organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{[(2-chloro­phen­yl)imino]­meth­yl}phenol

aPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, bPG & Research Department of Physics, Government Arts College, Ariyalur 621 713, Tamil Nadu, India, and cSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
*Correspondence e-mail: asubashini2k4@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 December 2014; accepted 9 December 2014; online 1 January 2015)

In the title compound, C13H10ClNO, the dihedral angle between the planes of the aromatic rings is 51.42 (9)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. The Cl atom and the N atom are syn. No directional inter­actions beyond van der Waals contacts are observed in the crystal.

1. Related literature

For related structures recently reported by us and background to Schiff bases, see: Arunagiri et al. (2013a[Arunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013a). Elixir Org. Chem. 58, 14767-14770.],b[Arunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013b). Indian J. Appl. Res. 3, 78-81.]). For a related structure, see: Chumakov et al. (2005[Chumakov, Y. M., Tsapkov, V. I., Bocelli, G. & Antosyak, B. Ya. (2005). Acta Cryst. C61, o460-o463.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10ClNO

  • Mr = 231.67

  • Orthorhombic, P 21 21 21

  • a = 6.8591 (2) Å

  • b = 12.1829 (4) Å

  • c = 13.5405 (5) Å

  • V = 1131.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • 6509 measured reflections

  • 2744 independent reflections

  • 2315 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 2744 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.611 (2) 147

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Arunagiri et al., 2013a,b), we now describe the synthesis and structure of the title compound.

An ORTEP view of the asymmetric unit is shown in Figure 1. The asymmetric unit contains a molecule of Schiff base. The compound crystallizes in the orthorhombic space group P212121. The dihedral angle between the salicylidene moiety and amino phenyl plane is 51.42 (9)°. The two torsional angles τ1 (N—C—C—C) and τ2 (C—N—C—C) defining the confirmation of the molecule. In the present crystal structure, the torsion angles are 3.2 (3)° (N1—C7—C8—C9), -179.23 (2)° (N1—C7—C8—C13), 47.5 (2)° (C7—N1—C1—C6), -174.48 (2)° (C8—C7—N1—C1) and -135.60 (2)° (N1—C7—C1—C2). The N1—C7 distance of 1.275 (2) Å is normal double bond values and agree well with those observed in other azomethines. The C1—N1—C7 bond angle of 118.70 (2)° in the Schiff base ligand has a normal value. The C3—C2—C1 angle is 121.15 (2)° is larger than typical hexagonal of 120°. The C8—C9—C10 angle is 119.53 (2)° is smaller than typical hexagonal of 120°. This is due to effect of substitution on Cl & OH of the two aromatic rings. The two benzene rings (amino phenyl and salicylaldehyde) and the azomethine group are practically coplanar, as a result of intramolecular O—H···N (O1—H1···N1 with bond length of 2.611 (2) Å and bond angle of 147°) hydrogen bond involving the hydroxy O-atom and azomethine N-atom with graph-set notation S(6), as shown in Figure 2. Similar intramolecular hydrogen bonds are reported for the crystal structures of 2-(naphthalene-2-yliminomethyl) phenol and N-acetyl-4-[(2-hydroxybenzylidene)-amino]benzenesulfonamide monohydrate (Arunagiri et al., 2013 (a); Chumakov et al., 2005).

Related literature top

For related structures recently reported by us and background to Schiff bases, see: Arunagiri et al. (2013a,b). For a related structure, see: Chumakov et al. (2005).

Experimental top

An ethanol solution (25 ml) of chlorophenyl amine (0.25 mole) was mixed with hydroxy benzaldehyde (0.25 mole) and the contents were refluxed for 3 h and kept aside for crystallization. After a few days a pale yellow colour precipitate was formed. Recrystallization was from CHCl3/ethanol solution to form yellow needles. FT—IR (KBr pellet) in cm-1: 3437(O—H), 1614 cm-1(C=N stretching); 1H—NMR (400 MHz, DMSO– d6) in δ (p.p.m.) 13.17 (s,1H, aromatic O—H), 8.63 (s, 1H,C=N), 6.93 - 7.50 (m,8H, CH aromatic),13C—NMR (400 MHz, DMSO-d6) in δ (p.p.m.): 163.3 (C=N), 161.4 (phenolic OH), Electronic spectrum, λmax: 275 and 340 nm (due to intraligand ππ* and n–π* transitions); fluorescence spectra, 432 nm (attributed to the n–π* transition).

Refinement top

All H atoms were positioned geometrically and treated as riding. The C—H and O—H bond lengths are 0.93 Å and 0.82 Å respectively.

Structure description top

As part of our ongoing studies of Schiff bases (Arunagiri et al., 2013a,b), we now describe the synthesis and structure of the title compound.

An ORTEP view of the asymmetric unit is shown in Figure 1. The asymmetric unit contains a molecule of Schiff base. The compound crystallizes in the orthorhombic space group P212121. The dihedral angle between the salicylidene moiety and amino phenyl plane is 51.42 (9)°. The two torsional angles τ1 (N—C—C—C) and τ2 (C—N—C—C) defining the confirmation of the molecule. In the present crystal structure, the torsion angles are 3.2 (3)° (N1—C7—C8—C9), -179.23 (2)° (N1—C7—C8—C13), 47.5 (2)° (C7—N1—C1—C6), -174.48 (2)° (C8—C7—N1—C1) and -135.60 (2)° (N1—C7—C1—C2). The N1—C7 distance of 1.275 (2) Å is normal double bond values and agree well with those observed in other azomethines. The C1—N1—C7 bond angle of 118.70 (2)° in the Schiff base ligand has a normal value. The C3—C2—C1 angle is 121.15 (2)° is larger than typical hexagonal of 120°. The C8—C9—C10 angle is 119.53 (2)° is smaller than typical hexagonal of 120°. This is due to effect of substitution on Cl & OH of the two aromatic rings. The two benzene rings (amino phenyl and salicylaldehyde) and the azomethine group are practically coplanar, as a result of intramolecular O—H···N (O1—H1···N1 with bond length of 2.611 (2) Å and bond angle of 147°) hydrogen bond involving the hydroxy O-atom and azomethine N-atom with graph-set notation S(6), as shown in Figure 2. Similar intramolecular hydrogen bonds are reported for the crystal structures of 2-(naphthalene-2-yliminomethyl) phenol and N-acetyl-4-[(2-hydroxybenzylidene)-amino]benzenesulfonamide monohydrate (Arunagiri et al., 2013 (a); Chumakov et al., 2005).

For related structures recently reported by us and background to Schiff bases, see: Arunagiri et al. (2013a,b). For a related structure, see: Chumakov et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Dashed line indicates intramolecular hydrogen bond.
[Figure 2] Fig. 2. Hydrogen bonding interaction of title compound.
2-{[(2-Chlorophenyl)imino]methyl}phenol top
Crystal data top
C13H10ClNOF(000) = 480
Mr = 231.67Dx = 1.360 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 45 reflections
a = 6.8591 (2) Åθ = 3.0–28.3°
b = 12.1829 (4) ŵ = 0.31 mm1
c = 13.5405 (5) ÅT = 293 K
V = 1131.50 (6) Å3Cut needle, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2315 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 28.3°, θmin = 3.0°
ω scansh = 97
6509 measured reflectionsk = 1316
2744 independent reflectionsl = 1810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.0823P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2744 reflectionsΔρmax = 0.17 e Å3
146 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C13H10ClNOV = 1131.50 (6) Å3
Mr = 231.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8591 (2) ŵ = 0.31 mm1
b = 12.1829 (4) ÅT = 293 K
c = 13.5405 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2315 reflections with I > 2σ(I)
6509 measured reflectionsRint = 0.017
2744 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.17 e Å3
2744 reflectionsAbsolute structure: Flack (1983)
146 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22873 (7)0.87326 (5)0.81891 (4)0.0781 (2)
O10.41345 (19)0.60666 (15)0.63294 (11)0.0742 (5)
N10.0830 (2)0.68972 (13)0.69278 (10)0.0531 (4)
C10.0473 (2)0.72426 (14)0.76845 (12)0.0486 (5)
C20.0066 (2)0.80739 (14)0.83346 (13)0.0513 (5)
C30.1161 (3)0.84060 (16)0.90860 (14)0.0606 (6)
C40.2937 (3)0.78949 (18)0.92067 (14)0.0672 (7)
C50.3476 (3)0.70587 (18)0.85879 (16)0.0668 (7)
C60.2258 (3)0.67361 (15)0.78292 (13)0.0563 (5)
C70.0161 (2)0.67467 (14)0.60596 (13)0.0506 (5)
C80.1350 (2)0.63031 (15)0.52664 (12)0.0501 (5)
C90.3282 (3)0.59651 (15)0.54312 (14)0.0556 (5)
C100.4336 (3)0.54992 (17)0.46648 (17)0.0676 (7)
C110.3501 (3)0.53771 (17)0.37489 (16)0.0716 (8)
C120.1616 (3)0.57133 (18)0.35676 (15)0.0701 (7)
C130.0551 (3)0.61655 (16)0.43201 (13)0.0597 (6)
H10.337500.636600.671200.1110*
H30.079100.897100.950800.0730*
H40.377100.811800.970900.0810*
H50.466600.670700.867900.0800*
H60.264100.617100.741000.0680*
H70.113100.692700.593000.0610*
H100.561100.526800.477100.0810*
H110.422300.506200.324100.0860*
H120.107400.563400.294200.0840*
H130.072600.638600.420200.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0627 (3)0.0739 (3)0.0977 (4)0.0117 (2)0.0077 (2)0.0088 (3)
O10.0569 (7)0.0894 (11)0.0762 (9)0.0072 (8)0.0098 (6)0.0086 (8)
N10.0541 (7)0.0507 (8)0.0545 (7)0.0050 (6)0.0011 (6)0.0023 (6)
C10.0520 (9)0.0442 (9)0.0496 (8)0.0093 (7)0.0039 (7)0.0014 (7)
C20.0536 (8)0.0423 (8)0.0579 (9)0.0038 (7)0.0103 (7)0.0030 (7)
C30.0738 (12)0.0493 (10)0.0588 (10)0.0110 (8)0.0099 (8)0.0079 (8)
C40.0715 (12)0.0656 (12)0.0644 (11)0.0088 (10)0.0122 (9)0.0050 (10)
C50.0633 (10)0.0610 (12)0.0761 (12)0.0017 (9)0.0086 (9)0.0019 (10)
C60.0597 (9)0.0477 (9)0.0614 (9)0.0011 (8)0.0033 (8)0.0063 (8)
C70.0516 (8)0.0436 (8)0.0566 (9)0.0050 (7)0.0025 (7)0.0009 (7)
C80.0578 (8)0.0392 (8)0.0533 (9)0.0004 (7)0.0033 (7)0.0024 (7)
C90.0547 (8)0.0453 (9)0.0667 (10)0.0036 (7)0.0040 (8)0.0034 (8)
C100.0609 (10)0.0551 (11)0.0869 (14)0.0012 (9)0.0190 (10)0.0028 (10)
C110.0956 (15)0.0490 (11)0.0703 (13)0.0000 (11)0.0317 (11)0.0017 (9)
C120.0957 (14)0.0612 (12)0.0533 (10)0.0001 (12)0.0053 (10)0.0001 (9)
C130.0702 (10)0.0531 (10)0.0559 (9)0.0019 (9)0.0001 (8)0.0025 (8)
Geometric parameters (Å, º) top
Cl1—C21.7333 (15)C9—C101.386 (3)
O1—C91.355 (2)C10—C111.374 (3)
O1—H10.8200C11—C121.378 (3)
N1—C71.275 (2)C12—C131.369 (3)
N1—C11.423 (2)C3—H30.9300
C1—C61.385 (2)C4—H40.9300
C1—C21.392 (2)C5—H50.9300
C2—C31.381 (3)C6—H60.9300
C3—C41.378 (3)C7—H70.9300
C4—C51.370 (3)C10—H100.9300
C5—C61.381 (3)C11—H110.9300
C7—C81.453 (2)C12—H120.9300
C8—C131.404 (2)C13—H130.9300
C8—C91.406 (2)
C9—O1—H1109.00C11—C12—C13119.17 (19)
C1—N1—C7118.70 (13)C8—C13—C12121.26 (18)
N1—C1—C6121.68 (15)C2—C3—H3120.00
C2—C1—C6118.00 (15)C4—C3—H3120.00
N1—C1—C2120.24 (13)C3—C4—H4120.00
Cl1—C2—C3118.93 (14)C5—C4—H4120.00
C1—C2—C3121.15 (15)C4—C5—H5120.00
Cl1—C2—C1119.90 (12)C6—C5—H5120.00
C2—C3—C4119.59 (17)C1—C6—H6120.00
C3—C4—C5120.14 (19)C5—C6—H6120.00
C4—C5—C6120.22 (19)N1—C7—H7119.00
C1—C6—C5120.87 (17)C8—C7—H7119.00
N1—C7—C8122.21 (13)C9—C10—H10120.00
C7—C8—C13120.01 (14)C11—C10—H10120.00
C9—C8—C13118.56 (16)C10—C11—H11119.00
C7—C8—C9121.39 (15)C12—C11—H11119.00
O1—C9—C10118.96 (18)C11—C12—H12120.00
C8—C9—C10119.53 (18)C13—C12—H12120.00
O1—C9—C8121.51 (17)C8—C13—H13119.00
C9—C10—C11120.17 (19)C12—C13—H13119.00
C10—C11—C12121.3 (2)
C7—N1—C1—C2135.60 (17)N1—C7—C8—C93.2 (3)
C7—N1—C1—C647.5 (2)N1—C7—C8—C13179.23 (17)
C1—N1—C7—C8174.48 (16)C7—C8—C9—O11.9 (3)
N1—C1—C2—Cl12.9 (2)C7—C8—C9—C10177.01 (17)
C6—C1—C2—Cl1179.83 (13)C13—C8—C9—O1179.45 (18)
C6—C1—C2—C31.7 (3)C13—C8—C9—C100.6 (3)
N1—C1—C2—C3178.70 (16)C7—C8—C13—C12177.66 (18)
C2—C1—C6—C50.9 (3)C9—C8—C13—C120.0 (3)
N1—C1—C6—C5177.85 (17)O1—C9—C10—C11179.40 (19)
Cl1—C2—C3—C4179.58 (15)C8—C9—C10—C110.5 (3)
C1—C2—C3—C41.1 (3)C9—C10—C11—C120.2 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—C130.8 (3)
C3—C4—C5—C61.1 (3)C11—C12—C13—C80.7 (3)
C4—C5—C6—C10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.611 (2)147
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.611 (2)147
 

Acknowledgements

MS thanks Collegiate Education Chennai, Tamil Nadu, for financial support (College Research Student Fellowship; reference No. 28696/K2/12).

References

First citationArunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013a). Elixir Org. Chem. 58, 14767–14770.  Google Scholar
First citationArunagiri, C., Subashini, A., Saranya, M. & Thomas Muthiah, P. (2013b). Indian J. Appl. Res. 3, 78–81.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChumakov, Y. M., Tsapkov, V. I., Bocelli, G. & Antosyak, B. Ya. (2005). Acta Cryst. C61, o460–o463.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds