organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2-di­chloro-1-(piperidin-1-yl)ethanone

aUniversity Koblenz-Landau, Institute for Integrated Natural Sciences, Universitätsstrasse 1, 56070 Koblenz, Germany, and bFriedrich-Schiller-University Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstrasse 8, 07743 Jena, Germany
*Correspondence e-mail: Imhof@uni-koblenz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 December 2014; accepted 10 December 2014; online 1 January 2015)

In the title compound, C7H11Cl2NO, the piperidine ring shows a chair conformation and the bond-angle sum at the N atom is 359.9°. The H atom of the di­chloro­methyl group is in an eclipsed conformation with respect to the carbonyl group (H—C—C=O = −5°). In the crystal, inversion dimers are linked by pairs of C—H⋯O hydrogen bonds between the di­chloro­methyl group and the carbonyl O atom, which generate R22(8) loops. The dimers are linked into a ladder-like structure propagating in the [100] direction by short O⋯Cl [3.1084 (9) Å] contacts.

1. Related literature

For the synthetic procedure, see: Schank (1967[Schank, K. (1967). Chem. Ber. 100, 2292-2295.]). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]). For a description of the nature of inter­molecular inter­actions between chlorine and oxygen, see: Lommerse et al. (1996[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.]). For the crystal structure of the starting compound, see: Schwierz et al. (2015[Schwierz, M., Görls, H. & Imhof, W. (2015). Acta Cryst. E71, o19.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H11Cl2NO

  • Mr = 196.07

  • Monoclinic, P 21 /n

  • a = 6.2972 (1) Å

  • b = 15.4896 (2) Å

  • c = 9.3709 (2) Å

  • β = 108.920 (1)°

  • V = 864.66 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 133 K

  • 0.08 × 0.07 × 0.06 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.746

  • 5528 measured reflections

  • 1982 independent reflections

  • 1909 reflections with I > 2σ(I)

  • Rint = 0.014

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.07

  • 1982 reflections

  • 144 parameters

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.927 (13) 2.286 (12) 3.1931 (13) 166 (1)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an intermediate in the synthesis of 2,2-dimethoxy-1-(pyridin-2-yl)ethanone and has been synthesized from 2,2-dichloro-1-(piperidin-1-yl)butane-1,3-dione (Schwierz et al., 2015) following a modified procedure (Schank, 1967). As it is expected the piperidine ring shows a chair conformation and the amide substructure is planar. The hydrogen atom of the dichloromethyl group is in an eclipsed conformation with respect to the carbonyl group. In the crystal structure, dimeric aggregates are formed by hydrogen bonds of the C–H···O type between the dichloromethyl group and the carbonyl oxygen atom. In addition, these dimers are linked into a ladder-like structure parallel to the ac plane by oxygen chlorine contacts.

Related literature top

For the synthetic procedure, see: Schank (1967). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the nature of intermolecular interactions between chlorine and oxygen, see: Lommerse et al. (1996). For the crystal structure of the starting compound, see: Schwierz et al. (2015).

Experimental top

22 ml methanol was cooled down to -6°C and then 1.93 g (84 mmol) sodium was slowly added in a way that the temperature is maintained. Afterwards 20.0 g (84 mmol) 2,2-dichloro-1-(piperidin-1-yl)butane-1,3-dione in 10 ml methanol was dropwise added to the solution of NaOMe. The resulting solution was stirred for 30 minutes and then neutralized with aqueous HCl at -10°C. After evaporating the mixture to dryness the amorphous material was collected on filter paper in a Büchner funnel and washed with water (yield: 13.6 g, 83%). The product has to be destilled in vacuo (0.2 mbar) and condensed into a Schlenk tube cooled by liquid nitrogen to obtain colourless prisms for X-ray diffraction.

Refinement top

The positions of all hydrogen atoms have been determined from a Fourier map and all hydrogen atoms were refined without any constraints.

Structure description top

The title compound is an intermediate in the synthesis of 2,2-dimethoxy-1-(pyridin-2-yl)ethanone and has been synthesized from 2,2-dichloro-1-(piperidin-1-yl)butane-1,3-dione (Schwierz et al., 2015) following a modified procedure (Schank, 1967). As it is expected the piperidine ring shows a chair conformation and the amide substructure is planar. The hydrogen atom of the dichloromethyl group is in an eclipsed conformation with respect to the carbonyl group. In the crystal structure, dimeric aggregates are formed by hydrogen bonds of the C–H···O type between the dichloromethyl group and the carbonyl oxygen atom. In addition, these dimers are linked into a ladder-like structure parallel to the ac plane by oxygen chlorine contacts.

For the synthetic procedure, see: Schank (1967). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the nature of intermolecular interactions between chlorine and oxygen, see: Lommerse et al. (1996). For the crystal structure of the starting compound, see: Schwierz et al. (2015).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound showing ladder-like arrangement parallel to the ac plane.
2,2-Dichloro-1-(piperidin-1-yl)ethanone top
Crystal data top
C7H11Cl2NOZ = 4
Mr = 196.07F(000) = 408
Monoclinic, P21/nDx = 1.506 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2972 (1) ŵ = 0.69 mm1
b = 15.4896 (2) ÅT = 133 K
c = 9.3709 (2) ÅPrism, colourless
β = 108.920 (1)°0.08 × 0.07 × 0.06 mm
V = 864.66 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1982 independent reflections
Radiation source: fine-focus sealed tube1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi– + ω–scanθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.712, Tmax = 0.746k = 1720
5528 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: difference Fourier map
wR(F2) = 0.051All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.3796P]
where P = (Fo2 + 2Fc2)/3
1982 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H11Cl2NOV = 864.66 (3) Å3
Mr = 196.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2972 (1) ŵ = 0.69 mm1
b = 15.4896 (2) ÅT = 133 K
c = 9.3709 (2) Å0.08 × 0.07 × 0.06 mm
β = 108.920 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1909 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.746Rint = 0.014
5528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051All H-atom parameters refined
S = 1.07Δρmax = 0.36 e Å3
1982 reflectionsΔρmin = 0.18 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58896 (4)0.397515 (17)0.60904 (3)0.01933 (8)
Cl21.00866 (4)0.453542 (17)0.83711 (3)0.01976 (8)
O11.06874 (14)0.38479 (5)0.48067 (9)0.02086 (18)
N11.05601 (15)0.28336 (6)0.65192 (10)0.01611 (18)
C11.20371 (19)0.22440 (7)0.60412 (13)0.0191 (2)
H1B1.333 (2)0.2132 (9)0.6929 (16)0.023 (3)*
H1A1.254 (2)0.2541 (9)0.5296 (16)0.021 (3)*
C21.0825 (2)0.14060 (7)0.54290 (13)0.0187 (2)
H2B0.959 (2)0.1519 (9)0.4527 (17)0.023 (3)*
H2A1.189 (2)0.1027 (9)0.5171 (17)0.026 (4)*
C30.99241 (19)0.09891 (7)0.65911 (13)0.0185 (2)
H3B0.910 (2)0.0471 (9)0.6184 (15)0.019 (3)*
H3A1.119 (2)0.0834 (9)0.7476 (16)0.022 (3)*
C40.84334 (18)0.16225 (7)0.70759 (12)0.0170 (2)
H4B0.713 (2)0.1755 (9)0.6231 (15)0.019 (3)*
H4A0.792 (2)0.1379 (9)0.7849 (16)0.022 (3)*
C50.96872 (19)0.24606 (7)0.76638 (12)0.0167 (2)
H5B1.098 (2)0.2349 (9)0.8562 (15)0.018 (3)*
H5A0.875 (2)0.2867 (9)0.7911 (15)0.018 (3)*
C61.00703 (17)0.36088 (7)0.58641 (11)0.0140 (2)
C70.87376 (17)0.42766 (7)0.64343 (11)0.0141 (2)
H70.874 (2)0.4785 (8)0.5911 (14)0.013 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01372 (13)0.02241 (14)0.02175 (14)0.00113 (10)0.00559 (10)0.00364 (10)
Cl20.02030 (14)0.01973 (14)0.01757 (13)0.00162 (10)0.00382 (10)0.00656 (9)
O10.0272 (4)0.0187 (4)0.0225 (4)0.0016 (3)0.0162 (3)0.0043 (3)
N10.0203 (4)0.0119 (4)0.0204 (4)0.0008 (3)0.0126 (4)0.0009 (3)
C10.0189 (5)0.0149 (5)0.0278 (6)0.0014 (4)0.0136 (5)0.0003 (4)
C20.0213 (5)0.0154 (5)0.0218 (5)0.0021 (4)0.0103 (4)0.0008 (4)
C30.0214 (5)0.0125 (5)0.0214 (5)0.0016 (4)0.0065 (4)0.0003 (4)
C40.0181 (5)0.0167 (5)0.0173 (5)0.0017 (4)0.0071 (4)0.0027 (4)
C50.0226 (5)0.0142 (5)0.0160 (5)0.0003 (4)0.0101 (4)0.0020 (4)
C60.0137 (5)0.0138 (5)0.0152 (5)0.0025 (4)0.0054 (4)0.0012 (4)
C70.0150 (5)0.0136 (5)0.0146 (5)0.0014 (4)0.0057 (4)0.0004 (4)
Geometric parameters (Å, º) top
Cl1—C71.7786 (10)C2—H2A0.977 (15)
Cl2—C71.7823 (10)C3—C41.5254 (15)
O1—C61.2328 (13)C3—H3B0.966 (14)
N1—C61.3383 (14)C3—H3A0.974 (15)
N1—C51.4726 (13)C4—C51.5264 (15)
N1—C11.4731 (13)C4—H4B0.961 (14)
C1—C21.5208 (15)C4—H4A0.961 (14)
C1—H1B0.973 (15)C5—H5B0.980 (14)
C1—H1A0.971 (14)C5—H5A0.942 (14)
C2—C31.5249 (15)C6—C71.5332 (14)
C2—H2B0.960 (15)C7—H70.927 (13)
C6—N1—C5126.95 (9)C3—C4—C5110.99 (9)
C6—N1—C1119.41 (9)C3—C4—H4B109.7 (8)
C5—N1—C1113.57 (8)C5—C4—H4B108.7 (8)
N1—C1—C2110.77 (9)C3—C4—H4A111.2 (8)
N1—C1—H1B106.7 (8)C5—C4—H4A108.9 (8)
C2—C1—H1B110.4 (8)H4B—C4—H4A107.2 (11)
N1—C1—H1A108.1 (8)N1—C5—C4110.02 (9)
C2—C1—H1A112.0 (8)N1—C5—H5B106.9 (8)
H1B—C1—H1A108.8 (12)C4—C5—H5B110.5 (8)
C1—C2—C3110.46 (9)N1—C5—H5A109.2 (8)
C1—C2—H2B109.9 (9)C4—C5—H5A111.4 (8)
C3—C2—H2B109.0 (8)H5B—C5—H5A108.8 (11)
C1—C2—H2A107.8 (8)O1—C6—N1123.54 (10)
C3—C2—H2A111.4 (8)O1—C6—C7115.35 (9)
H2B—C2—H2A108.3 (12)N1—C6—C7121.09 (9)
C2—C3—C4110.35 (9)C6—C7—Cl1113.17 (7)
C2—C3—H3B110.4 (8)C6—C7—Cl2111.88 (7)
C4—C3—H3B110.3 (8)Cl1—C7—Cl2111.30 (5)
C2—C3—H3A108.8 (8)C6—C7—H7107.1 (8)
C4—C3—H3A108.4 (8)Cl1—C7—H7107.6 (8)
H3B—C3—H3A108.6 (11)Cl2—C7—H7105.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.927 (13)2.286 (12)3.1931 (13)166 (1)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.927 (13)2.286 (12)3.1931 (13)166 (1)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

MS gratefully acknowledges a PhD grant from the Deutsche Bundesstiftung Umwelt.

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchank, K. (1967). Chem. Ber. 100, 2292–2295.  CrossRef CAS Web of Science Google Scholar
First citationSchwierz, M., Görls, H. & Imhof, W. (2015). Acta Cryst. E71, o19.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds