research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-4-[1-(4-acetyl­anilino)ethyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 November 2014; accepted 8 December 2014; online 1 January 2015)

In the solid state, the title compound, C20H19N3O2, adopts the keto–amine tautomeric form, with the H atom attached to the N atom, which participates in an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. The dihedral angles between the pyrazole ring and the phenyl and benzene rings are 3.69 (10) and 46.47 (9)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating C(16) chains propagating in [301]. Weak aromatic ππ stacking inter­actions [centroid–centroid distances = 3.6123 (10) and 3.6665 (10) Å] link the chains into a three-dimensional network.

1. Chemical context

The chemistry of pyrazolone derivatives has attracted much attention because of their inter­esting structural properties and applications in diverse areas. Pyrazolone derivatives are also used as starting materials for the synthesis of biologically active compounds. Ethyl­idene species are of inter­est for this reaction system because they are a secondary C2 reaction inter­mediate, after ethyl species, expected from ethane by cleavage of two C—H bonds at the same carbon atom (Brooks et al., 2011[Brooks, J. D., Chen, T. L., Mullins, D. R. & Cox, D. F. (2011). Surf. Sci. 605, 1170-1176.]).

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]), catalysis (Chen et al., 2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]) and biological processes (May et al., 2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). In general, O-hy­droxy Schiff bases exhibit two possible tautomeric forms, the enol–imine and keto–amine forms. Depending on the tautomers, two types of intra­molecular hydrogen bonds are possible: O—H⋯N in the enol–imine and N—H⋯O in the keto–amine form. Schiff bases derived from acyl pyrazones and aromatic amines have been prepared as anti­microbial agents (Parmar et al., 2015[Parmar, N., Teraiya, S., Patel, R., Barad, H., Jajda, H. & Thakkar, V. (2015). J. Saudi Chem. Soc. In the press.]) and also as ligands for the formation of metal-ion complexes (Jayarajan et al., 2010[Jayarajan, R., Vasuki, G. & Rao, P. S. (2010). Org. Chem. Int. Article ID 648589, doi: 10.1155/2010/648589.]; Moorjani et al., 2010[Moorjani, N. P., Vyas, K. M. & Jadeja, R. N. (2010). PRAJNA-J. Pure Appl. Sci. 18, 68-72.]). A compound similar to the title compound, 5-methyl-2-phenyl-4-{1-[(pyridin-2-ylmeth­yl)-amino]-ethyl­idene}-2,4-di­hydro-pyrazol-3-one derived from acyl pyrazolone and aliphatic amine was reported to possesses the amino-one structure (Amarasekara et al., 2009[Amarasekara, A. S., Owereh, O. S., Lyssenko, K. A. & Timofeeva, T. V. (2009). J. Struct. Chem. 50, 1159-1165.]).

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]) the bond lengths indicate double-bond character for the C7=O1 [1.2472 (19) Å [and C8=C11 [1.389 (2) Å] bonds and single-bond character for the C11—N3 [1.339 (2) Å] and N3—C13 [1.413 (2) Å] bonds. Furthermore, the H1 atom was found to be located on atom N3, confirming that the title compound exists in the keto–amine form in the solid state.

[Figure 1]
Figure 1
An ORTEP view of title compound, showing 30% probability displacement ellipsoids. The dashed line shows the intra­molecular N—H⋯O hydrogen bond.

An intra­molecular N3—H3A⋯O1 hydrogen bond is observed (Table 1[link], Fig. 1[link]). This inter­action generates an S(6) ring motif. The 4-acetyl­phenyl­amino ethyl­idene and phenyl pyrazol groups of the mol­ecule are nearly planar, with r.m.s. deviations from the mean plane of 0.0430 and 0.0256 Å, respectively. The dihedral angle between these two groups is 47.81 (3)°. The dihedral angles between the pyrazole ring and the phenyl and benzene rings are 3.69 (10) and 46.47 (9)°, respectively. Similar results were observed in N-[(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­idene)(phen­yl)meth­­yl]glycine ethyl ester (Zhang et al., 2004[Zhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157-o1158.]), ethyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­idene)(p-tol­yl)meth­yl]amino}-3-phenyl­propano­ate (Zhang et al., 2010[Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.]) and 4-{[3,4-di­hydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-yl­idene](phen­yl)methyl­amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Wang et al., 2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.90 (2) 1.88 (2) 2.6527 (18) 144 (2)
C4—H4⋯O2i 0.93 2.57 3.403 (2) 150
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C4—H4⋯O2 hydrogen bonds (Fig. 2[link], Table 1[link]). The chains formed by these bonds along the c-axis direction are connected by two weak ππ stacking inter­actions [Cg1⋯Cg1(1 − x, 1 − y, 1 − z) = 3.6123 (10) and Cg1⋯Cg2([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z) = 3.6665 (10) Å; Cg1 and Cg2 are the centroids of the C7–C9/N1,N2 and C13–C18 rings, respectively], forming a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A packing diagram for title compound, showing the inter­molecular C—H⋯O and intra­molecular N—H⋯O hydrogen bonds. [Symmetry code: (i) [{3\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z.]
[Figure 3]
Figure 3
A packing diagram for title compound showing the ππ stacking inter­actions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Cg1 and Cg2 are the centroids of the pyrozolone and C13–C18 rings, respectively. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z.]

4. Synthesis and crystallization

The title compound was obtained by refluxing equimolar qu­anti­ties of 4-acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one and 4-amino­aceto­phenone (10 mmol) in ethanol for 2 h. On cooling, the yellow precipitate was collected by filtration and recrystallized from an ethanol–dioxan solvent mixture as yellow slabs. Yield (73%); m.p. 439–441; IR (KBr) ν = 3450, 3350, 3300 (NH2, NH), 1676,1628 (C=O, s) cm−1; MS, m/z = 333.8. Calculated for C20H19N3O2: C, 72.05; H, 5.74; N, 12.60. Found: C, 72.20; H, 5.62; N, 12.78%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom bonded to the N atom was located in a difference Fourier map and was refined freely. All other H atoms were refined using a riding model with d(C—H) = 0.93 Å (Uiso=1.2Ueq of the parent atom) for aromatic C atoms and d(C—H) = 0.96 Å (Uiso=1.5Ueq of the parent atom) for methyl C atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H19N3O2
Mr 333.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 11.8549 (4), 11.6070 (5), 13.1591 (5)
β (°) 107.425 (3)
V3) 1727.60 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.80 × 0.57 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.935, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 25592, 3584, 2772
Rint 0.056
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.07
No. of reflections 3584
No. of parameters 231
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

(Z)-4-[1-(4-Acetylanilino)ethylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C20H19N3O2F(000) = 704
Mr = 333.38Dx = 1.282 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8549 (4) ÅCell parameters from 3705 reflections
b = 11.6070 (5) Åθ = 2.4–26.7°
c = 13.1591 (5) ŵ = 0.09 mm1
β = 107.425 (3)°T = 296 K
V = 1727.60 (12) Å3Slab, yellow
Z = 40.80 × 0.57 × 0.10 mm
Data collection top
Stoe IPDS 2
diffractometer
2772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
ω–scan rotation methodθmax = 26.5°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1414
Tmin = 0.935, Tmax = 0.991k = 1414
25592 measured reflectionsl = 1616
3584 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.1897P]
where P = (Fo2 + 2Fc2)/3
3584 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.16 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68663 (14)0.70961 (15)0.55951 (13)0.0594 (4)
C20.78901 (16)0.70082 (19)0.64551 (16)0.0771 (5)
H20.78650.66470.70790.093*
C30.89330 (18)0.7453 (2)0.6381 (2)0.0931 (7)
H30.96140.73880.69570.112*
C40.89876 (19)0.7993 (2)0.5472 (2)0.0923 (7)
H40.97010.82870.54270.111*
C50.79784 (19)0.8096 (2)0.46270 (19)0.0838 (6)
H50.80110.84720.40120.101*
C60.69112 (16)0.76487 (17)0.46756 (16)0.0698 (5)
H60.62340.77190.40970.084*
C70.47116 (14)0.65691 (14)0.49191 (12)0.0542 (4)
C80.39461 (14)0.60235 (13)0.54463 (12)0.0530 (4)
C90.46974 (15)0.57875 (15)0.65068 (12)0.0583 (4)
C100.4410 (2)0.5216 (2)0.74124 (14)0.0825 (6)
H10A0.41260.44500.72080.099*
H10B0.38110.56510.75980.099*
H10C0.51070.51790.80150.099*
C110.27542 (14)0.58305 (14)0.49366 (12)0.0536 (4)
C120.19337 (16)0.53059 (17)0.54741 (14)0.0685 (5)
H12A0.16210.58980.58220.103*
H12B0.23560.47530.59920.103*
H12C0.12960.49290.49540.103*
C130.11905 (14)0.61084 (14)0.31950 (12)0.0545 (4)
C140.10632 (15)0.57899 (16)0.21567 (13)0.0633 (4)
H140.17180.55380.19680.076*
C150.00252 (15)0.58422 (17)0.13969 (14)0.0661 (5)
H150.00960.56300.06990.079*
C160.10156 (14)0.62055 (15)0.16568 (13)0.0595 (4)
C170.08768 (15)0.65196 (16)0.27021 (15)0.0663 (5)
H170.15340.67620.28920.080*
C180.02076 (15)0.64829 (16)0.34677 (14)0.0647 (4)
H180.02810.67080.41630.078*
C190.22040 (16)0.63304 (18)0.08467 (17)0.0739 (5)
C200.23519 (19)0.5992 (2)0.02808 (16)0.0863 (6)
H20A0.21510.51930.03070.104*
H20B0.18410.64530.05600.104*
H20C0.31580.61110.07000.104*
N10.57996 (12)0.66251 (12)0.56781 (10)0.0576 (3)
N20.57755 (13)0.61356 (13)0.66442 (11)0.0639 (4)
N30.23507 (12)0.61234 (13)0.39067 (11)0.0586 (4)
O10.44674 (10)0.69356 (12)0.39873 (9)0.0673 (3)
O20.30253 (13)0.67134 (17)0.11080 (14)0.1087 (6)
H3A0.2925 (16)0.6339 (18)0.3635 (15)0.086 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0516 (9)0.0619 (10)0.0649 (10)0.0006 (7)0.0176 (7)0.0177 (8)
C20.0589 (10)0.0909 (14)0.0741 (12)0.0009 (10)0.0089 (9)0.0204 (10)
C30.0577 (11)0.1136 (18)0.1009 (17)0.0079 (11)0.0128 (11)0.0380 (15)
C40.0619 (12)0.1057 (17)0.1176 (18)0.0214 (11)0.0397 (12)0.0490 (15)
C50.0779 (13)0.0907 (15)0.0948 (15)0.0168 (11)0.0439 (12)0.0234 (12)
C60.0608 (10)0.0796 (12)0.0721 (11)0.0067 (9)0.0247 (9)0.0135 (9)
C70.0521 (8)0.0580 (9)0.0512 (8)0.0024 (7)0.0136 (7)0.0054 (7)
C80.0568 (9)0.0529 (9)0.0501 (8)0.0012 (7)0.0170 (7)0.0024 (7)
C90.0649 (10)0.0575 (9)0.0504 (8)0.0038 (8)0.0140 (7)0.0007 (7)
C100.0912 (14)0.0940 (15)0.0590 (10)0.0028 (12)0.0177 (10)0.0137 (10)
C110.0579 (9)0.0505 (9)0.0537 (8)0.0007 (7)0.0186 (7)0.0032 (7)
C120.0693 (11)0.0700 (11)0.0697 (11)0.0055 (9)0.0263 (9)0.0063 (9)
C130.0499 (8)0.0561 (9)0.0568 (9)0.0027 (7)0.0148 (7)0.0001 (7)
C140.0529 (9)0.0800 (12)0.0587 (9)0.0079 (8)0.0195 (7)0.0031 (8)
C150.0619 (10)0.0783 (12)0.0554 (9)0.0041 (9)0.0133 (8)0.0057 (8)
C160.0504 (9)0.0597 (10)0.0663 (10)0.0039 (7)0.0145 (7)0.0045 (8)
C170.0525 (9)0.0752 (12)0.0760 (11)0.0051 (8)0.0267 (8)0.0036 (9)
C180.0620 (10)0.0753 (12)0.0602 (9)0.0041 (9)0.0233 (8)0.0053 (8)
C190.0530 (10)0.0735 (12)0.0898 (13)0.0073 (9)0.0133 (9)0.0103 (10)
C200.0737 (13)0.0826 (14)0.0827 (13)0.0088 (11)0.0069 (10)0.0038 (11)
N10.0527 (7)0.0649 (8)0.0527 (7)0.0008 (6)0.0120 (6)0.0036 (6)
N20.0657 (9)0.0692 (9)0.0519 (7)0.0039 (7)0.0104 (6)0.0015 (6)
N30.0496 (7)0.0718 (9)0.0546 (8)0.0041 (6)0.0158 (6)0.0003 (6)
O10.0583 (7)0.0915 (9)0.0505 (6)0.0052 (6)0.0139 (5)0.0071 (6)
O20.0523 (8)0.1516 (16)0.1176 (13)0.0109 (9)0.0185 (8)0.0077 (11)
Geometric parameters (Å, º) top
C1—C61.385 (3)C11—C121.493 (2)
C1—C21.393 (2)C12—H12A0.9600
C1—N11.412 (2)C12—H12B0.9600
C2—C31.370 (3)C12—H12C0.9600
C2—H20.9300C13—C141.380 (2)
C3—C41.370 (4)C13—C181.388 (2)
C3—H30.9300C13—N31.413 (2)
C4—C51.373 (3)C14—C151.377 (2)
C4—H40.9300C14—H140.9300
C5—C61.387 (3)C15—C161.383 (2)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—C171.384 (2)
C7—O11.2472 (19)C16—C191.498 (2)
C7—N11.376 (2)C17—C181.376 (2)
C7—C81.443 (2)C17—H170.9300
C8—C111.389 (2)C18—H180.9300
C8—C91.439 (2)C19—O21.210 (2)
C9—N21.300 (2)C19—C201.494 (3)
C9—C101.490 (2)C20—H20A0.9600
C10—H10A0.9600C20—H20B0.9600
C10—H10B0.9600C20—H20C0.9600
C10—H10C0.9600N1—N21.4006 (19)
C11—N31.339 (2)N3—H3A0.895 (15)
C6—C1—C2119.44 (17)H12A—C12—H12B109.5
C6—C1—N1121.12 (15)C11—C12—H12C109.5
C2—C1—N1119.44 (17)H12A—C12—H12C109.5
C3—C2—C1120.0 (2)H12B—C12—H12C109.5
C3—C2—H2120.0C14—C13—C18119.26 (15)
C1—C2—H2120.0C14—C13—N3117.11 (14)
C4—C3—C2120.9 (2)C18—C13—N3123.42 (15)
C4—C3—H3119.5C15—C14—C13120.55 (15)
C2—C3—H3119.5C15—C14—H14119.7
C3—C4—C5119.3 (2)C13—C14—H14119.7
C3—C4—H4120.3C14—C15—C16120.94 (16)
C5—C4—H4120.3C14—C15—H15119.5
C4—C5—C6121.1 (2)C16—C15—H15119.5
C4—C5—H5119.5C15—C16—C17117.95 (15)
C6—C5—H5119.5C15—C16—C19122.73 (16)
C1—C6—C5119.22 (19)C17—C16—C19119.24 (16)
C1—C6—H6120.4C18—C17—C16121.75 (16)
C5—C6—H6120.4C18—C17—H17119.1
O1—C7—N1126.05 (15)C16—C17—H17119.1
O1—C7—C8128.90 (14)C17—C18—C13119.55 (16)
N1—C7—C8105.04 (13)C17—C18—H18120.2
C11—C8—C9133.02 (15)C13—C18—H18120.2
C11—C8—C7122.26 (14)O2—C19—C20120.93 (18)
C9—C8—C7104.71 (14)O2—C19—C16119.9 (2)
N2—C9—C8111.89 (15)C20—C19—C16119.16 (18)
N2—C9—C10118.56 (15)C19—C20—H20A109.5
C8—C9—C10129.55 (16)C19—C20—H20B109.5
C9—C10—H10A109.5H20A—C20—H20B109.5
C9—C10—H10B109.5C19—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C9—C10—H10C109.5H20B—C20—H20C109.5
H10A—C10—H10C109.5C7—N1—N2111.72 (13)
H10B—C10—H10C109.5C7—N1—C1128.96 (14)
N3—C11—C8116.82 (14)N2—N1—C1119.31 (13)
N3—C11—C12119.81 (15)C9—N2—N1106.63 (13)
C8—C11—C12123.36 (14)C11—N3—C13130.49 (14)
C11—C12—H12A109.5C11—N3—H3A113.1 (13)
C11—C12—H12B109.5C13—N3—H3A116.4 (13)
C6—C1—C2—C30.8 (3)C15—C16—C17—C180.4 (3)
N1—C1—C2—C3179.45 (18)C19—C16—C17—C18176.39 (17)
C1—C2—C3—C40.3 (3)C16—C17—C18—C130.8 (3)
C2—C3—C4—C50.5 (3)C14—C13—C18—C170.6 (3)
C3—C4—C5—C60.9 (3)N3—C13—C18—C17175.11 (17)
C2—C1—C6—C50.5 (3)C15—C16—C19—O2175.8 (2)
N1—C1—C6—C5179.81 (16)C17—C16—C19—O20.7 (3)
C4—C5—C6—C10.4 (3)C15—C16—C19—C203.4 (3)
O1—C7—C8—C110.1 (3)C17—C16—C19—C20179.97 (18)
N1—C7—C8—C11178.89 (14)O1—C7—N1—N2179.96 (15)
O1—C7—C8—C9179.84 (17)C8—C7—N1—N20.89 (17)
N1—C7—C8—C90.80 (16)O1—C7—N1—C10.2 (3)
C11—C8—C9—N2179.15 (17)C8—C7—N1—C1178.83 (15)
C7—C8—C9—N20.49 (19)C6—C1—N1—C73.6 (3)
C11—C8—C9—C101.4 (3)C2—C1—N1—C7176.73 (16)
C7—C8—C9—C10178.95 (18)C6—C1—N1—N2176.12 (16)
C9—C8—C11—N3177.17 (17)C2—C1—N1—N23.6 (2)
C7—C8—C11—N33.2 (2)C8—C9—N2—N10.04 (19)
C9—C8—C11—C121.8 (3)C10—C9—N2—N1179.55 (16)
C7—C8—C11—C12177.78 (16)C7—N1—N2—C90.60 (19)
C18—C13—C14—C150.0 (3)C1—N1—N2—C9179.15 (14)
N3—C13—C14—C15174.80 (16)C8—C11—N3—C13175.30 (16)
C13—C14—C15—C160.5 (3)C12—C11—N3—C135.7 (3)
C14—C15—C16—C170.3 (3)C14—C13—N3—C11142.71 (18)
C14—C15—C16—C19176.95 (17)C18—C13—N3—C1142.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.90 (2)1.88 (2)2.6527 (18)144 (2)
C4—H4···O2i0.932.573.403 (2)150
Symmetry code: (i) x+3/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAmarasekara, A. S., Owereh, O. S., Lyssenko, K. A. & Timofeeva, T. V. (2009). J. Struct. Chem. 50, 1159–1165.  CrossRef CAS Google Scholar
First citationBrooks, J. D., Chen, T. L., Mullins, D. R. & Cox, D. F. (2011). Surf. Sci. 605, 1170–1176.  CrossRef CAS Google Scholar
First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayarajan, R., Vasuki, G. & Rao, P. S. (2010). Org. Chem. Int. Article ID 648589, doi: 10.1155/2010/648589.  Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoorjani, N. P., Vyas, K. M. & Jadeja, R. N. (2010). PRAJNA-J. Pure Appl. Sci. 18, 68–72.  CAS Google Scholar
First citationParmar, N., Teraiya, S., Patel, R., Barad, H., Jajda, H. & Thakkar, V. (2015). J. Saudi Chem. Soc. In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157–o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds