organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N1,N1-di­ethyl-N4-[(quinolin-2-yl)methyl­­idene]benzene-1,4-di­amine

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bDepartment of Chemistry, I.H.S. Khandari, Dr B. R. Ambedkar University, Agra 282 002, India
*Correspondence e-mail: saleem.7javed@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 28 October 2014; accepted 10 December 2014; online 1 January 2015)

The title compound, C20H21N3, is non-planar with a dihedral angle between the planes of the quinoline and phenyl­enedi­amine rings of 9.40 (4)°. In the crystal, mol­ecules are connected by C—H⋯π inter­actions, generating a chain extending along the a-axis direction. Weak C—H⋯π inter­actions also occur.

1. Related literature

For applications of quinolinyl-containing Schiff bases, see: Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]); Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014[Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]); Faizi et al. (2014[Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.]). For related Schiff bases and their applications, see: Gonzalez et al. (2012[Gonzalez, M. A., Carrington, S. J., Fry, N. L., Martinez, J. L. & Mascharak, P. K. (2012). Inorg. Chem. 51, 11930-11940.]); Patra & Goldberg (2003[Patra, G. K. & Goldberg, I. (2003). New J. Chem. 27, 1124-1131.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H21N3

  • Mr = 303.40

  • Orthorhombic, P b c a

  • a = 20.354 (5) Å

  • b = 7.534 (5) Å

  • c = 21.801 (5) Å

  • V = 3343 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.27 × 0.21 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.989

  • 14928 measured reflections

  • 2937 independent reflections

  • 1912 reflections with I > 2σ(I)

  • Rint = 0.146

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.195

  • S = 1.09

  • 2937 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C16 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg2i 0.93 2.99 3.705 (5) 135
C7—H7⋯Cg1i 0.93 2.90 3.612 (5) 135
C13—H13⋯Cg3ii 0.93 2.84 3.588 (5) 138
C15—H15⋯Cg2iii 0.93 2.89 3.686 (5) 145
C18—H18ACg1iii 0.96 2.95 3.625 (5) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Comment top

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as antioxidative and anticancer and fluorescent probe agents in industry and in coordination chemistry (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014) and we report here the structure of N1,N1-diethyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine (DQMBD). There are very few examples similar to title compound and their metal complex have been reported in the literature (Patra & Goldberg 2003; Gonzalez et al., 2012). The synthesis of DQMBD by condensation of 2-quinolinecarboxaldehyde and N1,N1-diethyl-p-phenylenediamine has not previously been reported. In the title compound (Fig. 1) DQMBD has non planar structure, the dihedral angle between the quinolinyl and pphenylenediamine rings is 9.40 (4)°. In the crystal, molecules are connected by C—H···π, generating a chain extending along the a axis direction. In the crystal molecules are connected by C—H···π, giving an overall two-dimensional layered structure lying parallel to (100) is given in Fig. 2.

Related literature top

For applications of quinolinyl-containing Schiff bases, see: Das et al. (2013); Jursic et al. (2002); Motswainyana et al. (2013); Song et al. (2011). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014). For related Schiff bases and their applications, see: Gonzalez et al. (2012); Patra & Goldberg (2003).

Experimental top

100 mg (1 mmol) of N1,N1-diethyl-p-phenylenediamine were dissolved in 10 ml of absolute ethanol. To this solution, 96 mg (1 mmol) of 2-quinolinecarboxaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. Then, this mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 160 mg (88%) of N1,N1-diethyl-N4-(quinolin-2-ylmethylene)benzene-1,4-diamine (DQMBD). The crystal of the title compound suitable for X-ray analysis was obtained within 4 days by slow evaporation of the EtOH solvent.

Refinement top

the N-bound H-atoms were located in difference Fourier maps,and their positions were then held fixed. All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as antioxidative and anticancer and fluorescent probe agents in industry and in coordination chemistry (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014) and we report here the structure of N1,N1-diethyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine (DQMBD). There are very few examples similar to title compound and their metal complex have been reported in the literature (Patra & Goldberg 2003; Gonzalez et al., 2012). The synthesis of DQMBD by condensation of 2-quinolinecarboxaldehyde and N1,N1-diethyl-p-phenylenediamine has not previously been reported. In the title compound (Fig. 1) DQMBD has non planar structure, the dihedral angle between the quinolinyl and pphenylenediamine rings is 9.40 (4)°. In the crystal, molecules are connected by C—H···π, generating a chain extending along the a axis direction. In the crystal molecules are connected by C—H···π, giving an overall two-dimensional layered structure lying parallel to (100) is given in Fig. 2.

For applications of quinolinyl-containing Schiff bases, see: Das et al. (2013); Jursic et al. (2002); Motswainyana et al. (2013); Song et al. (2011). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014). For related Schiff bases and their applications, see: Gonzalez et al. (2012); Patra & Goldberg (2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2005).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing viewed along the a direction.
N1,N1-Diethyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine top
Crystal data top
C20H21N3F(000) = 1296
Mr = 303.40Dx = 1.206 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1765 reflections
a = 20.354 (5) Åθ = 2.7–27.5°
b = 7.534 (5) ŵ = 0.07 mm1
c = 21.801 (5) ÅT = 100 K
V = 3343 (2) Å3Needle, yellow
Z = 80.27 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2937 independent reflections
Radiation source: fine-focus sealed tube1912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.146
/w–scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2423
Tmin = 0.981, Tmax = 0.989k = 88
14928 measured reflectionsl = 1825
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0662P)2 + 3.082P]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H21N3V = 3343 (2) Å3
Mr = 303.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.354 (5) ŵ = 0.07 mm1
b = 7.534 (5) ÅT = 100 K
c = 21.801 (5) Å0.27 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1912 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.989Rint = 0.146
14928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
2937 reflectionsΔρmin = 0.23 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35623 (17)0.0493 (5)0.07353 (16)0.0221 (9)
C20.38904 (17)0.1200 (5)0.12533 (16)0.0243 (9)
H20.43010.17260.12050.029*
C30.36114 (17)0.1119 (5)0.18233 (16)0.0241 (9)
H30.38300.16000.21590.029*
C40.29920 (19)0.0306 (5)0.19034 (17)0.0292 (10)
H40.28060.02490.22920.035*
C50.26640 (18)0.0397 (5)0.14123 (16)0.0246 (9)
H50.22570.09300.14720.029*
C60.29346 (17)0.0326 (4)0.08169 (16)0.0195 (8)
C70.26231 (17)0.0998 (5)0.02881 (16)0.0233 (9)
H70.22160.15520.03220.028*
C80.29143 (17)0.0843 (5)0.02734 (16)0.0237 (9)
H80.27050.12560.06250.028*
C90.35419 (17)0.0040 (5)0.03101 (16)0.0204 (8)
C100.38967 (19)0.0092 (5)0.08980 (17)0.0232 (9)
C110.39650 (17)0.0327 (5)0.19610 (15)0.0208 (8)
C120.45481 (18)0.0590 (5)0.20748 (16)0.0229 (8)
H120.47410.12350.17590.027*
C130.48440 (17)0.0565 (5)0.26392 (15)0.0225 (9)
H130.52330.11900.26960.027*
C140.45734 (17)0.0384 (5)0.31347 (15)0.0197 (8)
C150.39852 (16)0.1316 (5)0.30210 (16)0.0208 (8)
H150.37920.19710.33350.025*
C160.36925 (17)0.1269 (5)0.24513 (15)0.0199 (8)
H160.33010.18830.23910.024*
C170.46058 (17)0.1451 (5)0.42064 (15)0.0226 (9)
H17A0.49510.16620.45050.027*
H17B0.44640.25950.40510.027*
C180.40284 (17)0.0555 (5)0.45265 (16)0.0255 (9)
H18A0.38740.12990.48540.038*
H18B0.36800.03670.42370.038*
H18C0.41670.05670.46910.038*
C190.54187 (16)0.0777 (5)0.38531 (15)0.0213 (8)
H19A0.53810.11300.42800.026*
H19B0.53820.18390.36040.026*
C200.60919 (18)0.0044 (6)0.37512 (18)0.0308 (10)
H20A0.64260.08020.38560.046*
H20B0.61370.03750.33280.046*
H20C0.61370.10780.40050.046*
N10.38663 (14)0.0612 (4)0.01724 (13)0.0227 (8)
N20.36253 (14)0.0420 (4)0.13964 (13)0.0227 (7)
N30.48728 (14)0.0418 (4)0.37025 (12)0.0201 (7)
H100.4353 (17)0.053 (4)0.0845 (14)0.015 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.020 (2)0.025 (2)0.0063 (16)0.0031 (16)0.0065 (16)
C20.019 (2)0.024 (2)0.030 (2)0.0016 (16)0.0000 (16)0.0058 (17)
C30.025 (2)0.028 (2)0.0193 (19)0.0033 (17)0.0025 (16)0.0011 (16)
C40.030 (2)0.033 (2)0.025 (2)0.0110 (18)0.0055 (17)0.0053 (18)
C50.020 (2)0.027 (2)0.027 (2)0.0042 (16)0.0055 (16)0.0068 (17)
C60.0166 (19)0.0157 (19)0.0261 (19)0.0065 (15)0.0018 (15)0.0037 (15)
C70.016 (2)0.021 (2)0.033 (2)0.0013 (15)0.0014 (16)0.0035 (17)
C80.023 (2)0.023 (2)0.025 (2)0.0025 (16)0.0044 (16)0.0014 (16)
C90.022 (2)0.015 (2)0.0239 (19)0.0012 (15)0.0022 (15)0.0019 (15)
C100.022 (2)0.022 (2)0.026 (2)0.0014 (16)0.0010 (16)0.0003 (16)
C110.023 (2)0.023 (2)0.0170 (18)0.0011 (16)0.0016 (15)0.0021 (15)
C120.026 (2)0.021 (2)0.0212 (19)0.0028 (16)0.0063 (16)0.0007 (16)
C130.019 (2)0.025 (2)0.023 (2)0.0060 (16)0.0012 (15)0.0025 (16)
C140.020 (2)0.020 (2)0.0191 (18)0.0048 (15)0.0011 (15)0.0034 (15)
C150.0205 (19)0.022 (2)0.0196 (19)0.0039 (16)0.0061 (15)0.0010 (16)
C160.0134 (18)0.024 (2)0.0224 (19)0.0006 (15)0.0029 (15)0.0050 (16)
C170.022 (2)0.025 (2)0.0207 (19)0.0001 (16)0.0018 (15)0.0002 (16)
C180.025 (2)0.031 (2)0.0203 (19)0.0025 (17)0.0002 (16)0.0029 (16)
C190.019 (2)0.027 (2)0.0175 (19)0.0035 (15)0.0036 (15)0.0015 (16)
C200.026 (2)0.034 (2)0.032 (2)0.0057 (18)0.0025 (17)0.0039 (19)
N10.0247 (18)0.0214 (19)0.0221 (17)0.0012 (13)0.0046 (13)0.0022 (13)
N20.0211 (17)0.0194 (17)0.0277 (18)0.0012 (13)0.0012 (13)0.0017 (14)
N30.0177 (17)0.0266 (18)0.0161 (15)0.0078 (13)0.0002 (12)0.0001 (13)
Geometric parameters (Å, º) top
C1—N11.377 (4)C12—C131.370 (5)
C1—C21.416 (5)C12—H120.9300
C1—C61.430 (5)C13—C141.408 (5)
C2—C31.368 (5)C13—H130.9300
C2—H20.9300C14—N31.380 (4)
C3—C41.412 (5)C14—C151.410 (5)
C3—H30.9300C15—C161.378 (5)
C4—C51.368 (5)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.411 (5)C17—N31.452 (4)
C5—H50.9300C17—C181.525 (5)
C6—C71.410 (5)C17—H17A0.9700
C7—C81.365 (5)C17—H17B0.9700
C7—H70.9300C18—H18A0.9600
C8—C91.416 (5)C18—H18B0.9600
C8—H80.9300C18—H18C0.9600
C9—N11.336 (4)C19—N31.467 (4)
C9—C101.474 (5)C19—C201.519 (5)
C10—N21.278 (5)C19—H19A0.9700
C10—H100.99 (3)C19—H19B0.9700
C11—C121.396 (5)C20—H20A0.9600
C11—C161.398 (5)C20—H20B0.9600
C11—N21.413 (4)C20—H20C0.9600
N1—C1—C2118.3 (3)N3—C14—C13121.7 (3)
N1—C1—C6122.7 (3)N3—C14—C15121.6 (3)
C2—C1—C6119.0 (3)C13—C14—C15116.8 (3)
C3—C2—C1120.8 (3)C16—C15—C14120.8 (3)
C3—C2—H2119.6C16—C15—H15119.6
C1—C2—H2119.6C14—C15—H15119.6
C2—C3—C4120.2 (3)C15—C16—C11122.1 (3)
C2—C3—H3119.9C15—C16—H16119.0
C4—C3—H3119.9C11—C16—H16119.0
C5—C4—C3120.4 (3)N3—C17—C18113.4 (3)
C5—C4—H4119.8N3—C17—H17A108.9
C3—C4—H4119.8C18—C17—H17A108.9
C4—C5—C6121.0 (4)N3—C17—H17B108.9
C4—C5—H5119.5C18—C17—H17B108.9
C6—C5—H5119.5H17A—C17—H17B107.7
C7—C6—C5124.3 (3)C17—C18—H18A109.5
C7—C6—C1117.1 (3)C17—C18—H18B109.5
C5—C6—C1118.7 (3)H18A—C18—H18B109.5
C8—C7—C6120.5 (3)C17—C18—H18C109.5
C8—C7—H7119.8H18A—C18—H18C109.5
C6—C7—H7119.8H18B—C18—H18C109.5
C7—C8—C9118.6 (3)N3—C19—C20113.6 (3)
C7—C8—H8120.7N3—C19—H19A108.8
C9—C8—H8120.7C20—C19—H19A108.8
N1—C9—C8124.0 (3)N3—C19—H19B108.8
N1—C9—C10114.7 (3)C20—C19—H19B108.8
C8—C9—C10121.3 (3)H19A—C19—H19B107.7
N2—C10—C9120.5 (3)C19—C20—H20A109.5
N2—C10—H10127.2 (18)C19—C20—H20B109.5
C9—C10—H10112.2 (18)H20A—C20—H20B109.5
C12—C11—C16116.9 (3)C19—C20—H20C109.5
C12—C11—N2126.5 (3)H20A—C20—H20C109.5
C16—C11—N2116.5 (3)H20B—C20—H20C109.5
C13—C12—C11121.8 (3)C9—N1—C1117.1 (3)
C13—C12—H12119.1C10—N2—C11120.9 (3)
C11—C12—H12119.1C14—N3—C17121.6 (3)
C12—C13—C14121.6 (3)C14—N3—C19121.6 (3)
C12—C13—H13119.2C17—N3—C19116.3 (3)
C14—C13—H13119.2
N1—C1—C2—C3180.0 (3)C12—C13—C14—C150.4 (5)
C6—C1—C2—C30.5 (5)N3—C14—C15—C16180.0 (3)
C1—C2—C3—C40.7 (6)C13—C14—C15—C160.7 (5)
C2—C3—C4—C50.4 (6)C14—C15—C16—C110.9 (5)
C3—C4—C5—C60.1 (6)C12—C11—C16—C150.7 (5)
C4—C5—C6—C7179.1 (3)N2—C11—C16—C15178.5 (3)
C4—C5—C6—C10.2 (5)C8—C9—N1—C10.4 (5)
N1—C1—C6—C71.1 (5)C10—C9—N1—C1178.8 (3)
C2—C1—C6—C7179.5 (3)C2—C1—N1—C9179.0 (3)
N1—C1—C6—C5179.5 (3)C6—C1—N1—C91.6 (5)
C2—C1—C6—C50.1 (5)C9—C10—N2—C11178.9 (3)
C5—C6—C7—C8178.7 (3)C12—C11—N2—C1013.1 (6)
C1—C6—C7—C80.6 (5)C16—C11—N2—C10166.1 (3)
C6—C7—C8—C91.8 (5)C13—C14—N3—C17177.7 (3)
C7—C8—C9—N11.3 (5)C15—C14—N3—C171.5 (5)
C7—C8—C9—C10177.1 (3)C13—C14—N3—C1911.2 (5)
N1—C9—C10—N2177.1 (3)C15—C14—N3—C19169.6 (3)
C8—C9—C10—N24.5 (5)C18—C17—N3—C1479.2 (4)
C16—C11—C12—C130.4 (5)C18—C17—N3—C1992.3 (4)
N2—C11—C12—C13178.8 (3)C20—C19—N3—C1494.8 (4)
C11—C12—C13—C140.2 (6)C20—C19—N3—C1793.7 (4)
C12—C13—C14—N3179.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C16 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.932.993.705 (5)135
C7—H7···Cg1i0.932.903.612 (5)135
C13—H13···Cg3ii0.932.843.588 (5)138
C15—H15···Cg2iii0.932.893.686 (5)145
C18—H18A···Cg1iii0.962.953.625 (5)128
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C16 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.932.993.705 (5)135
C7—H7···Cg1i0.932.903.612 (5)135
C13—H13···Cg3ii0.932.843.588 (5)138
C15—H15···Cg2iii0.932.893.686 (5)145
C18—H18A···Cg1iii0.962.953.625 (5)128
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur 208 016, India, for the X-ray data collection and to Musheer Ahmad for valuable discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationGonzalez, M. A., Carrington, S. J., Fry, N. L., Martinez, J. L. & Mascharak, P. K. (2012). Inorg. Chem. 51, 11930–11940.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatra, G. K. & Goldberg, I. (2003). New J. Chem. 27, 1124–1131.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds