organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,7,8,9-tetra­chloro-4-(2-fluoro­benz­yl)-10,10-dimeth­­oxy-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

aShanghai Institute of Pharmaceutical Industry, Shanghai 200040, People's Republic of China, and bBeijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
*Correspondence e-mail: liuheliuhe@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 November 2014; accepted 30 November 2014; online 1 January 2015)

In the title compound, C17H12Cl4FNO4, the configuration of the cyclo­alkene skeleton is endo,cis. The benzene ring is twisted by 71.01 (11)° from the attached pyrrolidine ring. In the crystal, one of the methine groups of the fused-ring system forms a weak C—H⋯O hydrogen bond. The other methine groups participates in a C—H⋯F inter­action to the same adjacent mol­ecule. Together, these generate [010] chains.

1. Related literature

For similar structures, see: Shan et al. (2012[Shan, W. Z., Gu, S. J. & Liu, H. (2012). Chin. J. Struct. Chem. 31, 1524-1527.]); Kossakowski et al. (2009[Kossakowski, J., Pakosinska-Parys, M., Struga, M., Dybala, I., Koziol, A. E., La Colla, P., Marongiu, L. E., Ibba, C., Collu, D. & Loddo, R. (2009). Molecules, 14, 5189-5202.]). For the biochemical activity of related compounds, see: Kossakowski et al. (2006[Kossakowski, J., Wojciechowkai, A. & Kozio, A. E. (2006). Acta Pol. Pharm. Drug Res. 63, 261-264.], 2008[Kossakowski, J., Bielenica, A., Mirosław, B., Kozioł, A. E., Dybała, I. & Struga, M. (2008). Molecules, 13, 1570-1583.]); Struga et al. (2007[Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796-799.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H12Cl4FNO4

  • Mr = 455.08

  • Orthorhombic, P 21 21 21

  • a = 9.965 (2) Å

  • b = 10.982 (2) Å

  • c = 16.926 (3) Å

  • V = 1852.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 17912 measured reflections

  • 4238 independent reflections

  • 3231 reflections with I > 2σ(I)

  • Rint = 0.069

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.101

  • S = 1.00

  • 4238 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1826 Friedel pairs

  • Absolute structure parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.98 2.55 3.487 (4) 159
C6—H6A⋯F1i 0.98 2.53 3.500 (4) 170
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I)(Fig.1), 1,7,8,9-tetrachloro-4-(2'-fluorobenzyl) -10,10-dimethoxy-4-azatricyclo(5,2,1,02,6)dec-8-ene-3,5-dione was synthesized from N-(2'-fluorobenzyl)maleimide and 5,5-dimethoxy- 1,2,3,4-tetrachlorocydopentadiene.

The fused pyrrolidine ring systems, are frequently encountered structural units in many synthetically challenging and biologically active alkaloids. The interest of constructing skeletons of this type was further enlightened by the recent disclosure of Kossakowski et al., (2006) that the rigid arylcyclo analogues having azatricyclo ring systems show anti-HIV-1, anti-cancer, antiviral, and antibacterial activities. We have synthesized a serial compounds with this cycloalkene skeleton. This report is one of them.

In the crystal structure, there is a tricyclic fused pyrrolidine ring system. The configuration of the cycloalkene skeleton is endo, cis. The dihedral angle of pyrrolidine ring and benzene ring is 71.01 (11)°.

The molecules packed in spacegroup P212121, and the absolute configuration of the title compound can be determined from Flack parameter x=-0.02 (7), and the compound has chirality at C1S, C2S, C6R, C7R.

Weak intermolecular C—H···X(X=O,F) hydrogen bonds can be found between adjacent molecules. In details(Table 1), C2—H2A and C6—H6A of the same molecule(1 - x, 1/2 + y, 1/2 - z) provide H-bonds donors to O2, F1, respectively. These pairs of H-bonds link the neighbour molecules along baxis to form infinite chains. Another two molecules in the unit cell along baxis linked by the same weak H-bonds in the opposite direction. So the whole crystal packing exists as countless helices along baxis.

Related literature top

For similar structures, see: Shan et al. (2012); Kossakowski et al. (2009). For the biochemical activity of related compounds, see: Kossakowski et al. (2006, 2008); Struga et al. (2007).

Experimental top

The synthetic pathway for the title compound is described as follows. N-(2'fluorobenzyl)maleimide (1.9 g, 10 mmol) and 5,5- dimethoxy- 1,2,3,4-tetrachlorocydopentadiene (2.63 g, 10 mmol) were dissolved in anhydrous toluene (100 mL). Then the solution was refluxed for 8 h. After the solvent was removed under reduced pressure, the residue was dissolved in ether (150 mL), washed with water and brine, dried over anhydrous sodium sulfate, and concentrated to dryness. The product was purified by flash-chromatography (petroleum ether/ethyl acetate, 6:1) and the title compound was isolated as a white solid (3.86 g, 85%). m.p.: 116–118°C.

The crystals appropriate for X-ray data collection were obtained from ethyl acetate solution at room temperature after two days.

Refinement top

All H atoms were placed in geometically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å (0.98 for alicylic CH) for aromatic ring CH, and Uiso(H) = 1.2(1.5 for CH3)Ueq(C).

Structure description top

The title compound, (I)(Fig.1), 1,7,8,9-tetrachloro-4-(2'-fluorobenzyl) -10,10-dimethoxy-4-azatricyclo(5,2,1,02,6)dec-8-ene-3,5-dione was synthesized from N-(2'-fluorobenzyl)maleimide and 5,5-dimethoxy- 1,2,3,4-tetrachlorocydopentadiene.

The fused pyrrolidine ring systems, are frequently encountered structural units in many synthetically challenging and biologically active alkaloids. The interest of constructing skeletons of this type was further enlightened by the recent disclosure of Kossakowski et al., (2006) that the rigid arylcyclo analogues having azatricyclo ring systems show anti-HIV-1, anti-cancer, antiviral, and antibacterial activities. We have synthesized a serial compounds with this cycloalkene skeleton. This report is one of them.

In the crystal structure, there is a tricyclic fused pyrrolidine ring system. The configuration of the cycloalkene skeleton is endo, cis. The dihedral angle of pyrrolidine ring and benzene ring is 71.01 (11)°.

The molecules packed in spacegroup P212121, and the absolute configuration of the title compound can be determined from Flack parameter x=-0.02 (7), and the compound has chirality at C1S, C2S, C6R, C7R.

Weak intermolecular C—H···X(X=O,F) hydrogen bonds can be found between adjacent molecules. In details(Table 1), C2—H2A and C6—H6A of the same molecule(1 - x, 1/2 + y, 1/2 - z) provide H-bonds donors to O2, F1, respectively. These pairs of H-bonds link the neighbour molecules along baxis to form infinite chains. Another two molecules in the unit cell along baxis linked by the same weak H-bonds in the opposite direction. So the whole crystal packing exists as countless helices along baxis.

For similar structures, see: Shan et al. (2012); Kossakowski et al. (2009). For the biochemical activity of related compounds, see: Kossakowski et al. (2006, 2008); Struga et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The C—H···X(X=O/F) interactions, dashed lines. Non-essential H atoms are omitted for clarity. Symmetry code: (i) 1 - x, 1/2 + y, 1/2 - z. (ii) 1 - x, y - 1/2, 1/2 - z.
1,7,8,9-Tetrachloro-4-(2-fluorobenzyl)-10,10-dimethoxy-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione top
Crystal data top
C17H12Cl4FNO4F(000) = 920
Mr = 455.08Dx = 1.632 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4520 reflections
a = 9.965 (2) Åθ = 3.0–27.5°
b = 10.982 (2) ŵ = 0.67 mm1
c = 16.926 (3) ÅT = 296 K
V = 1852.1 (6) Å3Prismatic, colorless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1212
17912 measured reflectionsk = 1414
4238 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4238 reflectionsΔρmax = 0.28 e Å3
244 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1826 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C17H12Cl4FNO4V = 1852.1 (6) Å3
Mr = 455.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.965 (2) ŵ = 0.67 mm1
b = 10.982 (2) ÅT = 296 K
c = 16.926 (3) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3231 reflections with I > 2σ(I)
17912 measured reflectionsRint = 0.069
4238 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.28 e Å3
S = 1.00Δρmin = 0.27 e Å3
4238 reflectionsAbsolute structure: Flack (1983), 1826 Friedel pairs
244 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09057 (8)0.72603 (7)0.11428 (5)0.0470 (2)
Cl20.31474 (10)0.49911 (9)0.37871 (5)0.0614 (3)
Cl30.28576 (9)0.30235 (7)0.23337 (6)0.0541 (2)
Cl40.16447 (10)0.44681 (8)0.07087 (5)0.0549 (3)
F10.5234 (2)0.33581 (19)0.09916 (14)0.0675 (6)
O10.4175 (2)0.6801 (2)0.03909 (14)0.0582 (7)
O20.5994 (2)0.4890 (2)0.25327 (14)0.0578 (6)
O30.1973 (2)0.74679 (18)0.30831 (13)0.0420 (5)
O40.0408 (2)0.59723 (19)0.27636 (13)0.0416 (5)
N40.5329 (2)0.5781 (2)0.13621 (15)0.0354 (6)
C10.2012 (3)0.6451 (2)0.17531 (17)0.0305 (6)
C20.3479 (3)0.6939 (3)0.17719 (17)0.0328 (6)
H2A0.35010.78250.18390.039*
C30.4315 (3)0.6544 (3)0.1073 (2)0.0380 (7)
C50.5247 (3)0.5554 (3)0.21679 (19)0.0394 (7)
C60.4076 (3)0.6283 (3)0.24928 (18)0.0354 (7)
H6A0.43830.68700.28890.042*
C70.2890 (3)0.5511 (3)0.28159 (17)0.0365 (7)
C80.2570 (3)0.4540 (3)0.22159 (18)0.0347 (7)
C90.2065 (3)0.5094 (3)0.15910 (17)0.0335 (6)
C100.1705 (3)0.6410 (3)0.26658 (18)0.0344 (7)
C110.6311 (3)0.5241 (3)0.08502 (18)0.0357 (7)
C120.6251 (3)0.4016 (3)0.06730 (19)0.0400 (7)
C130.7166 (4)0.3465 (3)0.0191 (2)0.0529 (9)
H13A0.71170.26340.00900.063*
C140.8162 (4)0.4165 (3)0.0142 (2)0.0517 (9)
H14A0.87820.38100.04810.062*
C150.8242 (3)0.5388 (3)0.0026 (2)0.0511 (9)
H15A0.89250.58550.01950.061*
C160.7320 (3)0.5925 (3)0.0517 (2)0.0458 (8)
H16A0.73780.67530.06260.055*
C170.1104 (3)0.8490 (3)0.2942 (2)0.0523 (9)
H17A0.13890.91660.32600.078*
H17B0.01990.82750.30780.078*
H17C0.11440.87120.23940.078*
C180.0074 (4)0.5857 (4)0.3562 (2)0.0682 (12)
H18A0.09750.55470.35560.102*
H18B0.00630.66400.38140.102*
H18C0.04930.53060.38480.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0449 (4)0.0488 (4)0.0472 (5)0.0125 (4)0.0076 (4)0.0056 (4)
Cl20.0770 (6)0.0779 (6)0.0295 (4)0.0107 (5)0.0045 (4)0.0089 (4)
Cl30.0587 (5)0.0322 (4)0.0714 (6)0.0060 (4)0.0034 (5)0.0080 (4)
Cl40.0725 (6)0.0539 (5)0.0382 (5)0.0019 (4)0.0065 (4)0.0174 (4)
F10.0668 (13)0.0489 (11)0.0869 (17)0.0211 (11)0.0124 (13)0.0032 (11)
O10.0571 (15)0.0707 (17)0.0467 (15)0.0238 (14)0.0139 (13)0.0245 (13)
O20.0512 (13)0.0732 (16)0.0489 (14)0.0201 (14)0.0076 (12)0.0059 (13)
O30.0397 (12)0.0425 (12)0.0438 (12)0.0047 (10)0.0007 (10)0.0187 (10)
O40.0354 (12)0.0516 (13)0.0380 (13)0.0048 (10)0.0104 (9)0.0076 (10)
N40.0318 (13)0.0332 (13)0.0410 (16)0.0069 (11)0.0050 (11)0.0015 (12)
C10.0289 (15)0.0310 (14)0.0315 (15)0.0016 (12)0.0015 (13)0.0001 (12)
C20.0293 (14)0.0277 (14)0.0413 (17)0.0005 (12)0.0025 (13)0.0005 (13)
C30.0356 (16)0.0309 (15)0.048 (2)0.0011 (13)0.0073 (15)0.0087 (14)
C50.0314 (16)0.0379 (16)0.049 (2)0.0036 (14)0.0049 (15)0.0054 (15)
C60.0324 (15)0.0363 (15)0.0374 (17)0.0006 (13)0.0038 (14)0.0072 (14)
C70.0409 (16)0.0403 (15)0.0282 (16)0.0041 (14)0.0019 (14)0.0023 (13)
C80.0369 (16)0.0315 (14)0.0356 (16)0.0003 (13)0.0015 (14)0.0023 (13)
C90.0369 (15)0.0328 (14)0.0308 (15)0.0001 (14)0.0031 (12)0.0060 (13)
C100.0360 (16)0.0357 (15)0.0316 (16)0.0008 (13)0.0004 (13)0.0054 (12)
C110.0343 (15)0.0340 (15)0.0389 (16)0.0052 (13)0.0005 (13)0.0005 (13)
C120.0393 (18)0.0385 (17)0.0422 (19)0.0049 (14)0.0008 (14)0.0015 (14)
C130.062 (2)0.0429 (18)0.054 (2)0.0043 (18)0.0030 (19)0.0170 (17)
C140.052 (2)0.063 (2)0.0401 (19)0.0176 (18)0.0028 (17)0.0024 (17)
C150.0406 (19)0.055 (2)0.057 (2)0.0036 (17)0.0133 (18)0.0102 (18)
C160.0453 (19)0.0336 (16)0.058 (2)0.0006 (15)0.0057 (17)0.0055 (16)
C170.047 (2)0.0437 (18)0.066 (2)0.0124 (16)0.0026 (18)0.0189 (17)
C180.064 (3)0.086 (3)0.054 (2)0.009 (2)0.030 (2)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C11.753 (3)C6—C71.554 (4)
Cl2—C71.759 (3)C6—H6A0.9800
Cl3—C81.702 (3)C7—C81.506 (4)
Cl4—C91.696 (3)C7—C101.560 (4)
F1—C121.356 (4)C8—C91.320 (4)
O1—C31.197 (4)C11—C161.376 (4)
O2—C51.211 (4)C11—C121.380 (4)
O3—C101.385 (3)C12—C131.365 (5)
O3—C171.438 (4)C13—C141.376 (5)
O4—C101.389 (3)C13—H13A0.9300
O4—C181.440 (4)C14—C151.375 (5)
N4—C51.389 (4)C14—H14A0.9300
N4—C31.401 (4)C15—C161.372 (5)
N4—C111.435 (4)C15—H15A0.9300
C1—C91.516 (4)C16—H16A0.9300
C1—C21.557 (4)C17—H17A0.9600
C1—C101.576 (4)C17—H17B0.9600
C2—C31.511 (4)C17—H17C0.9600
C2—C61.537 (4)C18—H18A0.9600
C2—H2A0.9800C18—H18B0.9600
C5—C61.518 (4)C18—H18C0.9600
C10—O3—C17117.0 (2)C8—C9—Cl4127.8 (2)
C10—O4—C18116.9 (3)C1—C9—Cl4123.3 (2)
C5—N4—C3114.1 (3)O3—C10—O4114.1 (2)
C5—N4—C11124.0 (2)O3—C10—C7107.6 (2)
C3—N4—C11121.9 (3)O4—C10—C7117.7 (2)
C9—C1—C2108.0 (2)O3—C10—C1116.0 (2)
C9—C1—C1099.0 (2)O4—C10—C1107.9 (2)
C2—C1—C1099.9 (2)C7—C10—C191.8 (2)
C9—C1—Cl1114.4 (2)C16—C11—C12118.4 (3)
C2—C1—Cl1115.35 (19)C16—C11—N4121.3 (3)
C10—C1—Cl1118.0 (2)C12—C11—N4120.3 (3)
C3—C2—C6105.9 (2)F1—C12—C13120.0 (3)
C3—C2—C1113.7 (2)F1—C12—C11117.7 (3)
C6—C2—C1102.6 (2)C13—C12—C11122.2 (3)
C3—C2—H2A111.4C12—C13—C14118.6 (3)
C6—C2—H2A111.4C12—C13—H13A120.7
C1—C2—H2A111.4C14—C13—H13A120.7
O1—C3—N4124.2 (3)C15—C14—C13120.2 (3)
O1—C3—C2128.5 (3)C15—C14—H14A119.9
N4—C3—C2107.2 (3)C13—C14—H14A119.9
O2—C5—N4124.9 (3)C16—C15—C14120.3 (3)
O2—C5—C6127.2 (3)C16—C15—H15A119.8
N4—C5—C6107.8 (2)C14—C15—H15A119.8
C5—C6—C2104.9 (2)C15—C16—C11120.2 (3)
C5—C6—C7115.1 (2)C15—C16—H16A119.9
C2—C6—C7104.0 (2)C11—C16—H16A119.9
C5—C6—H6A110.8O3—C17—H17A109.5
C2—C6—H6A110.8O3—C17—H17B109.5
C7—C6—H6A110.8H17A—C17—H17B109.5
C8—C7—C6108.0 (2)O3—C17—H17C109.5
C8—C7—C10100.3 (2)H17A—C17—H17C109.5
C6—C7—C1099.9 (2)H17B—C17—H17C109.5
C8—C7—Cl2115.6 (2)O4—C18—H18A109.5
C6—C7—Cl2113.3 (2)O4—C18—H18B109.5
C10—C7—Cl2117.9 (2)H18A—C18—H18B109.5
C9—C8—C7107.1 (2)O4—C18—H18C109.5
C9—C8—Cl3127.5 (2)H18A—C18—H18C109.5
C7—C8—Cl3125.3 (2)H18B—C18—H18C109.5
C8—C9—C1108.7 (3)
C9—C1—C2—C349.3 (3)Cl1—C1—C9—C8160.5 (2)
C10—C1—C2—C3152.2 (2)C2—C1—C9—Cl4106.0 (3)
Cl1—C1—C2—C380.2 (3)C10—C1—C9—Cl4150.4 (2)
C9—C1—C2—C664.6 (3)Cl1—C1—C9—Cl424.0 (3)
C10—C1—C2—C638.3 (2)C17—O3—C10—O455.9 (4)
Cl1—C1—C2—C6165.98 (19)C17—O3—C10—C7171.5 (3)
C5—N4—C3—O1176.4 (3)C17—O3—C10—C170.5 (3)
C11—N4—C3—O10.4 (5)C18—O4—C10—O349.8 (4)
C5—N4—C3—C23.3 (3)C18—O4—C10—C777.8 (4)
C11—N4—C3—C2179.9 (3)C18—O4—C10—C1179.7 (3)
C6—C2—C3—O1177.2 (3)C8—C7—C10—O3170.1 (2)
C1—C2—C3—O165.3 (4)C6—C7—C10—O359.5 (3)
C6—C2—C3—N42.4 (3)Cl2—C7—C10—O363.6 (3)
C1—C2—C3—N4114.3 (3)C8—C7—C10—O459.3 (3)
C3—N4—C5—O2177.5 (3)C6—C7—C10—O4169.9 (2)
C11—N4—C5—O20.8 (5)Cl2—C7—C10—O467.0 (3)
C3—N4—C5—C62.7 (3)C8—C7—C10—C152.0 (2)
C11—N4—C5—C6179.4 (3)C6—C7—C10—C158.5 (2)
O2—C5—C6—C2179.2 (3)Cl2—C7—C10—C1178.3 (2)
N4—C5—C6—C20.9 (3)C9—C1—C10—O3161.4 (2)
O2—C5—C6—C765.6 (4)C2—C1—C10—O351.1 (3)
N4—C5—C6—C7114.5 (3)Cl1—C1—C10—O374.7 (3)
C3—C2—C6—C50.9 (3)C9—C1—C10—O469.1 (3)
C1—C2—C6—C5120.4 (2)C2—C1—C10—O4179.4 (2)
C3—C2—C6—C7120.4 (3)Cl1—C1—C10—O454.8 (3)
C1—C2—C6—C70.9 (3)C9—C1—C10—C750.8 (2)
C5—C6—C7—C847.1 (3)C2—C1—C10—C759.4 (2)
C2—C6—C7—C867.1 (3)Cl1—C1—C10—C7174.7 (2)
C5—C6—C7—C10151.4 (2)C5—N4—C11—C16110.9 (4)
C2—C6—C7—C1037.3 (3)C3—N4—C11—C1672.6 (4)
C5—C6—C7—Cl282.2 (3)C5—N4—C11—C1269.9 (4)
C2—C6—C7—Cl2163.61 (19)C3—N4—C11—C12106.6 (3)
C6—C7—C8—C968.4 (3)C16—C11—C12—F1178.6 (3)
C10—C7—C8—C935.7 (3)N4—C11—C12—F10.6 (5)
Cl2—C7—C8—C9163.6 (2)C16—C11—C12—C131.0 (5)
C6—C7—C8—Cl3110.2 (3)N4—C11—C12—C13179.8 (3)
C10—C7—C8—Cl3145.7 (2)F1—C12—C13—C14178.1 (3)
Cl2—C7—C8—Cl317.8 (3)C11—C12—C13—C141.5 (5)
C7—C8—C9—C10.7 (3)C12—C13—C14—C151.4 (6)
Cl3—C8—C9—C1179.2 (2)C13—C14—C15—C160.9 (6)
C7—C8—C9—Cl4174.6 (2)C14—C15—C16—C110.3 (5)
Cl3—C8—C9—Cl44.0 (4)C12—C11—C16—C150.4 (5)
C2—C1—C9—C869.5 (3)N4—C11—C16—C15179.6 (3)
C10—C1—C9—C834.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.982.553.487 (4)159
C6—H6A···F1i0.982.533.500 (4)170
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.982.553.487 (4)159
C6—H6A···F1i0.982.533.500 (4)170
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No.81072530).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKossakowski, J., Bielenica, A., Mirosław, B., Kozioł, A. E., Dybała, I. & Struga, M. (2008). Molecules, 13, 1570–1583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKossakowski, J., Pakosinska-Parys, M., Struga, M., Dybala, I., Koziol, A. E., La Colla, P., Marongiu, L. E., Ibba, C., Collu, D. & Loddo, R. (2009). Molecules, 14, 5189–5202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKossakowski, J., Wojciechowkai, A. & Kozio, A. E. (2006). Acta Pol. Pharm. Drug Res. 63, 261–264.  CAS Google Scholar
First citationShan, W. Z., Gu, S. J. & Liu, H. (2012). Chin. J. Struct. Chem. 31, 1524–1527.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds