organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(di­methyl­amino)­pyridinium 4-amino­benzoate dihydrate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDirectorate of Collegiate Education, Govt. of Tamil Nadu, Chennai 600 006, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: kan_uma6@yahoo.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 November 2014; accepted 30 November 2014; online 1 January 2015)

In the title hydrated mol­ecular salt, C7H11N2+·C7H6NO2·2H2O, the cation is protonated at the pyridine N atom and the dihedral angle between the benzene ring and the CO2 group in the anion is 8.5 (2)°. In the crystal, the cation forms an N—H⋯O hydrogen bond to the anion and the anion forms two N—H⋯O hydrogen bonds to adjacent water mol­ecules. Both water mol­ecules form two O—H⋯O hydrogen bonds to carboxyl­ate O atoms. In combination, these hydrogen bonds generate a three-dimensional network and two weak C—H⋯π inter­actions are also observed.

1. Related literature

For related structures, see: Dhanabalan et al. (2014[Dhanabalan, N., Thanigaimani, K., Arshad, S., Razak, I. A. & Santhanaraj, K. J. (2014). Acta Cryst. E70, o657-o658.]); Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.]); Pereira Silva et al. (2010[Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2010). Acta Cryst. E66, o524.]); Sivakumar et al. (2014[Sivakumar, N., Muralidharan, S., Chakkaravarthi, G., Velmurugan, D. & Anbalagan, G. (2014). Acta Cryst. E70, 221-223.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H11N2+·C7H6NO2·2H2O

  • Mr = 295.34

  • Triclinic, [P \overline 1]

  • a = 9.3402 (7) Å

  • b = 9.7999 (7) Å

  • c = 10.2132 (8) Å

  • α = 65.755 (3)°

  • β = 69.983 (2)°

  • γ = 89.212 (3)°

  • V = 792.08 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.982

  • 16983 measured reflections

  • 3337 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.168

  • S = 1.03

  • 3337 reflections

  • 216 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.87 (1) 2.04 (1) 2.898 (3) 167 (2)
N1—H1B⋯O4i 0.89 (1) 2.04 (1) 2.921 (3) 174 (2)
N2—H2A⋯O1ii 0.89 (1) 1.81 (1) 2.697 (2) 174 (2)
O3—H3A⋯O2iii 0.83 (1) 2.03 (1) 2.858 (3) 175 (4)
O3—H3B⋯O1iv 0.83 (1) 2.04 (1) 2.861 (3) 174 (4)
O4—H4A⋯O2v 0.82 (1) 2.01 (1) 2.834 (3) 175 (4)
O4—H4B⋯O1vi 0.82 (1) 2.04 (1) 2.847 (3) 167 (4)
C9—H9⋯Cg2vii 0.93 2.80 3.510 (3) 134
C12—H12⋯Cg2i 0.93 2.84 3.535 (3) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z+1; (iii) -x+1, -y+2, -z; (iv) x+1, y, z; (v) x, y, z+1; (vi) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

We hereby report the synthesis and crystal structure of the title compound (I), prepared by the reaction of 4-di­methyl­amino­pyridine with 4-amino­benzoic acid in distilled water as solvent.

Structural commentary top

The geometric parameters of the title compound (I) (Fig.1) are comparable with the reported structures [Dhanabalan et al., 2014; Lo & Ng (2008); Pereira Silva et al., 2010; Sivakumar et al., 2014]. The 4-di­methyl­amino­pyridinium cation is protonated at pyridine N2 atom, with the plane of the hetro atoms N(CH3)2 (N3/C13/C14) is inclined to the pyridine ring by 4.7 (2)°. In the 4-amino­benzoate anion, the plane of carboxyl­ate group (C7/O1/O2) is skewed at an angle of 8.5 (2)° with the attached benzene ring (C1—C6). The dihedral angle between the benzene ring (C1—C6) and pyridine ring (N2/C8—C12) is 66.69 (8)°.

Supra­molecular features top

In the crystal, the medium-strength N—H···O and O—H···O hydrogen bonds connect the adjacent anions and cations, involving water molecules into three dimensional framework (Table 2 & Fig. 2). The crystal structure also features weak C—H···π (Table 2) inter­actions.

Synthesis and crystallization top

4-Di­methyl­amino­pyridine (C7H10N2, 1.9704 g) and 4-amino­benzoic acid (C7H7NO2, 2.2119 g) were taken in the equimolar ratio and synthesized in distilled water and prepared solution was allowed for slow evaporation at room temperature. Colourless blocks were collected after 20 days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C-bound H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 and 0.97 Å for CHaromatic and CH3, respectively, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with Uiso(H) = 1.5Ueq(O). The distance restraints O—H = 0.82 (1)Å and N—H = 0.88 (1)Å were applied during refinement.

Related literature top

For related structures, see: Dhanabalan et al. (2014); Lo & Ng (2008); Pereira Silva et al. (2010); Sivakumar et al. (2014).

Structure description top

We hereby report the synthesis and crystal structure of the title compound (I), prepared by the reaction of 4-di­methyl­amino­pyridine with 4-amino­benzoic acid in distilled water as solvent.

The geometric parameters of the title compound (I) (Fig.1) are comparable with the reported structures [Dhanabalan et al., 2014; Lo & Ng (2008); Pereira Silva et al., 2010; Sivakumar et al., 2014]. The 4-di­methyl­amino­pyridinium cation is protonated at pyridine N2 atom, with the plane of the hetro atoms N(CH3)2 (N3/C13/C14) is inclined to the pyridine ring by 4.7 (2)°. In the 4-amino­benzoate anion, the plane of carboxyl­ate group (C7/O1/O2) is skewed at an angle of 8.5 (2)° with the attached benzene ring (C1—C6). The dihedral angle between the benzene ring (C1—C6) and pyridine ring (N2/C8—C12) is 66.69 (8)°.

In the crystal, the medium-strength N—H···O and O—H···O hydrogen bonds connect the adjacent anions and cations, involving water molecules into three dimensional framework (Table 2 & Fig. 2). The crystal structure also features weak C—H···π (Table 2) inter­actions.

For related structures, see: Dhanabalan et al. (2014); Lo & Ng (2008); Pereira Silva et al. (2010); Sivakumar et al. (2014).

Synthesis and crystallization top

4-Di­methyl­amino­pyridine (C7H10N2, 1.9704 g) and 4-amino­benzoic acid (C7H7NO2, 2.2119 g) were taken in the equimolar ratio and synthesized in distilled water and prepared solution was allowed for slow evaporation at room temperature. Colourless blocks were collected after 20 days.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C-bound H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 and 0.97 Å for CHaromatic and CH3, respectively, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with Uiso(H) = 1.5Ueq(O). The distance restraints O—H = 0.82 (1)Å and N—H = 0.88 (1)Å were applied during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-(Dimethylamino)pyridinium 4-aminobenzoate dihydrate top
Crystal data top
C7H11N2+·C7H6NO2·2H2OZ = 2
Mr = 295.34F(000) = 316
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3402 (7) ÅCell parameters from 1058 reflections
b = 9.7999 (7) Åθ = 2.3–26.7°
c = 10.2132 (8) ŵ = 0.09 mm1
α = 65.755 (3)°T = 295 K
β = 69.983 (2)°Block, colourless
γ = 89.212 (3)°0.30 × 0.24 × 0.20 mm
V = 792.08 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3337 independent reflections
Radiation source: fine-focus sealed tube2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 26.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.973, Tmax = 0.982k = 1212
16983 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.2681P]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.29 e Å3
7 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H11N2+·C7H6NO2·2H2Oγ = 89.212 (3)°
Mr = 295.34V = 792.08 (10) Å3
Triclinic, P1Z = 2
a = 9.3402 (7) ÅMo Kα radiation
b = 9.7999 (7) ŵ = 0.09 mm1
c = 10.2132 (8) ÅT = 295 K
α = 65.755 (3)°0.30 × 0.24 × 0.20 mm
β = 69.983 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2141 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.025
16983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0547 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
3337 reflectionsΔρmin = 0.23 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2531 (2)0.4227 (2)0.2980 (2)0.0514 (5)
C20.3081 (2)0.4846 (2)0.1370 (2)0.0542 (5)
H20.34340.42300.08710.065*
C30.3104 (2)0.6362 (2)0.0517 (2)0.0531 (5)
H30.34920.67570.05560.064*
C40.2567 (2)0.7315 (2)0.1210 (2)0.0491 (4)
C50.2008 (2)0.6690 (2)0.2806 (2)0.0568 (5)
H50.16300.73050.33020.068*
C60.1998 (2)0.5183 (2)0.3680 (2)0.0581 (5)
H60.16310.47990.47510.070*
C70.2563 (2)0.8938 (2)0.0265 (3)0.0577 (5)
C80.1012 (3)0.3280 (2)0.9041 (3)0.0708 (6)
H80.00650.26660.96690.085*
C90.1039 (3)0.4747 (2)0.8167 (3)0.0655 (6)
H90.01180.51300.81970.079*
C100.2434 (3)0.5707 (2)0.7214 (3)0.0622 (6)
C110.3751 (3)0.5037 (3)0.7234 (3)0.0903 (9)
H110.47160.56210.66220.108*
C120.3649 (3)0.3550 (3)0.8129 (3)0.0892 (8)
H120.45460.31230.81140.107*
C130.3933 (4)0.8197 (4)0.5480 (5)0.159 (2)
H13A0.44640.81390.61530.238*
H13B0.37380.92150.50030.238*
H13C0.45570.79100.46950.238*
C140.1109 (4)0.7869 (3)0.6311 (4)0.1021 (10)
H14A0.04730.72950.60930.153*
H14B0.13940.88880.55150.153*
H14C0.05480.78770.72900.153*
N10.2553 (2)0.2736 (2)0.3824 (2)0.0707 (5)
H1A0.218 (3)0.236 (3)0.4832 (12)0.078 (8)*
H1B0.282 (3)0.218 (3)0.331 (3)0.082 (8)*
N20.2282 (2)0.2677 (2)0.9039 (2)0.0694 (5)
H2A0.218 (3)0.1687 (12)0.961 (2)0.079 (7)*
N30.2487 (3)0.7185 (2)0.6365 (3)0.0864 (7)
O10.18777 (18)0.97118 (16)0.09587 (19)0.0718 (5)
O20.3219 (2)0.94822 (18)0.1168 (2)0.0820 (5)
O30.8669 (2)0.9002 (3)0.2848 (2)0.0923 (6)
H3A0.816 (4)0.948 (4)0.233 (4)0.138*
H3B0.9578 (17)0.921 (4)0.225 (4)0.138*
O40.6374 (2)0.9148 (2)0.7810 (3)0.0908 (6)
H4A0.5475 (17)0.930 (4)0.810 (4)0.136*
H4B0.693 (4)0.960 (4)0.803 (4)0.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (10)0.0498 (10)0.0531 (11)0.0097 (8)0.0151 (8)0.0161 (9)
C20.0508 (11)0.0528 (11)0.0534 (11)0.0106 (8)0.0121 (9)0.0236 (9)
C30.0493 (11)0.0562 (11)0.0442 (10)0.0081 (8)0.0124 (8)0.0168 (9)
C40.0419 (10)0.0491 (10)0.0529 (11)0.0087 (8)0.0171 (8)0.0194 (9)
C50.0549 (11)0.0607 (12)0.0589 (12)0.0174 (9)0.0196 (9)0.0310 (10)
C60.0560 (12)0.0667 (13)0.0444 (11)0.0145 (9)0.0153 (9)0.0202 (9)
C70.0482 (11)0.0525 (11)0.0687 (14)0.0109 (9)0.0246 (10)0.0206 (10)
C80.0618 (13)0.0555 (12)0.0919 (17)0.0015 (10)0.0354 (12)0.0230 (12)
C90.0616 (13)0.0575 (12)0.0797 (15)0.0095 (10)0.0316 (11)0.0273 (11)
C100.0718 (14)0.0553 (12)0.0667 (13)0.0014 (10)0.0410 (11)0.0202 (10)
C110.0593 (14)0.0892 (18)0.0937 (19)0.0039 (13)0.0376 (14)0.0048 (15)
C120.0643 (15)0.0915 (19)0.103 (2)0.0203 (14)0.0437 (15)0.0234 (16)
C130.131 (3)0.092 (2)0.177 (4)0.044 (2)0.096 (3)0.046 (2)
C140.130 (3)0.0622 (15)0.120 (3)0.0295 (16)0.064 (2)0.0303 (16)
N10.0811 (13)0.0549 (11)0.0565 (12)0.0159 (9)0.0167 (10)0.0130 (9)
N20.0796 (14)0.0520 (10)0.0877 (14)0.0123 (10)0.0473 (11)0.0274 (10)
N30.0961 (16)0.0599 (12)0.0969 (16)0.0098 (11)0.0602 (13)0.0074 (11)
O10.0744 (10)0.0538 (8)0.0866 (11)0.0189 (7)0.0286 (9)0.0308 (8)
O20.0879 (12)0.0644 (10)0.0658 (11)0.0250 (8)0.0198 (9)0.0095 (8)
O30.0898 (13)0.1101 (15)0.0598 (11)0.0207 (12)0.0261 (9)0.0222 (10)
O40.0835 (13)0.1013 (14)0.1038 (14)0.0223 (11)0.0322 (12)0.0615 (12)
Geometric parameters (Å, º) top
C1—N11.362 (3)C10—C111.389 (3)
C1—C61.389 (3)C11—C121.348 (4)
C1—C21.395 (3)C11—H110.9300
C2—C31.375 (3)C12—N21.338 (3)
C2—H20.9300C12—H120.9300
C3—C41.383 (3)C13—N31.446 (4)
C3—H30.9300C13—H13A0.9600
C4—C51.383 (3)C13—H13B0.9600
C4—C71.484 (3)C13—H13C0.9600
C5—C61.375 (3)C14—N31.451 (4)
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—O21.248 (3)C14—H14C0.9600
C7—O11.267 (3)N1—H1A0.874 (10)
C8—N21.318 (3)N1—H1B0.885 (10)
C8—C91.341 (3)N2—H2A0.890 (10)
C8—H80.9300O3—H3A0.826 (10)
C9—C101.394 (3)O3—H3B0.825 (10)
C9—H90.9300O4—H4A0.823 (10)
C10—N31.339 (3)O4—H4B0.821 (10)
N1—C1—C6121.60 (19)C12—C11—C10120.8 (2)
N1—C1—C2120.45 (18)C12—C11—H11119.6
C6—C1—C2117.94 (17)C10—C11—H11119.6
C3—C2—C1120.44 (18)N2—C12—C11121.3 (2)
C3—C2—H2119.8N2—C12—H12119.3
C1—C2—H2119.8C11—C12—H12119.3
C2—C3—C4121.77 (18)N3—C13—H13A109.5
C2—C3—H3119.1N3—C13—H13B109.5
C4—C3—H3119.1H13A—C13—H13B109.5
C3—C4—C5117.50 (17)N3—C13—H13C109.5
C3—C4—C7120.77 (18)H13A—C13—H13C109.5
C5—C4—C7121.72 (18)H13B—C13—H13C109.5
C6—C5—C4121.59 (19)N3—C14—H14A109.5
C6—C5—H5119.2N3—C14—H14B109.5
C4—C5—H5119.2H14A—C14—H14B109.5
C5—C6—C1120.75 (18)N3—C14—H14C109.5
C5—C6—H6119.6H14A—C14—H14C109.5
C1—C6—H6119.6H14B—C14—H14C109.5
O2—C7—O1122.73 (19)C1—N1—H1A119.5 (17)
O2—C7—C4119.24 (19)C1—N1—H1B116.5 (17)
O1—C7—C4118.02 (19)H1A—N1—H1B123 (2)
N2—C8—C9122.2 (2)C8—N2—C12119.2 (2)
N2—C8—H8118.9C8—N2—H2A117.7 (16)
C9—C8—H8118.9C12—N2—H2A123.0 (16)
C8—C9—C10120.7 (2)C10—N3—C13121.4 (2)
C8—C9—H9119.7C10—N3—C14122.4 (2)
C10—C9—H9119.7C13—N3—C14116.2 (2)
N3—C10—C11122.6 (2)H3A—O3—H3B107 (4)
N3—C10—C9121.7 (2)H4A—O4—H4B112 (4)
C11—C10—C9115.7 (2)
N1—C1—C2—C3177.90 (19)C5—C4—C7—O17.6 (3)
C6—C1—C2—C30.7 (3)N2—C8—C9—C100.3 (4)
C1—C2—C3—C41.1 (3)C8—C9—C10—N3178.1 (2)
C2—C3—C4—C50.4 (3)C8—C9—C10—C110.5 (4)
C2—C3—C4—C7178.23 (18)N3—C10—C11—C12178.6 (3)
C3—C4—C5—C60.7 (3)C9—C10—C11—C120.1 (4)
C7—C4—C5—C6179.30 (18)C10—C11—C12—N20.8 (5)
C4—C5—C6—C11.1 (3)C9—C8—N2—C120.5 (4)
N1—C1—C6—C5178.9 (2)C11—C12—N2—C81.0 (4)
C2—C1—C6—C50.4 (3)C11—C10—N3—C133.7 (4)
C3—C4—C7—O28.6 (3)C9—C10—N3—C13174.7 (3)
C5—C4—C7—O2172.8 (2)C11—C10—N3—C14178.0 (3)
C3—C4—C7—O1171.01 (18)C9—C10—N3—C143.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.87 (1)2.04 (1)2.898 (3)167 (2)
N1—H1B···O4i0.89 (1)2.04 (1)2.921 (3)174 (2)
N2—H2A···O1ii0.89 (1)1.81 (1)2.697 (2)174 (2)
O3—H3A···O2iii0.83 (1)2.03 (1)2.858 (3)175 (4)
O3—H3B···O1iv0.83 (1)2.04 (1)2.861 (3)174 (4)
O4—H4A···O2v0.82 (1)2.01 (1)2.834 (3)175 (4)
O4—H4B···O1vi0.82 (1)2.04 (1)2.847 (3)167 (4)
C9—H9···Cg2vii0.932.803.510 (3)134
C12—H12···Cg2i0.932.843.535 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z+1; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.874 (10)2.042 (12)2.898 (3)167 (2)
N1—H1B···O4i0.885 (10)2.039 (11)2.921 (3)174 (2)
N2—H2A···O1ii0.890 (10)1.811 (10)2.697 (2)174 (2)
O3—H3A···O2iii0.826 (10)2.034 (11)2.858 (3)175 (4)
O3—H3B···O1iv0.825 (10)2.039 (11)2.861 (3)174 (4)
O4—H4A···O2v0.823 (10)2.013 (11)2.834 (3)175 (4)
O4—H4B···O1vi0.821 (10)2.042 (14)2.847 (3)167 (4)
C9—H9···Cg2vii0.932.803.510 (3)134
C12—H12···Cg2i0.932.843.535 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z+1; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.
 

Acknowledgements

The authors thank SAIF, IIT, Madras for thedata collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhanabalan, N., Thanigaimani, K., Arshad, S., Razak, I. A. & Santhanaraj, K. J. (2014). Acta Cryst. E70, o657–o658.  CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2010). Acta Cryst. E66, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, N., Muralidharan, S., Chakkaravarthi, G., Velmurugan, D. & Anbalagan, G. (2014). Acta Cryst. E70, 221–223.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds