organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(morpholin-4-yl)-1-phenyl-3-(pyridin-2-yl)propan-1-one

aPG and Research Dept of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 020, India, and bDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 November 2014; accepted 30 November 2014; online 1 January 2015)

In the title compound C18H20N2O2, the morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. The N atom of the morpholine ring and the C atom of the carbonyl group are in an anti conformation about the central C—C bond [torsion angle = −162.92 (11)°] and the dihedral angle between the planes of the benzene ring and the pyridine ring is 83.30 (5)°. In the crystal, pairs of very weak C—H⋯π inter­actions link the mol­ecules into inversion dimers.

1. Related literature

For background to the biological activity of morpholine derivatives, see: Panneerselvam et al. (2009[Panneerselvam, P., Priya, M., Gnanarupa, , Kumar, N., Ramesh, & Saravanan, G. (2009). Indian J. Pharm. Sci. 71, 428-432.]); Subhashini et al. (2013[Subhashini, N. J. P., Amanaganti, J., Boddu, L. & Acharya Nagarjuna, P. (2013). J. Chem. Pharm. Res. 5, 140-147.]); Sawant et al. (2013[Sawant, R. T., Stevenson, J., Odell, L. R. & Arvidsson, P. I. (2013). Tetrahedron Asymmetry, 24, 134-141.]); Dave & Sasaki (2006[Dave, R. & Sasaki, N. A. (2006). Tetrahedron Asymmetry, 17, 388-401.]); For related structures, see: Chen et al. (2011[Chen, X.-Y., Zhao, M.-M., Qian, X. & Hou, S.-G. (2011). Acta Cryst. E67, o3484.]); Meti et al. (2013[Meti, G. Y., Kamble, R. R., Ravi, A. J., Arunkashi, H. K. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o129.]);

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H20N2O2

  • Mr = 296.36

  • Orthorhombic, P b c a

  • a = 12.4554 (6) Å

  • b = 8.2204 (4) Å

  • c = 30.6681 (17) Å

  • V = 3140.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.975

  • 16093 measured reflections

  • 3812 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 3812 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C14/N1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.93 2.90 3.780 (6) 159
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Morpholines are six-membered heterocycles featuring both cyclic amine and ether functional group. These compounds possess important applications in pharmaceuticals and in industries (Panneerselvam et al., 2009; Subhashini et al., 2013). Chiral morpholine derivatives have found numerous applications in asymmetric synthesis as chiral auxiliaries as well as chiral ligands (Sawant et al., 2013; Dave & Sasaki 2006).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Chen et al., 2011; Meti et al., 2013). The morpholine (N2/O2/C15—C18)ring adopts a chair conformation [Q = 0.5756 (3) Å, Θ = 179.09 (3)°, φ = 332.57 (5)°]. The phenyl ring makes a dihedral angles of 83.30 (5) ° with the pyridine ring. In the crystal, a weak C—H···π interaction is observed.

Related literature top

For background to the biological activity of morpholine derivatives, see: Panneerselvam et al. (2009); Subhashini et al. (2013); Sawant et al. (2013); Dave & Sasaki (2006); For related structures, see: Chen et al. (2011); Meti et al. (2013);

Experimental top

To an ethanolic solution of acetophenone (3.0 ml, 0.025 mol) taken in a round bottom flask, morpholine (2.1 ml, 0.025 mol) and pyridine-2-carboldehyde (2.6 ml, 0.025 mol) were added. The reaction mixture was kept over a magnetic stirrer and stirred well in an ice cold condition for 3 hr. The colourless solid formed was filtered and washed several times with petroleum ether (40–60%). The crude solid obtained was dried and recrystallized using absolute alcohol. The recrystallized product was dried over vacuum. The yield is 78% and MP is 445 K.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for C—H2,

Structure description top

Morpholines are six-membered heterocycles featuring both cyclic amine and ether functional group. These compounds possess important applications in pharmaceuticals and in industries (Panneerselvam et al., 2009; Subhashini et al., 2013). Chiral morpholine derivatives have found numerous applications in asymmetric synthesis as chiral auxiliaries as well as chiral ligands (Sawant et al., 2013; Dave & Sasaki 2006).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Chen et al., 2011; Meti et al., 2013). The morpholine (N2/O2/C15—C18)ring adopts a chair conformation [Q = 0.5756 (3) Å, Θ = 179.09 (3)°, φ = 332.57 (5)°]. The phenyl ring makes a dihedral angles of 83.30 (5) ° with the pyridine ring. In the crystal, a weak C—H···π interaction is observed.

For background to the biological activity of morpholine derivatives, see: Panneerselvam et al. (2009); Subhashini et al. (2013); Sawant et al. (2013); Dave & Sasaki (2006); For related structures, see: Chen et al. (2011); Meti et al. (2013);

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
3-(Morpholin-4-yl)-1-phenyl-3-(pyridin-2-yl)propan-1-one top
Crystal data top
C18H20N2O2F(000) = 1264
Mr = 296.36Dx = 1.254 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3812 reflections
a = 12.4554 (6) Åθ = 1.3–28.4°
b = 8.2204 (4) ŵ = 0.08 mm1
c = 30.6681 (17) ÅT = 295 K
V = 3140.1 (3) Å3Block, colourless
Z = 80.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3812 independent reflections
Radiation source: fine-focus sealed tube2547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 28.4°, θmin = 1.3°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.954, Tmax = 0.975l = 3540
16093 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.6298P]
where P = (Fo2 + 2Fc2)/3
3812 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H20N2O2V = 3140.1 (3) Å3
Mr = 296.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.4554 (6) ŵ = 0.08 mm1
b = 8.2204 (4) ÅT = 295 K
c = 30.6681 (17) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3812 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2547 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.975Rint = 0.028
16093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
3812 reflectionsΔρmin = 0.16 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42802 (13)0.1732 (2)0.02138 (5)0.0604 (4)
H10.50200.16420.01820.073*
C20.36782 (16)0.2413 (2)0.01152 (6)0.0746 (5)
H20.40130.27680.03690.089*
C30.25900 (16)0.2571 (2)0.00707 (5)0.0680 (5)
H30.21860.30500.02910.082*
C40.21022 (13)0.2020 (2)0.02998 (6)0.0653 (5)
H40.13620.21210.03300.078*
C50.26935 (12)0.13170 (19)0.06292 (5)0.0529 (4)
H50.23500.09320.08780.063*
C60.37980 (11)0.11808 (15)0.05909 (4)0.0412 (3)
C70.44770 (10)0.04735 (16)0.09421 (4)0.0417 (3)
C80.39381 (10)0.03707 (17)0.13181 (4)0.0429 (3)
H8A0.35100.04180.14770.051*
H8B0.34530.11900.12040.051*
C90.47105 (9)0.11758 (15)0.16326 (4)0.0364 (3)
H90.52690.03720.16970.044*
C100.52724 (10)0.26260 (15)0.14299 (4)0.0368 (3)
C110.51464 (16)0.4990 (2)0.10454 (6)0.0666 (5)
H110.47260.57460.08980.080*
C120.62216 (16)0.5287 (2)0.10752 (6)0.0678 (5)
H120.65200.62150.09510.081*
C130.68473 (13)0.4190 (2)0.12904 (5)0.0610 (5)
H130.75850.43440.13130.073*
C140.63651 (11)0.28526 (18)0.14735 (5)0.0452 (3)
H140.67750.20990.16270.054*
C150.33073 (11)0.2736 (2)0.20287 (5)0.0532 (4)
H15A0.27870.24240.18090.064*
H15B0.36020.37870.19490.064*
C160.27665 (12)0.2851 (2)0.24674 (6)0.0662 (5)
H16A0.21950.36510.24530.079*
H16B0.24470.18080.25390.079*
C170.43388 (14)0.2128 (2)0.28202 (5)0.0632 (4)
H17A0.40400.10780.28980.076*
H17B0.48460.24400.30450.076*
C180.49150 (11)0.19882 (18)0.23921 (4)0.0462 (3)
H18A0.52470.30210.23200.055*
H18B0.54770.11760.24150.055*
N10.46563 (10)0.36867 (15)0.12143 (4)0.0526 (3)
N20.41661 (8)0.15290 (13)0.20488 (4)0.0394 (3)
O10.54495 (8)0.05833 (15)0.09246 (4)0.0655 (3)
O20.35010 (10)0.32957 (14)0.27995 (4)0.0678 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0564 (9)0.0742 (11)0.0506 (9)0.0007 (8)0.0083 (8)0.0126 (8)
C20.0842 (13)0.0925 (14)0.0470 (10)0.0019 (11)0.0067 (9)0.0220 (9)
C30.0815 (12)0.0728 (11)0.0497 (9)0.0123 (10)0.0134 (9)0.0073 (9)
C40.0567 (9)0.0784 (12)0.0607 (10)0.0166 (9)0.0049 (8)0.0085 (9)
C50.0495 (9)0.0615 (9)0.0477 (8)0.0098 (7)0.0030 (7)0.0074 (7)
C60.0473 (7)0.0366 (7)0.0399 (7)0.0009 (6)0.0012 (6)0.0008 (6)
C70.0410 (7)0.0392 (7)0.0449 (8)0.0005 (6)0.0027 (6)0.0003 (6)
C80.0379 (7)0.0446 (7)0.0461 (8)0.0049 (6)0.0040 (6)0.0039 (6)
C90.0328 (6)0.0363 (7)0.0402 (7)0.0024 (5)0.0011 (5)0.0002 (6)
C100.0376 (7)0.0382 (7)0.0346 (6)0.0004 (5)0.0020 (5)0.0025 (5)
C110.0910 (13)0.0498 (9)0.0589 (10)0.0004 (9)0.0032 (9)0.0166 (8)
C120.0926 (13)0.0549 (10)0.0559 (10)0.0279 (10)0.0183 (9)0.0017 (8)
C130.0555 (9)0.0663 (10)0.0613 (10)0.0229 (8)0.0155 (8)0.0162 (9)
C140.0389 (7)0.0512 (8)0.0456 (8)0.0027 (6)0.0030 (6)0.0067 (7)
C150.0404 (7)0.0569 (9)0.0624 (10)0.0062 (7)0.0048 (7)0.0090 (8)
C160.0500 (9)0.0641 (10)0.0844 (12)0.0057 (8)0.0237 (9)0.0198 (9)
C170.0810 (11)0.0612 (10)0.0473 (9)0.0109 (9)0.0080 (8)0.0065 (8)
C180.0483 (8)0.0451 (8)0.0453 (8)0.0029 (7)0.0002 (6)0.0014 (6)
N10.0530 (7)0.0496 (7)0.0553 (7)0.0018 (6)0.0067 (6)0.0125 (6)
N20.0355 (5)0.0409 (6)0.0419 (6)0.0012 (5)0.0040 (5)0.0024 (5)
O10.0412 (6)0.0847 (9)0.0707 (8)0.0064 (5)0.0016 (5)0.0247 (6)
O20.0733 (7)0.0648 (7)0.0654 (7)0.0114 (6)0.0215 (6)0.0235 (6)
Geometric parameters (Å, º) top
C1—C21.376 (2)C11—N11.338 (2)
C1—C61.380 (2)C11—C121.364 (3)
C1—H10.9300C11—H110.9300
C2—C31.368 (3)C12—C131.362 (2)
C2—H20.9300C12—H120.9300
C3—C41.366 (2)C13—C141.373 (2)
C3—H30.9300C13—H130.9300
C4—C51.377 (2)C14—H140.9300
C4—H40.9300C15—N21.4604 (17)
C5—C61.3852 (19)C15—C161.508 (2)
C5—H50.9300C15—H15A0.9700
C6—C71.4878 (19)C15—H15B0.9700
C7—O11.2159 (15)C16—O21.417 (2)
C7—C81.5039 (19)C16—H16A0.9700
C8—C91.5146 (18)C16—H16B0.9700
C8—H8A0.9700C17—O21.419 (2)
C8—H8B0.9700C17—C181.500 (2)
C9—N21.4741 (16)C17—H17A0.9700
C9—C101.5157 (18)C17—H17B0.9700
C9—H90.9800C18—N21.4565 (17)
C10—N11.3365 (17)C18—H18A0.9700
C10—C141.3803 (17)C18—H18B0.9700
C2—C1—C6120.73 (15)C13—C12—C11118.42 (15)
C2—C1—H1119.6C13—C12—H12120.8
C6—C1—H1119.6C11—C12—H12120.8
C3—C2—C1120.36 (16)C12—C13—C14118.55 (15)
C3—C2—H2119.8C12—C13—H13120.7
C1—C2—H2119.8C14—C13—H13120.7
C4—C3—C2119.47 (16)C13—C14—C10119.99 (15)
C4—C3—H3120.3C13—C14—H14120.0
C2—C3—H3120.3C10—C14—H14120.0
C3—C4—C5120.76 (15)N2—C15—C16109.39 (13)
C3—C4—H4119.6N2—C15—H15A109.8
C5—C4—H4119.6C16—C15—H15A109.8
C4—C5—C6120.18 (14)N2—C15—H15B109.8
C4—C5—H5119.9C16—C15—H15B109.8
C6—C5—H5119.9H15A—C15—H15B108.2
C1—C6—C5118.48 (13)O2—C16—C15111.65 (12)
C1—C6—C7119.19 (12)O2—C16—H16A109.3
C5—C6—C7122.33 (12)C15—C16—H16A109.3
O1—C7—C6120.35 (13)O2—C16—H16B109.3
O1—C7—C8120.85 (12)C15—C16—H16B109.3
C6—C7—C8118.80 (11)H16A—C16—H16B108.0
C7—C8—C9113.98 (10)O2—C17—C18111.37 (13)
C7—C8—H8A108.8O2—C17—H17A109.4
C9—C8—H8A108.8C18—C17—H17A109.4
C7—C8—H8B108.8O2—C17—H17B109.4
C9—C8—H8B108.8C18—C17—H17B109.4
H8A—C8—H8B107.7H17A—C17—H17B108.0
N2—C9—C8110.20 (10)N2—C18—C17110.24 (12)
N2—C9—C10114.37 (10)N2—C18—H18A109.6
C8—C9—C10112.07 (11)C17—C18—H18A109.6
N2—C9—H9106.6N2—C18—H18B109.6
C8—C9—H9106.6C17—C18—H18B109.6
C10—C9—H9106.6H18A—C18—H18B108.1
N1—C10—C14121.74 (13)C10—N1—C11116.89 (13)
N1—C10—C9116.80 (11)C18—N2—C15108.87 (11)
C14—C10—C9121.45 (12)C18—N2—C9112.48 (10)
N1—C11—C12124.40 (17)C15—N2—C9115.74 (11)
N1—C11—H11117.8C16—O2—C17109.40 (12)
C12—C11—H11117.8
C6—C1—C2—C30.8 (3)N1—C11—C12—C130.0 (3)
C1—C2—C3—C41.2 (3)C11—C12—C13—C141.1 (2)
C2—C3—C4—C50.3 (3)C12—C13—C14—C101.3 (2)
C3—C4—C5—C60.9 (3)N1—C10—C14—C130.4 (2)
C2—C1—C6—C50.5 (2)C9—C10—C14—C13179.19 (13)
C2—C1—C6—C7179.11 (16)N2—C15—C16—O259.10 (17)
C4—C5—C6—C11.3 (2)O2—C17—C18—N258.71 (16)
C4—C5—C6—C7178.26 (14)C14—C10—N1—C110.6 (2)
C1—C6—C7—O110.1 (2)C9—C10—N1—C11178.23 (13)
C5—C6—C7—O1169.48 (15)C12—C11—N1—C100.8 (3)
C1—C6—C7—C8170.08 (13)C17—C18—N2—C1557.48 (15)
C5—C6—C7—C810.3 (2)C17—C18—N2—C9172.87 (12)
O1—C7—C8—C95.6 (2)C16—C15—N2—C1857.27 (15)
C6—C7—C8—C9174.59 (11)C16—C15—N2—C9174.89 (11)
C7—C8—C9—N2162.92 (11)C8—C9—N2—C18168.06 (11)
C7—C8—C9—C1068.50 (15)C10—C9—N2—C1864.62 (14)
N2—C9—C10—N179.35 (15)C8—C9—N2—C1565.92 (14)
C8—C9—C10—N147.00 (15)C10—C9—N2—C1561.40 (14)
N2—C9—C10—C1499.47 (14)C15—C16—O2—C1758.86 (18)
C8—C9—C10—C14134.18 (13)C18—C17—O2—C1658.37 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C14/N1 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.903.780 (6)159
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C14/N1 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.903.780 (6)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

FMMA acknowledges the PG and Research Department of Chemistry and the Management of Jamal Mohamed College (Autonomous) for their kind support.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-Y., Zhao, M.-M., Qian, X. & Hou, S.-G. (2011). Acta Cryst. E67, o3484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDave, R. & Sasaki, N. A. (2006). Tetrahedron Asymmetry, 17, 388–401.  Web of Science CrossRef CAS Google Scholar
First citationMeti, G. Y., Kamble, R. R., Ravi, A. J., Arunkashi, H. K. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o129.  CSD CrossRef IUCr Journals Google Scholar
First citationPanneerselvam, P., Priya, M., Gnanarupa, , Kumar, N., Ramesh, & Saravanan, G. (2009). Indian J. Pharm. Sci. 71, 428–432.  Google Scholar
First citationSawant, R. T., Stevenson, J., Odell, L. R. & Arvidsson, P. I. (2013). Tetrahedron Asymmetry, 24, 134–141.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubhashini, N. J. P., Amanaganti, J., Boddu, L. & Acharya Nagarjuna, P. (2013). J. Chem. Pharm. Res. 5, 140–147.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds