organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-(2,6-di­methyl­phen­yl)benzene­carboximidamide tetra­hydro­furan monosolvate

aInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: sdbai@sxu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 November 2014; accepted 30 November 2014; online 1 January 2015)

The asymmetric unit of the title compound, C15H16N2·C4H8O, contains two amidine mol­ecules (A and B) with slightly different conformations and two tetra­hydro­furan (THF) solvent mol­ecules. In the amidine mol­ecules, the di­methyl­phenyl ring and the NH2 group lie to the same side of the N=C bond and the dihedral angles between the aromatic rings are 54.25 (7) (mol­ecule A) and 58.88 (6) ° (mol­ecule B). In the crystal, N—H⋯N hydrogen bonds link the amidine mol­ecules into [100] C(4) chains of alternating A and B mol­ecules. Both amidine mol­ecules form an N—H⋯O hydrogen bond to an adjacent THF solvent mol­ecule.

1. Related literature

For reviews of related metal amidinates and their applications in ring-opening polymerization, see: Edelmann (1994[Edelmann, F. T. (1994). Coord. Chem. Rev. 137, 403-481.]); Bai et al. (2013[Bai, S. D., Liu, R. Q., Wang, T., Guan, F., Wu, Y. B., Chao, J. B., Tong, H. B. & Liu, D. S. (2013). Polyhedron, 65, 161-169.]); Qian et al. (2010[Qian, F., Liu, K. Y. & Ma, H. Y. (2010). Dalton Trans. 39, 8071-8083.]); Bakthavachalam et al. (2014[Bakthavachalam, K., Rajagopal, A. & Dastagiri Reddy, N. (2014). Dalton Trans. 43, 14816-14823.]). For a related synthetic method for amidines, see: Liu et al. (2013[Liu, R.-Q., Bai, S.-D. & Wang, T. (2013). Acta Cryst. E69, o520.]). For a related crystal structure, see Zhang & Tong (2008[Zhang, L.-Z. & Tong, H.-B. (2008). Acta Cryst. E64, o1276.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H16N2·C4H8O

  • Mr = 296.40

  • Monoclinic, P 21 /c

  • a = 10.075 (4) Å

  • b = 14.549 (6) Å

  • c = 24.208 (8) Å

  • β = 90.662 (8)°

  • V = 3548 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.30 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 19431 measured reflections

  • 6239 independent reflections

  • 2958 reflections with I > 2σ(I)

  • Rint = 0.076

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 1.00

  • 6239 reflections

  • 402 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3 0.88 2.27 3.123 (3) 165
N4—H4B⋯N1i 0.88 2.22 3.061 (3) 159
N2—H2A⋯O2 0.88 2.23 3.047 (3) 155
N4—H4A⋯O1i 0.88 2.35 3.160 (4) 153
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amidinate anions of the general formula [RC(NR')2]- are the nitrogen analogs of the carboxylate anions. Their steric and electronic properties can be readily modified in a wide range through variation of the substituents on the carbon and nitrogen atoms. They have been widely employed as ligands in main group and transition metal coordination chemistry (Edelmann, 1994). Deprotonation of an amidine using a metal alkyl is a general synthetic method for preparing metal amidinato complexes, which could act as catalysts in ring-opening polymerization of lactones and lactides (Qian et al., 2010; Bakthavachalam et al., 2014). Herein we report the crystal structure of the title compound prepared by a one pot reaction with 2,6-dimethylaniline, LiBun, PhCN and H2O.

The asymmetric unit of the title compound contains two amidines and two tetrahydronfuran molecules. Amidine molecules denoted A and B in the asymmetric unit possess different orientations. In molecule A, the phenyl ring C10—C15 and dimethylphenyl ring C1—C6 are twisted from the mean plane of N1/C9/N2 by 26.14 (18)° and 79.50 (8)°. Two N atoms connect the central C atom in different lengths of 1.293 (2) Å and 1.346 (2) Å, respectively. In molecule B, the phenyl ring C25—C30 and dimethylphenyl ring C16—C21 are twisted from the mean plane of N3/C24/N4 by 28.21 (18)° and 86.33 (8)°. Two N atoms connect the central C atom in different lengths of 1.288 (2) Å and 1.354 (2) Å. In the crystal, the intermolecular N—H···N hydrogen bonds link the molecules to give a one-dimension chain extending along the a-axis direction. The tetrahydrofuran molecules interact with the amidine chain via N—H···O hydrogen bonds. The compound is closely similar to the benzamidine with an o-tolyl substituent on the N atom, namely N2-o-Tolylbenzamidine (Zhang et al., 2008), which has no tetrahydrofuran molecules attached.

Related literature top

For reviews of related metal amidinates and their applications in ring-opening polymerization, see: Edelmann (1994); Bai et al. (2013); Qian et al. (2010); Bakthavachalam et al. (2014). For a related synthetic method for amidines, see: Liu et al. (2013). For a related crystal structure, see Zhang & Tong (2008).

Experimental top

A solution of LiBun (2.2 M, 2.27 ml, 5.0 mmol) in hexane was slowly added into a stirred solution of 2,6-dimethylaniline (0.62 ml, 5.0 mmol) in Et2O(ca 30 ml) by syringe at 273 K. The reaction mixture was warmed to room temperature and kept stirring for 3 h. Then benzonitrile (0.51 ml, 5.0 mmol) was added by syringe at 273 K. The reaction mixture was warmed to room temperature and kept stirring for 4 h. H2O (0.09 ml, 5.0 mmol) was added by syringe at 273 K. After stirred at room temperature for 4 h, the mixture was filtered and the filtrate was dried in vacuum to remove all volatiles. The residue was crystallized in hexane and gave colorless crystals, which was recrystallized from THF solution to give colorless blocks of the title compound (yield 1.17 g, 79%).1H NMR (300 MHz, CDCl3): δ = 7.97–6.91 (m, 8H; phenyl), 4.62 (s, 2H; NH2), 2.19 (s, 6; CH3). 13C NMR (75 MHz, CDCl3): δ = 135.8–122.9 (Ph), 18.0 (CH3).

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98° and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. The methylene H atoms were constrained with C—H distances of 0.99° and Uiso(H) = 1.2Ueq(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95° and Uiso(H) =1.2Ueq(C).

Structure description top

Amidinate anions of the general formula [RC(NR')2]- are the nitrogen analogs of the carboxylate anions. Their steric and electronic properties can be readily modified in a wide range through variation of the substituents on the carbon and nitrogen atoms. They have been widely employed as ligands in main group and transition metal coordination chemistry (Edelmann, 1994). Deprotonation of an amidine using a metal alkyl is a general synthetic method for preparing metal amidinato complexes, which could act as catalysts in ring-opening polymerization of lactones and lactides (Qian et al., 2010; Bakthavachalam et al., 2014). Herein we report the crystal structure of the title compound prepared by a one pot reaction with 2,6-dimethylaniline, LiBun, PhCN and H2O.

The asymmetric unit of the title compound contains two amidines and two tetrahydronfuran molecules. Amidine molecules denoted A and B in the asymmetric unit possess different orientations. In molecule A, the phenyl ring C10—C15 and dimethylphenyl ring C1—C6 are twisted from the mean plane of N1/C9/N2 by 26.14 (18)° and 79.50 (8)°. Two N atoms connect the central C atom in different lengths of 1.293 (2) Å and 1.346 (2) Å, respectively. In molecule B, the phenyl ring C25—C30 and dimethylphenyl ring C16—C21 are twisted from the mean plane of N3/C24/N4 by 28.21 (18)° and 86.33 (8)°. Two N atoms connect the central C atom in different lengths of 1.288 (2) Å and 1.354 (2) Å. In the crystal, the intermolecular N—H···N hydrogen bonds link the molecules to give a one-dimension chain extending along the a-axis direction. The tetrahydrofuran molecules interact with the amidine chain via N—H···O hydrogen bonds. The compound is closely similar to the benzamidine with an o-tolyl substituent on the N atom, namely N2-o-Tolylbenzamidine (Zhang et al., 2008), which has no tetrahydrofuran molecules attached.

For reviews of related metal amidinates and their applications in ring-opening polymerization, see: Edelmann (1994); Bai et al. (2013); Qian et al. (2010); Bakthavachalam et al. (2014). For a related synthetic method for amidines, see: Liu et al. (2013). For a related crystal structure, see Zhang & Tong (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Hydrogen atoms, except for the nitrogen donor atoms, have been omitted for clarity.
[Figure 2] Fig. 2. The view of one–dimensional chain in crystal structure of I. Symmetry codes: (i) x + 1, y, z.
N'-(2,6-Dimethylphenyl)benzenecarboximidamide tetrahydrofuran monosolvate top
Crystal data top
C15H16N2·C4H8OF(000) = 1280
Mr = 296.40Dx = 1.110 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.075 (4) ÅCell parameters from 1838 reflections
b = 14.549 (6) Åθ = 2.5–23.2°
c = 24.208 (8) ŵ = 0.07 mm1
β = 90.662 (8)°T = 200 K
V = 3548 (2) Å3Block, colorless
Z = 80.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD
diffractometer
6239 independent reflections
Radiation source: fine-focus sealed tube2958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scanθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.980, Tmax = 0.983k = 1717
19431 measured reflectionsl = 1528
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1551P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6239 reflectionsΔρmax = 0.19 e Å3
402 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (7)
Crystal data top
C15H16N2·C4H8OV = 3548 (2) Å3
Mr = 296.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.075 (4) ŵ = 0.07 mm1
b = 14.549 (6) ÅT = 200 K
c = 24.208 (8) Å0.30 × 0.30 × 0.25 mm
β = 90.662 (8)°
Data collection top
Bruker SMART CCD
diffractometer
6239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2958 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.076
19431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.159H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
6239 reflectionsΔρmin = 0.16 e Å3
402 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38595 (19)0.73562 (14)0.38856 (8)0.0489 (6)
N20.6122 (2)0.69654 (16)0.39181 (9)0.0635 (7)
H2A0.62200.71390.42650.076*
H2B0.68030.67430.37370.076*
N30.88493 (19)0.64602 (14)0.33988 (8)0.0512 (6)
N41.1129 (2)0.65628 (15)0.35904 (9)0.0680 (7)
H4A1.12800.59920.34880.082*
H4B1.17880.69090.37090.082*
C10.3862 (2)0.77187 (18)0.44302 (11)0.0478 (7)
C20.3850 (3)0.86787 (19)0.44921 (12)0.0580 (7)
C30.3632 (3)0.9046 (2)0.50151 (15)0.0748 (9)
H30.36270.96940.50620.090*
C40.3425 (3)0.8487 (3)0.54637 (14)0.0863 (11)
H40.32480.87460.58150.104*
C50.3475 (3)0.7550 (3)0.53989 (13)0.0826 (10)
H50.33540.71680.57120.099*
C60.3699 (3)0.7143 (2)0.48870 (12)0.0612 (8)
C70.4045 (3)0.9291 (2)0.39988 (13)0.0851 (10)
H7A0.40050.99360.41150.128*
H7B0.33450.91710.37240.128*
H7C0.49130.91650.38360.128*
C80.3732 (3)0.6115 (2)0.48238 (13)0.0922 (11)
H8A0.29860.59170.45890.138*
H8B0.36630.58260.51880.138*
H8C0.45680.59320.46530.138*
C90.4927 (3)0.70415 (17)0.36643 (10)0.0455 (6)
C100.4851 (2)0.67278 (17)0.30779 (11)0.0478 (7)
C110.3895 (3)0.7092 (2)0.27270 (12)0.0623 (8)
H110.33020.75450.28610.075*
C120.3790 (3)0.6804 (2)0.21812 (13)0.0826 (10)
H120.31250.70580.19450.099*
C130.4645 (3)0.6154 (3)0.19833 (13)0.0857 (10)
H130.45790.59610.16090.103*
C140.5598 (3)0.5782 (2)0.23253 (14)0.0805 (10)
H140.61880.53290.21890.097*
C150.5697 (3)0.6067 (2)0.28703 (12)0.0643 (8)
H150.63570.58050.31050.077*
C160.8975 (2)0.55500 (18)0.31850 (12)0.0513 (7)
C170.8837 (3)0.4790 (2)0.35303 (13)0.0647 (8)
C180.8782 (3)0.3913 (2)0.32926 (18)0.0841 (10)
H180.86930.33900.35250.101*
C190.8853 (3)0.3794 (2)0.27344 (19)0.0861 (11)
H190.88000.31940.25810.103*
C200.9001 (3)0.4541 (2)0.23951 (15)0.0768 (9)
H200.90510.44530.20070.092*
C210.9080 (2)0.5430 (2)0.26115 (13)0.0608 (8)
C220.8773 (4)0.4925 (2)0.41468 (14)0.1000 (11)
H22A0.86660.43270.43280.150*
H22B0.80160.53200.42350.150*
H22C0.95950.52150.42790.150*
C230.9254 (4)0.6242 (2)0.22403 (12)0.0913 (11)
H23A0.85300.66800.22990.137*
H23B0.92420.60390.18540.137*
H23C1.01050.65400.23240.137*
C240.9884 (2)0.69064 (17)0.35657 (10)0.0479 (6)
C250.9695 (2)0.78779 (17)0.37466 (11)0.0479 (7)
C261.0508 (3)0.82922 (19)0.41377 (12)0.0631 (8)
H261.12290.79570.42940.076*
C271.0285 (3)0.9193 (2)0.43048 (14)0.0789 (9)
H271.08490.94670.45750.095*
C280.9254 (3)0.9687 (2)0.40811 (15)0.0810 (10)
H280.91041.03030.41950.097*
C290.8436 (3)0.9287 (2)0.36907 (13)0.0735 (9)
H290.77160.96260.35360.088*
C300.8659 (3)0.83899 (19)0.35218 (12)0.0612 (8)
H300.80960.81220.32490.073*
C310.2488 (4)0.4339 (4)0.2957 (2)0.1365 (17)
H31A0.26510.48710.27120.164*
H31B0.16030.40830.28630.164*
C320.3484 (5)0.3654 (3)0.2872 (2)0.1356 (17)
H32A0.39860.37840.25320.163*
H32B0.30770.30370.28390.163*
C330.4359 (5)0.3701 (3)0.3359 (2)0.1303 (15)
H33A0.52660.38880.32530.156*
H33B0.44060.30980.35470.156*
C340.3747 (5)0.4403 (3)0.37231 (17)0.1204 (14)
H34A0.36460.41560.41010.144*
H34B0.43130.49590.37430.144*
C350.8550 (5)0.6907 (3)0.5224 (2)0.1243 (15)
H35A0.91290.69050.48960.149*
H35B0.85200.62770.53780.149*
C360.9064 (5)0.7568 (4)0.5648 (2)0.1462 (18)
H36A0.91410.72690.60140.175*
H36B0.99450.78080.55430.175*
C370.8081 (5)0.8308 (3)0.5658 (2)0.1511 (19)
H37A0.76450.83320.60220.181*
H37B0.85110.89080.55890.181*
C380.7154 (4)0.8113 (3)0.5243 (2)0.1309 (16)
H38A0.62480.82260.53810.157*
H38B0.73020.85230.49230.157*
O10.2509 (3)0.4619 (2)0.34960 (16)0.1421 (12)
O20.7271 (3)0.7206 (2)0.50790 (11)0.1237 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0377 (13)0.0606 (14)0.0482 (14)0.0003 (10)0.0005 (10)0.0089 (11)
N20.0381 (14)0.0985 (19)0.0536 (15)0.0037 (12)0.0051 (11)0.0178 (13)
N30.0396 (13)0.0502 (13)0.0638 (15)0.0000 (10)0.0013 (11)0.0106 (11)
N40.0374 (14)0.0586 (15)0.1079 (19)0.0003 (11)0.0044 (12)0.0200 (13)
C10.0341 (15)0.0596 (18)0.0498 (18)0.0002 (12)0.0003 (12)0.0029 (15)
C20.0462 (17)0.062 (2)0.066 (2)0.0009 (13)0.0073 (14)0.0112 (16)
C30.064 (2)0.078 (2)0.082 (3)0.0058 (16)0.0124 (18)0.029 (2)
C40.076 (2)0.122 (3)0.060 (2)0.019 (2)0.0083 (18)0.029 (2)
C50.075 (2)0.113 (3)0.060 (2)0.011 (2)0.0049 (17)0.003 (2)
C60.0533 (18)0.074 (2)0.056 (2)0.0007 (15)0.0007 (14)0.0007 (17)
C70.093 (3)0.062 (2)0.101 (3)0.0047 (17)0.003 (2)0.0069 (18)
C80.106 (3)0.081 (3)0.089 (3)0.000 (2)0.017 (2)0.0199 (19)
C90.0378 (16)0.0505 (16)0.0482 (17)0.0052 (12)0.0005 (13)0.0014 (12)
C100.0348 (15)0.0565 (16)0.0520 (18)0.0022 (12)0.0008 (13)0.0052 (14)
C110.0552 (19)0.077 (2)0.054 (2)0.0126 (15)0.0001 (15)0.0026 (16)
C120.079 (2)0.112 (3)0.057 (2)0.022 (2)0.0140 (17)0.0053 (19)
C130.075 (2)0.125 (3)0.057 (2)0.009 (2)0.0085 (19)0.027 (2)
C140.059 (2)0.108 (3)0.074 (2)0.0180 (18)0.0073 (18)0.037 (2)
C150.0450 (18)0.082 (2)0.066 (2)0.0082 (15)0.0097 (15)0.0193 (16)
C160.0308 (15)0.0516 (17)0.071 (2)0.0002 (12)0.0004 (13)0.0054 (15)
C170.0475 (18)0.064 (2)0.083 (2)0.0028 (14)0.0045 (15)0.0017 (18)
C180.065 (2)0.058 (2)0.129 (3)0.0055 (16)0.001 (2)0.003 (2)
C190.062 (2)0.063 (2)0.133 (4)0.0011 (17)0.007 (2)0.024 (2)
C200.056 (2)0.083 (3)0.092 (3)0.0080 (17)0.0096 (17)0.030 (2)
C210.0434 (17)0.064 (2)0.075 (2)0.0049 (13)0.0011 (15)0.0091 (17)
C220.109 (3)0.093 (3)0.098 (3)0.004 (2)0.021 (2)0.022 (2)
C230.111 (3)0.091 (3)0.072 (2)0.001 (2)0.004 (2)0.0036 (19)
C240.0383 (16)0.0513 (16)0.0542 (17)0.0001 (13)0.0033 (13)0.0029 (13)
C250.0381 (15)0.0484 (16)0.0572 (18)0.0026 (13)0.0051 (13)0.0027 (13)
C260.0473 (17)0.064 (2)0.078 (2)0.0008 (14)0.0035 (15)0.0159 (16)
C270.058 (2)0.076 (2)0.103 (3)0.0021 (17)0.0027 (18)0.0324 (19)
C280.068 (2)0.061 (2)0.115 (3)0.0013 (18)0.016 (2)0.020 (2)
C290.061 (2)0.059 (2)0.101 (3)0.0092 (16)0.0016 (18)0.0033 (18)
C300.0516 (18)0.0562 (18)0.076 (2)0.0014 (15)0.0028 (15)0.0004 (15)
C310.102 (4)0.165 (5)0.142 (4)0.045 (3)0.016 (3)0.031 (4)
C320.114 (4)0.128 (4)0.164 (4)0.035 (3)0.044 (3)0.059 (3)
C330.118 (4)0.114 (4)0.157 (4)0.031 (3)0.034 (3)0.018 (3)
C340.147 (4)0.105 (3)0.109 (3)0.014 (3)0.006 (3)0.014 (3)
C350.129 (4)0.114 (4)0.131 (4)0.030 (3)0.026 (3)0.011 (3)
C360.111 (4)0.185 (5)0.142 (4)0.024 (4)0.057 (3)0.008 (4)
C370.139 (4)0.130 (4)0.182 (5)0.015 (3)0.076 (4)0.044 (4)
C380.114 (4)0.108 (4)0.170 (4)0.014 (3)0.054 (3)0.020 (3)
O10.126 (3)0.144 (3)0.156 (3)0.042 (2)0.002 (2)0.048 (2)
O20.141 (3)0.115 (2)0.114 (2)0.010 (2)0.0445 (19)0.0314 (17)
Geometric parameters (Å, º) top
N1—C91.291 (3)C20—C211.397 (4)
N1—C11.420 (3)C20—H200.9500
N2—C91.350 (3)C21—C231.497 (4)
N2—H2A0.8800C22—H22A0.9800
N2—H2B0.8800C22—H22B0.9800
N3—C241.289 (3)C22—H22C0.9800
N3—C161.428 (3)C23—H23A0.9800
N4—C241.351 (3)C23—H23B0.9800
N4—H4A0.8800C23—H23C0.9800
N4—H4B0.8800C24—C251.493 (3)
C1—C61.399 (4)C25—C261.383 (3)
C1—C21.405 (4)C25—C301.388 (3)
C2—C31.394 (4)C26—C271.391 (4)
C2—C71.505 (4)C26—H260.9500
C3—C41.374 (4)C27—C281.369 (4)
C3—H30.9500C27—H270.9500
C4—C51.373 (5)C28—C291.376 (4)
C4—H40.9500C28—H280.9500
C5—C61.394 (4)C29—C301.387 (4)
C5—H50.9500C29—H290.9500
C6—C81.504 (4)C30—H300.9500
C7—H7A0.9800C31—O11.367 (4)
C7—H7B0.9800C31—C321.431 (5)
C7—H7C0.9800C31—H31A0.9900
C8—H8A0.9800C31—H31B0.9900
C8—H8B0.9800C32—C331.465 (5)
C8—H8C0.9800C32—H32A0.9900
C9—C101.492 (3)C32—H32B0.9900
C10—C151.383 (3)C33—C341.488 (5)
C10—C111.383 (3)C33—H33A0.9900
C11—C121.389 (4)C33—H33B0.9900
C11—H110.9500C34—O11.393 (5)
C12—C131.370 (4)C34—H34A0.9900
C12—H120.9500C34—H34B0.9900
C13—C141.371 (4)C35—O21.401 (5)
C13—H130.9500C35—C361.496 (6)
C14—C151.386 (4)C35—H35A0.9900
C14—H140.9500C35—H35B0.9900
C15—H150.9500C36—C371.462 (6)
C16—C171.394 (4)C36—H36A0.9900
C16—C211.404 (4)C36—H36B0.9900
C17—C181.400 (4)C37—C381.393 (5)
C17—C221.507 (4)C37—H37A0.9900
C18—C191.365 (4)C37—H37B0.9900
C18—H180.9500C38—O21.384 (4)
C19—C201.372 (4)C38—H38A0.9900
C19—H190.9500C38—H38B0.9900
C9—N1—C1121.6 (2)C17—C22—H22C109.5
C9—N2—H2A120.0H22A—C22—H22C109.5
C9—N2—H2B120.0H22B—C22—H22C109.5
H2A—N2—H2B120.0C21—C23—H23A109.5
C24—N3—C16120.4 (2)C21—C23—H23B109.5
C24—N4—H4A120.0H23A—C23—H23B109.5
C24—N4—H4B120.0C21—C23—H23C109.5
H4A—N4—H4B120.0H23A—C23—H23C109.5
C6—C1—C2120.7 (3)H23B—C23—H23C109.5
C6—C1—N1120.8 (2)N3—C24—N4125.1 (2)
C2—C1—N1117.9 (2)N3—C24—C25117.6 (2)
C3—C2—C1118.7 (3)N4—C24—C25117.3 (2)
C3—C2—C7121.2 (3)C26—C25—C30118.1 (2)
C1—C2—C7120.2 (3)C26—C25—C24122.5 (2)
C4—C3—C2121.2 (3)C30—C25—C24119.4 (2)
C4—C3—H3119.4C25—C26—C27120.9 (3)
C2—C3—H3119.4C25—C26—H26119.6
C5—C4—C3119.4 (3)C27—C26—H26119.6
C5—C4—H4120.3C28—C27—C26120.3 (3)
C3—C4—H4120.3C28—C27—H27119.9
C4—C5—C6122.0 (3)C26—C27—H27119.9
C4—C5—H5119.0C27—C28—C29119.7 (3)
C6—C5—H5119.0C27—C28—H28120.2
C5—C6—C1118.0 (3)C29—C28—H28120.2
C5—C6—C8121.1 (3)C28—C29—C30120.2 (3)
C1—C6—C8120.8 (3)C28—C29—H29119.9
C2—C7—H7A109.5C30—C29—H29119.9
C2—C7—H7B109.5C29—C30—C25120.9 (3)
H7A—C7—H7B109.5C29—C30—H30119.6
C2—C7—H7C109.5C25—C30—H30119.6
H7A—C7—H7C109.5O1—C31—C32110.0 (4)
H7B—C7—H7C109.5O1—C31—H31A109.7
C6—C8—H8A109.5C32—C31—H31A109.7
C6—C8—H8B109.5O1—C31—H31B109.7
H8A—C8—H8B109.5C32—C31—H31B109.7
C6—C8—H8C109.5H31A—C31—H31B108.2
H8A—C8—H8C109.5C31—C32—C33105.6 (4)
H8B—C8—H8C109.5C31—C32—H32A110.6
N1—C9—N2125.7 (2)C33—C32—H32A110.6
N1—C9—C10118.0 (2)C31—C32—H32B110.6
N2—C9—C10116.3 (2)C33—C32—H32B110.6
C15—C10—C11118.1 (2)H32A—C32—H32B108.8
C15—C10—C9122.2 (2)C32—C33—C34105.0 (4)
C11—C10—C9119.7 (2)C32—C33—H33A110.7
C10—C11—C12120.9 (3)C34—C33—H33A110.7
C10—C11—H11119.5C32—C33—H33B110.7
C12—C11—H11119.5C34—C33—H33B110.7
C13—C12—C11120.0 (3)H33A—C33—H33B108.8
C13—C12—H12120.0O1—C34—C33107.2 (3)
C11—C12—H12120.0O1—C34—H34A110.3
C12—C13—C14120.0 (3)C33—C34—H34A110.3
C12—C13—H13120.0O1—C34—H34B110.3
C14—C13—H13120.0C33—C34—H34B110.3
C13—C14—C15119.9 (3)H34A—C34—H34B108.5
C13—C14—H14120.0O2—C35—C36106.4 (3)
C15—C14—H14120.0O2—C35—H35A110.5
C10—C15—C14121.1 (3)C36—C35—H35A110.5
C10—C15—H15119.5O2—C35—H35B110.5
C14—C15—H15119.5C36—C35—H35B110.5
C17—C16—C21120.2 (3)H35A—C35—H35B108.6
C17—C16—N3120.6 (3)C37—C36—C35104.9 (3)
C21—C16—N3118.8 (2)C37—C36—H36A110.8
C16—C17—C18118.7 (3)C35—C36—H36A110.8
C16—C17—C22119.7 (3)C37—C36—H36B110.8
C18—C17—C22121.6 (3)C35—C36—H36B110.8
C19—C18—C17121.4 (3)H36A—C36—H36B108.9
C19—C18—H18119.3C38—C37—C36106.6 (4)
C17—C18—H18119.3C38—C37—H37A110.4
C18—C19—C20120.0 (3)C36—C37—H37A110.4
C18—C19—H19120.0C38—C37—H37B110.4
C20—C19—H19120.0C36—C37—H37B110.4
C19—C20—C21121.0 (3)H37A—C37—H37B108.6
C19—C20—H20119.5O2—C38—C37110.0 (4)
C21—C20—H20119.5O2—C38—H38A109.7
C20—C21—C16118.8 (3)C37—C38—H38A109.7
C20—C21—C23120.8 (3)O2—C38—H38B109.7
C16—C21—C23120.4 (3)C37—C38—H38B109.7
C17—C22—H22A109.5H38A—C38—H38B108.2
C17—C22—H22B109.5C31—O1—C34108.2 (3)
H22A—C22—H22B109.5C38—O2—C35107.8 (3)
C9—N1—C1—C686.3 (3)N3—C16—C17—C229.8 (4)
C9—N1—C1—C2102.3 (3)C16—C17—C18—C190.4 (4)
C6—C1—C2—C31.9 (4)C22—C17—C18—C19179.4 (3)
N1—C1—C2—C3169.6 (2)C17—C18—C19—C201.0 (5)
C6—C1—C2—C7179.1 (2)C18—C19—C20—C210.1 (5)
N1—C1—C2—C79.4 (4)C19—C20—C21—C161.4 (4)
C1—C2—C3—C40.4 (4)C19—C20—C21—C23179.4 (3)
C7—C2—C3—C4178.6 (3)C17—C16—C21—C202.0 (4)
C2—C3—C4—C52.1 (5)N3—C16—C21—C20170.5 (2)
C3—C4—C5—C61.6 (5)C17—C16—C21—C23178.8 (3)
C4—C5—C6—C10.6 (4)N3—C16—C21—C238.7 (4)
C4—C5—C6—C8179.1 (3)C16—N3—C24—N44.3 (4)
C2—C1—C6—C52.4 (4)C16—N3—C24—C25175.7 (2)
N1—C1—C6—C5168.8 (2)N3—C24—C25—C26151.3 (2)
C2—C1—C6—C8179.1 (3)N4—C24—C25—C2628.6 (4)
N1—C1—C6—C89.7 (4)N3—C24—C25—C3028.0 (3)
C1—N1—C9—N24.0 (4)N4—C24—C25—C30152.1 (2)
C1—N1—C9—C10176.2 (2)C30—C25—C26—C270.7 (4)
N1—C9—C10—C15153.2 (2)C24—C25—C26—C27178.6 (3)
N2—C9—C10—C1526.6 (3)C25—C26—C27—C280.3 (5)
N1—C9—C10—C1125.7 (3)C26—C27—C28—C290.2 (5)
N2—C9—C10—C11154.5 (2)C27—C28—C29—C300.4 (5)
C15—C10—C11—C120.2 (4)C28—C29—C30—C250.8 (4)
C9—C10—C11—C12179.1 (3)C26—C25—C30—C290.9 (4)
C10—C11—C12—C130.3 (5)C24—C25—C30—C29178.4 (2)
C11—C12—C13—C140.6 (5)O1—C31—C32—C3314.6 (6)
C12—C13—C14—C150.3 (5)C31—C32—C33—C343.1 (5)
C11—C10—C15—C140.5 (4)C32—C33—C34—O18.9 (5)
C9—C10—C15—C14179.4 (3)O2—C35—C36—C378.4 (6)
C13—C14—C15—C100.2 (5)C35—C36—C37—C384.4 (6)
C24—N3—C16—C1793.1 (3)C36—C37—C38—O216.2 (6)
C24—N3—C16—C2194.5 (3)C32—C31—O1—C3420.8 (6)
C21—C16—C17—C181.1 (4)C33—C34—O1—C3118.2 (5)
N3—C16—C17—C18171.2 (2)C37—C38—O2—C3522.1 (5)
C21—C16—C17—C22177.9 (2)C36—C35—O2—C3818.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.882.273.123 (3)165
N4—H4B···N1i0.882.223.061 (3)159
N2—H2A···O20.882.233.047 (3)155
N4—H4A···O1i0.882.353.160 (4)153
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N30.882.273.123 (3)165
N4—H4B···N1i0.882.223.061 (3)159
N2—H2A···O20.882.233.047 (3)155
N4—H4A···O1i0.882.353.160 (4)153
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (grant No. 20702029) and the Natural Science Foundation of Shanxi Province (grant No. 2008011024).

References

First citationBai, S. D., Liu, R. Q., Wang, T., Guan, F., Wu, Y. B., Chao, J. B., Tong, H. B. & Liu, D. S. (2013). Polyhedron, 65, 161–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationBakthavachalam, K., Rajagopal, A. & Dastagiri Reddy, N. (2014). Dalton Trans. 43, 14816–14823.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdelmann, F. T. (1994). Coord. Chem. Rev. 137, 403–481.  CrossRef Web of Science Google Scholar
First citationLiu, R.-Q., Bai, S.-D. & Wang, T. (2013). Acta Cryst. E69, o520.  CSD CrossRef IUCr Journals Google Scholar
First citationQian, F., Liu, K. Y. & Ma, H. Y. (2010). Dalton Trans. 39, 8071–8083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-Z. & Tong, H.-B. (2008). Acta Cryst. E64, o1276.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds