök et al., 2014). These ligands have such properties as being strong-donors, weak-acceptors, of low toxicity, easily-synthesized and able to control the steric and electronic effects of substituents on the nitrogen atom, and being more stable against air and moisture compared to phosphine types.

In the title compound (Fig. 1), the benzene rings (C9–C14 and C17–C22) which form a dihedral angle of 75.4 (2)° make dihedral angles of 73.18 (16) and 77.52 (16)° with respect to the central benzimidazole ring system (N1/N2/C1–C7). All bond lengths and bond angles in Table 1 are in normal range, and they are in a good agreement with those found in related compounds (Akkurt et al., 2011; Akkurt et al., 2012).

The crystal packing features C—H···O, O—H···Br and C—H···Br hydrogen bonds (Table 2, Fig. 2) together with π-π stacking interactions between the benzene and imidazolium rings (Cg1: C1–C6 and Cg2: N1/N2/C1/C6/C7) [Cg1···Cg2 (1 - x, -y, 1 - z) = 3.5401 (17) Å] and between the benzene rings of the benzimidazole ring system [Cg2···Cg2 (1 - x, -y, 1 - z) = 3.8815 (18) Å].

Related literature top

For general background to N-heterocyclic carbenes (NHCs), which have been frequently used as ligands in organometallic and coordination chemistry, see: Arduengo et al. (1991); Akkoç & Gök (2013); Akkoç et al. (2014); Berding et al. (2009); Gök et al. (2014). For related structures, see: Akkurt et al. (2011, 2012).

Experimental top

To a solution of benzimidazole and potassium hidroxide in ethyl alcohol, 4-methylbenzyl bromide was added slowly. This mixture was refluxed at 18 h. Then, it was filtered and was dried under vacuum. 4-Methylbenzyl bromide (1.0 mmol) was added slowly to a solution of the obtained N-4-methylbenzylbenzimidazole (1.0 mmol) in DMF (4 ml) at room temperature and the resulting mixture was heated up to 353 K for 12 h. Diethyl ether (15 ml) was added to obtain a crystalline solid which was filtered off. The solid was washed with diethyl ether (2x15 ml) and dried under vacuum. The crude product was recrystallized from ethyl alcohol/diethyl ether at room temperature to yield colourless blocks.

Refinement top

The H atoms H1W and H2W of the water molecule were located in a difference Fourier map. Their positions were refined with O—H = 0.82 (2) Å, but their temperature factors were refined isotropically with Uiso(H) = 1.5Ueq(O). H atoms attached to C atoms were placed in calculated positions with C—H = 0.93 - 0.97 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The highest peak and the deepest hole in the final difference Fourier map are located 0.97 Å from Br1 and 0.81 Å from Br1, respectively.

Structure description top

N-heterocyclic carbenes (NHCs), on which many studies have been conducted over the past 40 years, have been frequently used as ligands in organometallic and coordination chemistry (Arduengo et al., 1991; Akkoç & Gök, 2013; Akkoç et al. 2014; Berding et al., 2009; Gök et al., 2014). These ligands have such properties as being strong-donors, weak-acceptors, of low toxicity, easily-synthesized and able to control the steric and electronic effects of substituents on the nitrogen atom, and being more stable against air and moisture compared to phosphine types.

In the title compound (Fig. 1), the benzene rings (C9–C14 and C17–C22) which form a dihedral angle of 75.4 (2)° make dihedral angles of 73.18 (16) and 77.52 (16)° with respect to the central benzimidazole ring system (N1/N2/C1–C7). All bond lengths and bond angles in Table 1 are in normal range, and they are in a good agreement with those found in related compounds (Akkurt et al., 2011; Akkurt et al., 2012).

The crystal packing features C—H···O, O—H···Br and C—H···Br hydrogen bonds (Table 2, Fig. 2) together with π-π stacking interactions between the benzene and imidazolium rings (Cg1: C1–C6 and Cg2: N1/N2/C1/C6/C7) [Cg1···Cg2 (1 - x, -y, 1 - z) = 3.5401 (17) Å] and between the benzene rings of the benzimidazole ring system [Cg2···Cg2 (1 - x, -y, 1 - z) = 3.8815 (18) Å].

For general background to N-heterocyclic carbenes (NHCs), which have been frequently used as ligands in organometallic and coordination chemistry, see: Arduengo et al. (1991); Akkoç & Gök (2013); Akkoç et al. (2014); Berding et al. (2009); Gök et al. (2014). For related structures, see: Akkurt et al. (2011, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding and molecular packing of the title compound along a axis. Only H atoms involved in H bonding are shown.
1,3-Bis(4-methylbenzyl)-1H-1,3-benzimidazol-3-ium bromide monohydrate top
Crystal data top
C23H23N2+·Br·H2OZ = 2
Mr = 425.35F(000) = 440
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3846 (3) ÅCell parameters from 7459 reflections
b = 9.7174 (3) Åθ = 2.3–27.0°
c = 12.5603 (4) ŵ = 1.95 mm1
α = 76.405 (2)°T = 296 K
β = 84.739 (2)°Plane, colourless
γ = 72.696 (2)°0.15 × 0.10 × 0.06 mm
V = 1062.65 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3144 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.035
Graphite monochromatorθmax = 26.4°, θmin = 1.7°
φ and ω scansh = 1111
22302 measured reflectionsk = 1212
4342 independent reflectionsl = 1515
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.2354P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.15 e Å3
4342 reflectionsΔρmin = 0.49 e Å3
252 parameters
Crystal data top
C23H23N2+·Br·H2Oγ = 72.696 (2)°
Mr = 425.35V = 1062.65 (6) Å3
Triclinic, P1Z = 2
a = 9.3846 (3) ÅMo Kα radiation
b = 9.7174 (3) ŵ = 1.95 mm1
c = 12.5603 (4) ÅT = 296 K
α = 76.405 (2)°0.15 × 0.10 × 0.06 mm
β = 84.739 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3144 reflections with I > 2σ(I)
22302 measured reflectionsRint = 0.035
4342 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.15 e Å3
4342 reflectionsΔρmin = 0.49 e Å3
252 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15363 (4)0.70096 (4)0.47065 (3)0.0746 (2)
N10.2897 (3)0.1364 (3)0.36229 (18)0.0512 (8)
N20.4267 (3)0.2795 (2)0.37164 (18)0.0501 (8)
C10.5241 (3)0.1441 (3)0.3623 (2)0.0474 (8)
C20.6799 (4)0.0955 (4)0.3603 (3)0.0597 (11)
C30.7420 (4)0.0495 (4)0.3526 (3)0.0730 (12)
C40.6544 (4)0.1407 (4)0.3469 (3)0.0714 (13)
C50.5022 (4)0.0930 (3)0.3487 (2)0.0601 (10)
C60.4383 (3)0.0537 (3)0.3562 (2)0.0484 (9)
C70.2888 (3)0.2699 (3)0.3712 (2)0.0532 (9)
C80.4673 (4)0.4144 (3)0.3749 (3)0.0599 (11)
C90.4849 (3)0.5039 (3)0.2621 (3)0.0543 (10)
C100.3662 (4)0.5668 (4)0.1937 (3)0.0768 (14)
C110.3829 (5)0.6477 (4)0.0897 (3)0.0781 (12)
C120.5159 (5)0.6716 (4)0.0512 (3)0.0731 (14)
C130.6324 (5)0.6105 (6)0.1209 (4)0.0969 (17)
C140.6195 (4)0.5281 (5)0.2240 (4)0.0828 (16)
C150.5316 (6)0.7626 (6)0.0641 (4)0.1146 (19)
C160.1558 (4)0.0910 (4)0.3505 (3)0.0629 (11)
C170.1196 (3)0.1227 (3)0.2314 (3)0.0552 (10)
C180.1778 (4)0.0197 (4)0.1693 (3)0.0744 (14)
C190.1519 (5)0.0524 (5)0.0591 (3)0.0863 (17)
C200.0658 (4)0.1912 (5)0.0063 (3)0.0724 (14)
C210.0054 (5)0.2899 (4)0.0696 (3)0.0795 (16)
C220.0303 (4)0.2586 (4)0.1806 (3)0.0724 (12)
C230.0438 (6)0.2267 (7)0.1146 (3)0.110 (2)
O10.0190 (4)0.5308 (3)0.3474 (2)0.0850 (11)
H20.737900.156900.364000.0720*
H30.845400.087500.351100.0880*
H40.701400.237800.341600.0850*
H50.444400.154600.345300.0720*
H70.202900.346600.376300.0640*
H8A0.560200.386600.413300.0720*
H8B0.390500.474400.415400.0720*
H100.273000.554800.217800.0920*
H110.300800.687100.044500.0940*
H130.724600.625600.097500.1160*
H140.702300.488100.268500.0990*
H15A0.498500.865800.063100.1710*
H15B0.471900.742500.113400.1710*
H15C0.634300.736700.088000.1710*
H16A0.071800.144400.389800.0760*
H16B0.173900.013800.381800.0760*
H180.235900.073900.202200.0890*
H190.192700.019600.018800.1030*
H210.055400.382500.037300.0950*
H220.013300.329700.221300.0870*
H23A0.022200.175700.130600.1660*
H23B0.138400.196000.151400.1660*
H23C0.001200.331200.139500.1660*
H1W0.069 (5)0.490 (6)0.395 (4)0.1280*
H2W0.017 (6)0.582 (5)0.374 (4)0.1280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0632 (3)0.0626 (2)0.1010 (3)0.0181 (2)0.0024 (2)0.0249 (2)
N10.0516 (14)0.0507 (14)0.0456 (13)0.0114 (11)0.0027 (10)0.0053 (11)
N20.0516 (14)0.0446 (13)0.0468 (13)0.0021 (11)0.0055 (10)0.0095 (10)
C10.0533 (16)0.0431 (14)0.0398 (14)0.0032 (13)0.0048 (12)0.0097 (12)
C20.0523 (18)0.0612 (19)0.0595 (18)0.0036 (15)0.0088 (14)0.0147 (15)
C30.057 (2)0.075 (2)0.072 (2)0.0122 (18)0.0080 (16)0.0248 (18)
C40.082 (3)0.0510 (18)0.067 (2)0.0066 (18)0.0042 (18)0.0176 (16)
C50.076 (2)0.0452 (16)0.0528 (18)0.0091 (15)0.0026 (15)0.0087 (13)
C60.0527 (16)0.0470 (15)0.0345 (14)0.0045 (13)0.0010 (12)0.0009 (12)
C70.0515 (17)0.0480 (16)0.0491 (16)0.0014 (13)0.0014 (13)0.0071 (13)
C80.0619 (19)0.0480 (16)0.069 (2)0.0058 (14)0.0113 (15)0.0205 (15)
C90.0537 (17)0.0420 (15)0.069 (2)0.0103 (13)0.0042 (14)0.0187 (14)
C100.0524 (19)0.074 (2)0.089 (3)0.0164 (17)0.0051 (17)0.010 (2)
C110.073 (2)0.074 (2)0.079 (2)0.0242 (19)0.0078 (19)0.006 (2)
C120.079 (3)0.058 (2)0.083 (2)0.0247 (18)0.017 (2)0.0174 (18)
C130.072 (3)0.115 (3)0.111 (3)0.051 (3)0.018 (2)0.015 (3)
C140.057 (2)0.092 (3)0.103 (3)0.027 (2)0.012 (2)0.017 (2)
C150.140 (4)0.101 (3)0.096 (3)0.049 (3)0.037 (3)0.005 (3)
C160.0608 (19)0.066 (2)0.060 (2)0.0262 (16)0.0099 (15)0.0038 (16)
C170.0481 (16)0.0573 (18)0.0625 (19)0.0224 (14)0.0055 (14)0.0104 (15)
C180.080 (2)0.060 (2)0.081 (3)0.0076 (18)0.0144 (19)0.0222 (18)
C190.086 (3)0.095 (3)0.085 (3)0.017 (2)0.001 (2)0.045 (2)
C200.068 (2)0.092 (3)0.065 (2)0.039 (2)0.0019 (17)0.011 (2)
C210.084 (3)0.067 (2)0.081 (3)0.020 (2)0.017 (2)0.000 (2)
C220.073 (2)0.064 (2)0.074 (2)0.0070 (18)0.0038 (18)0.0185 (18)
C230.112 (4)0.165 (5)0.069 (3)0.072 (3)0.004 (2)0.012 (3)
O10.102 (2)0.0815 (19)0.0707 (17)0.0267 (15)0.0048 (14)0.0135 (14)
Geometric parameters (Å, º) top
N1—C61.393 (4)C21—C221.382 (5)
N1—C71.326 (4)C2—H20.9300
N1—C161.480 (5)C3—H30.9300
N2—C11.385 (4)C4—H40.9300
N2—C71.326 (4)C5—H50.9300
N2—C81.480 (4)C7—H70.9300
C1—C21.396 (5)C8—H8A0.9700
C1—C61.375 (4)C8—H8B0.9700
C2—C31.378 (5)C10—H100.9300
C3—C41.393 (5)C11—H110.9300
C4—C51.364 (5)C13—H130.9300
C5—C61.395 (4)C14—H140.9300
C8—C91.501 (5)C15—H15A0.9600
C9—C101.370 (5)C15—H15B0.9600
C9—C141.376 (5)C15—H15C0.9600
C10—C111.379 (5)C16—H16A0.9700
C11—C121.362 (7)C16—H16B0.9700
C12—C131.364 (7)C18—H180.9300
C12—C151.529 (6)C19—H190.9300
C13—C141.369 (7)C21—H210.9300
C16—C171.504 (5)C22—H220.9300
C17—C181.368 (5)C23—H23A0.9600
C17—C221.377 (5)C23—H23B0.9600
C18—C191.373 (5)C23—H23C0.9600
C19—C201.393 (6)O1—H1W0.83 (5)
C20—C211.351 (6)O1—H2W0.82 (5)
C20—C231.496 (5)
C6—N1—C7107.4 (3)C5—C4—H4119.00
C6—N1—C16127.1 (3)C4—C5—H5122.00
C7—N1—C16125.2 (3)C6—C5—H5122.00
C1—N2—C7107.8 (2)N1—C7—H7125.00
C1—N2—C8126.7 (3)N2—C7—H7125.00
C7—N2—C8125.5 (2)N2—C8—H8A109.00
N2—C1—C2130.8 (3)N2—C8—H8B109.00
N2—C1—C6107.0 (3)C9—C8—H8A109.00
C2—C1—C6122.3 (3)C9—C8—H8B109.00
C1—C2—C3115.6 (3)H8A—C8—H8B108.00
C2—C3—C4121.9 (4)C9—C10—H10120.00
C3—C4—C5122.5 (3)C11—C10—H10120.00
C4—C5—C6116.1 (3)C10—C11—H11119.00
N1—C6—C1106.9 (3)C12—C11—H11119.00
N1—C6—C5131.3 (3)C12—C13—H13119.00
C1—C6—C5121.8 (3)C14—C13—H13119.00
N1—C7—N2110.9 (3)C9—C14—H14120.00
N2—C8—C9112.0 (3)C13—C14—H14120.00
C8—C9—C10121.0 (3)C12—C15—H15A109.00
C8—C9—C14121.6 (3)C12—C15—H15B109.00
C10—C9—C14117.4 (4)C12—C15—H15C109.00
C9—C10—C11120.9 (4)H15A—C15—H15B110.00
C10—C11—C12122.0 (4)H15A—C15—H15C109.00
C11—C12—C13116.4 (4)H15B—C15—H15C110.00
C11—C12—C15121.1 (4)N1—C16—H16A110.00
C13—C12—C15122.5 (4)N1—C16—H16B110.00
C12—C13—C14122.8 (4)C17—C16—H16A110.00
C9—C14—C13120.4 (4)C17—C16—H16B110.00
N1—C16—C17110.1 (3)H16A—C16—H16B108.00
C16—C17—C18121.3 (3)C17—C18—H18120.00
C16—C17—C22120.8 (3)C19—C18—H18119.00
C18—C17—C22117.9 (3)C18—C19—H19119.00
C17—C18—C19121.0 (4)C20—C19—H19119.00
C18—C19—C20121.5 (4)C20—C21—H21119.00
C19—C20—C21116.7 (3)C22—C21—H21119.00
C19—C20—C23120.7 (4)C17—C22—H22120.00
C21—C20—C23122.7 (4)C21—C22—H22120.00
C20—C21—C22122.5 (4)C20—C23—H23A110.00
C17—C22—C21120.4 (3)C20—C23—H23B109.00
C1—C2—H2122.00C20—C23—H23C109.00
C3—C2—H2122.00H23A—C23—H23B109.00
C2—C3—H3119.00H23A—C23—H23C109.00
C4—C3—H3119.00H23B—C23—H23C109.00
C3—C4—H4119.00H1W—O1—H2W109 (5)
C7—N1—C6—C10.2 (3)C4—C5—C6—C10.5 (4)
C16—N1—C6—C1174.8 (3)N2—C8—C9—C14117.1 (4)
C7—N1—C6—C5178.4 (3)N2—C8—C9—C1064.0 (4)
C16—N1—C6—C57.0 (5)C8—C9—C14—C13179.8 (4)
C6—N1—C7—N20.2 (3)C8—C9—C10—C11179.3 (3)
C16—N1—C7—N2174.9 (3)C14—C9—C10—C111.7 (5)
C6—N1—C16—C1785.5 (4)C10—C9—C14—C130.9 (6)
C7—N1—C16—C1788.2 (3)C9—C10—C11—C121.5 (6)
C1—N2—C8—C986.2 (3)C10—C11—C12—C15179.6 (4)
C7—N2—C8—C989.9 (3)C10—C11—C12—C130.3 (6)
C7—N2—C1—C60.1 (3)C11—C12—C13—C140.6 (7)
C8—N2—C1—C6176.6 (3)C15—C12—C13—C14179.6 (5)
C7—N2—C1—C2179.0 (3)C12—C13—C14—C90.3 (8)
C8—N2—C1—C24.4 (5)N1—C16—C17—C1890.4 (4)
C1—N2—C7—N10.1 (3)N1—C16—C17—C2287.5 (4)
C8—N2—C7—N1176.8 (3)C16—C17—C18—C19175.9 (4)
N2—C1—C2—C3178.5 (3)C22—C17—C18—C192.1 (6)
C2—C1—C6—C50.6 (4)C16—C17—C22—C21175.9 (4)
N2—C1—C6—C5178.5 (2)C18—C17—C22—C212.1 (5)
C6—C1—C2—C30.5 (5)C17—C18—C19—C200.1 (7)
C2—C1—C6—N1179.0 (3)C18—C19—C20—C212.1 (7)
N2—C1—C6—N10.2 (3)C18—C19—C20—C23177.6 (4)
C1—C2—C3—C40.2 (5)C19—C20—C21—C222.0 (7)
C2—C3—C4—C50.1 (6)C23—C20—C21—C22177.6 (4)
C3—C4—C5—C60.2 (5)C20—C21—C22—C170.0 (7)
C4—C5—C6—N1178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Br1i0.83 (5)2.47 (5)3.261 (3)162 (5)
O1—H2W···Br10.82 (5)2.51 (5)3.318 (3)171 (4)
C7—H7···O10.932.303.210 (4)166
C8—H8B···Br10.972.793.730 (3)163
C16—H16A···Br1i0.972.913.875 (4)173
C16—H16B···Br1ii0.972.793.741 (4)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Br1i0.83 (5)2.47 (5)3.261 (3)162 (5)
O1—H2W···Br10.82 (5)2.51 (5)3.318 (3)171 (4)
C7—H7···O10.932.303.210 (4)166
C8—H8B···Br10.972.793.730 (3)163
C16—H16A···Br1i0.972.913.875 (4)173
C16—H16B···Br1ii0.972.793.741 (4)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. This study was supported financially by the Erciyes University Research Fund (FBA-2013–4307).

References

First citationAkkoç, S. & Gök, Y. (2013). J. Coord. Chem. 66, 1396–1404.  Google Scholar
First citationAkkoç, S., Gök, Y., Akkurt, M. & Tahir, M. N. (2014). Inorg. Chim. Acta, 413, 221–230.  Google Scholar
First citationAkkurt, M., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2012). Acta Cryst. E68, o2718–o2719.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBerding, J., Kooijman, H., Spek, A. L. & Bouwman, E. (2009). J. Organomet. Chem. 694, 2217–2221.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGök, Y., Akkoç, S., Albayrak, S., Akkurt, M. & Tahir, M. N. (2014). Appl. Organomet. Chem. 28, 244–251.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds