organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-meth­­oxy-2-[(4-methyl­phen­yl)sulfan­yl]-1-phenyl­ethan-1-one

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 20 November 2014; accepted 21 November 2014; online 1 January 2015)

In the title β-thio­carbonyl compound, C16H16O2S, the carbonyl and meth­oxy O atoms are approximately coplanar [O—C—C—O torsion angle = −18.2 (5)°] and syn to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supra­molecular chains are formed along the c axis mediated by C—H⋯O inter­actions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific inter­molecular inter­actions between them.

1. Related literature

For general background to β-thio­carbonyl and β-bis­(thio­carbon­yl) compounds, see: Vinhato et al. (2013[Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738-746.]); Zukerman-Schpector et al. (2008[Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835-o836.]). For related structures, see: Olivato et al. (2013[Olivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617-626.]); Distefano et al. (1996[Distefano, G., Dal Colle, M., De Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661-1669.]). For further synthetic details, see: Ali & McDermott (2002[Ali, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H16O2S

  • Mr = 272.35

  • Orthorhombic, P c a 21

  • a = 17.8579 (9) Å

  • b = 8.1257 (4) Å

  • c = 9.8317 (5) Å

  • V = 1426.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.41 × 0.14 × 0.08 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.745

  • 5399 measured reflections

  • 2337 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.090

  • S = 1.02

  • 2337 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack x determined using 552 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.96 2.49 3.366 (6) 152
C8—H8⋯O2ii 0.98 2.46 3.323 (6) 146
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) [-x+1, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR (Burla et al., 2014[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.]; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

As part of our on-going research on the conformational and electronic inter­actions of some β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-di­ethyl-2-[(4-substituted) phenyl­thio]­acetamides, 1-methyl-3-phenyl­sulfonyl-2-piperidone, 3,3-bis­[(4-substituted)phenyl­sulfanyl]-1-methyl-2-piperidones, 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones, 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones and 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones, utilizing spectroscopic , theoretical and X-ray diffraction methods (Vinhato et al., 2013; Zukerman-Schpector et al., 2008; Olivato et al., 2013; Distefano et al., 1996) the title compound was synthesized and its crystal structure determined.

Experimental top

Synthesis and crystallization top

4-Methyl­thio­penol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in di­chloro­methane (250 mL) on hydrated silica gel support (25 g of SiO2 and 12 mL of water) to give 4-methyl­phenyl di­sulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-meth­oxy aceto­phenone (0.4 mL, 2.76 mmol, Sigma-Aldrich) in THF (10 ml) was added drop wise to a cooled (195 K) solution of diiso­propyl­amine (0.42 ml, 3.04 mmol) and butyl­lithium (2.0 ml, 2.76 mmol) in THF (10 ml). After 30 minutes, a solution of 4-methyl­phenyl di­sulfide (0.748 g, 3.04 mmol) with hexa­methyl­phospho­ramide (HMPA) (0.5 ml, 2.76 mmol) dissolved in THF (10 ml) was added drop wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with di­ethyl ether was performed. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH and dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with n-hexane was used to remove the non-polar rea­ctant (di­sulfide) then acetone to give a mixture of both aceto­phenones (product and rea­ctant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.p. 359.3–359.8 K.

1H NMR (CDCl3, 500 MHz, ppm): δ 2.33 (s, 3H), 3.67 (s, 3H), 5.81 (s, 1H), 7.08–7.10 (m ,2H), 7.23-7.25 (m, 2H), 7.43–7.46(m, 2H),7.56–7.59 (m, 1H), 7.95–7.96 (m, 2H). HRMS: calcd. for C16H16O2S [M + H]+ 272.0871; found: 272.0864.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Related literature top

For general background to β-thiocarbonyl and β-bis(thiocarbonyl) compounds, see: Vinhato et al. (2013); Zukerman-Schpector et al. (2008). For related structures, see: Olivato et al. (2013); Distefano et al. (1996). For further synthetic details, see: Ali & McDermott (2002); Zoretic & Soja (1976).

Structure description top

As part of our on-going research on the conformational and electronic inter­actions of some β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-di­ethyl-2-[(4-substituted) phenyl­thio]­acetamides, 1-methyl-3-phenyl­sulfonyl-2-piperidone, 3,3-bis­[(4-substituted)phenyl­sulfanyl]-1-methyl-2-piperidones, 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones, 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones and 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones, utilizing spectroscopic , theoretical and X-ray diffraction methods (Vinhato et al., 2013; Zukerman-Schpector et al., 2008; Olivato et al., 2013; Distefano et al., 1996) the title compound was synthesized and its crystal structure determined.

For general background to β-thiocarbonyl and β-bis(thiocarbonyl) compounds, see: Vinhato et al. (2013); Zukerman-Schpector et al. (2008). For related structures, see: Olivato et al. (2013); Distefano et al. (1996). For further synthetic details, see: Ali & McDermott (2002); Zoretic & Soja (1976).

Synthesis and crystallization top

4-Methyl­thio­penol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in di­chloro­methane (250 mL) on hydrated silica gel support (25 g of SiO2 and 12 mL of water) to give 4-methyl­phenyl di­sulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Ali & McDermott, 2002). A solution of 2-meth­oxy aceto­phenone (0.4 mL, 2.76 mmol, Sigma-Aldrich) in THF (10 ml) was added drop wise to a cooled (195 K) solution of diiso­propyl­amine (0.42 ml, 3.04 mmol) and butyl­lithium (2.0 ml, 2.76 mmol) in THF (10 ml). After 30 minutes, a solution of 4-methyl­phenyl di­sulfide (0.748 g, 3.04 mmol) with hexa­methyl­phospho­ramide (HMPA) (0.5 ml, 2.76 mmol) dissolved in THF (10 ml) was added drop wise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with di­ethyl ether was performed. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH and dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of the solvent. Purification through flash chromatography with n-hexane was used to remove the non-polar rea­ctant (di­sulfide) then acetone to give a mixture of both aceto­phenones (product and rea­ctant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.3 g, yield = 40%). Suitable crystals for X-ray diffraction were obtained by same pathway; m.p. 359.3–359.8 K.

1H NMR (CDCl3, 500 MHz, ppm): δ 2.33 (s, 3H), 3.67 (s, 3H), 5.81 (s, 1H), 7.08–7.10 (m ,2H), 7.23-7.25 (m, 2H), 7.43–7.46(m, 2H),7.56–7.59 (m, 1H), 7.95–7.96 (m, 2H). HRMS: calcd. for C16H16O2S [M + H]+ 272.0871; found: 272.0864.

Refinement details top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR (Burla et al., 2014; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the c axis mediated by C—H···O interactions (bluee dashed lines).
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents. The C—H···O interactions are shown as blue dashed lines.
(I) top
Crystal data top
C16H16O2SDx = 1.268 Mg m3
Mr = 272.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1023 reflections
a = 17.8579 (9) Åθ = 3.1–18.7°
b = 8.1257 (4) ŵ = 0.22 mm1
c = 9.8317 (5) ÅT = 293 K
V = 1426.66 (12) Å3Irregular, colourless
Z = 40.41 × 0.14 × 0.08 mm
F(000) = 576
Data collection top
Bruker APEXII CCD
diffractometer
1648 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 2.8°
Tmin = 0.690, Tmax = 0.745h = 2121
5399 measured reflectionsk = 99
2337 independent reflectionsl = 1011
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.2164P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.14 e Å3
2337 reflectionsΔρmin = 0.15 e Å3
174 parametersAbsolute structure: Flack x determined using 552 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H16O2SV = 1426.66 (12) Å3
Mr = 272.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.8579 (9) ŵ = 0.22 mm1
b = 8.1257 (4) ÅT = 293 K
c = 9.8317 (5) Å0.41 × 0.14 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1648 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.745Rint = 0.031
5399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.15 e Å3
2337 reflectionsAbsolute structure: Flack x determined using 552 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
174 parametersAbsolute structure parameter: 0.02 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3662 (3)0.6856 (7)1.3764 (5)0.0916 (18)
H1A0.32490.75321.40460.137*
H1B0.41060.71851.42430.137*
H1C0.35530.57251.39640.137*
C20.3784 (3)0.7055 (6)1.2258 (5)0.0642 (13)
C30.3285 (3)0.7876 (6)1.1440 (6)0.0737 (14)
H30.28500.83001.18230.088*
C40.3411 (3)0.8094 (6)1.0061 (5)0.0683 (13)
H40.30660.86700.95370.082*
C50.4049 (2)0.7455 (5)0.9462 (5)0.0564 (11)
C60.4553 (2)0.6622 (5)1.0273 (5)0.0615 (12)
H60.49870.61860.98930.074*
C70.4416 (3)0.6434 (5)1.1643 (5)0.0635 (13)
H70.47630.58681.21710.076*
C80.4839 (2)0.9437 (5)0.7603 (5)0.0576 (10)
H80.49300.97080.66460.069*
C90.6015 (3)0.8116 (6)0.7474 (6)0.0834 (15)
H9A0.61390.86370.66270.125*
H9B0.57710.70850.72990.125*
H9C0.64650.79270.79870.125*
C100.4468 (2)1.0888 (5)0.8275 (5)0.0559 (11)
C110.3852 (2)1.1782 (5)0.7587 (5)0.0539 (10)
C120.3573 (2)1.3181 (5)0.8205 (5)0.0674 (13)
H120.37671.35190.90370.081*
C130.3007 (3)1.4083 (5)0.7595 (7)0.0793 (14)
H130.28281.50270.80210.095*
C140.2709 (3)1.3608 (6)0.6381 (7)0.0781 (14)
H140.23251.42120.59830.094*
C150.2984 (3)1.2225 (7)0.5754 (5)0.0840 (16)
H150.27801.18870.49300.101*
C160.3556 (3)1.1333 (6)0.6325 (5)0.0736 (13)
H160.37481.04230.58680.088*
O10.55239 (15)0.9162 (4)0.8235 (3)0.0666 (9)
O20.46803 (18)1.1328 (4)0.9400 (3)0.0727 (9)
S0.41986 (7)0.76542 (13)0.76791 (16)0.0711 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.090 (4)0.115 (5)0.070 (4)0.030 (3)0.006 (3)0.005 (3)
C20.065 (3)0.064 (3)0.064 (4)0.020 (2)0.006 (3)0.000 (3)
C30.061 (3)0.077 (3)0.084 (4)0.004 (3)0.011 (3)0.002 (3)
C40.064 (3)0.064 (3)0.077 (4)0.001 (2)0.007 (3)0.006 (3)
C50.061 (3)0.048 (2)0.060 (3)0.011 (2)0.001 (2)0.003 (2)
C60.061 (3)0.056 (3)0.067 (3)0.000 (2)0.001 (2)0.001 (3)
C70.066 (3)0.058 (3)0.066 (4)0.006 (2)0.008 (3)0.009 (3)
C80.070 (3)0.058 (2)0.045 (2)0.0025 (19)0.003 (3)0.003 (3)
C90.084 (3)0.095 (3)0.072 (4)0.024 (3)0.003 (3)0.000 (4)
C100.070 (3)0.052 (3)0.046 (3)0.009 (2)0.007 (2)0.002 (2)
C110.061 (2)0.051 (2)0.049 (3)0.0077 (18)0.012 (3)0.003 (3)
C120.066 (3)0.065 (3)0.071 (3)0.009 (2)0.012 (3)0.013 (3)
C130.069 (3)0.065 (3)0.104 (4)0.006 (2)0.013 (4)0.008 (4)
C140.064 (3)0.077 (3)0.094 (4)0.009 (3)0.013 (3)0.013 (3)
C150.085 (3)0.102 (4)0.065 (4)0.014 (3)0.011 (3)0.010 (3)
C160.090 (3)0.078 (3)0.053 (3)0.017 (3)0.004 (3)0.007 (3)
O10.0665 (18)0.077 (2)0.057 (2)0.0086 (16)0.0038 (16)0.0012 (16)
O20.094 (2)0.076 (2)0.048 (2)0.0017 (17)0.0047 (18)0.0078 (19)
S0.0948 (8)0.0600 (6)0.0583 (7)0.0129 (6)0.0079 (8)0.0055 (8)
Geometric parameters (Å, º) top
C1—C21.505 (7)C8—H80.9800
C1—H1A0.9600C9—O11.432 (5)
C1—H1B0.9600C9—H9A0.9600
C1—H1C0.9600C9—H9B0.9600
C2—C31.373 (7)C9—H9C0.9600
C2—C71.376 (6)C10—O21.224 (5)
C3—C41.385 (7)C10—C111.480 (6)
C3—H30.9300C11—C121.382 (6)
C4—C51.383 (6)C11—C161.398 (7)
C4—H40.9300C12—C131.384 (6)
C5—C61.379 (6)C12—H120.9300
C5—S1.781 (5)C13—C141.363 (8)
C6—C71.378 (6)C13—H130.9300
C6—H60.9300C14—C151.373 (6)
C7—H70.9300C14—H140.9300
C8—O11.390 (4)C15—C161.372 (6)
C8—C101.505 (5)C15—H150.9300
C8—S1.847 (4)C16—H160.9300
C2—C1—H1A109.5O1—C9—H9A109.5
C2—C1—H1B109.5O1—C9—H9B109.5
H1A—C1—H1B109.5H9A—C9—H9B109.5
C2—C1—H1C109.5O1—C9—H9C109.5
H1A—C1—H1C109.5H9A—C9—H9C109.5
H1B—C1—H1C109.5H9B—C9—H9C109.5
C3—C2—C7116.9 (5)O2—C10—C11120.0 (4)
C3—C2—C1122.3 (5)O2—C10—C8119.2 (4)
C7—C2—C1120.8 (5)C11—C10—C8120.7 (4)
C2—C3—C4122.0 (5)C12—C11—C16117.9 (4)
C2—C3—H3119.0C12—C11—C10118.1 (4)
C4—C3—H3119.0C16—C11—C10123.9 (4)
C5—C4—C3120.2 (5)C11—C12—C13120.6 (5)
C5—C4—H4119.9C11—C12—H12119.7
C3—C4—H4119.9C13—C12—H12119.7
C6—C5—C4118.4 (5)C14—C13—C12120.9 (5)
C6—C5—S121.0 (4)C14—C13—H13119.5
C4—C5—S120.6 (4)C12—C13—H13119.5
C7—C6—C5120.2 (5)C13—C14—C15119.0 (5)
C7—C6—H6119.9C13—C14—H14120.5
C5—C6—H6119.9C15—C14—H14120.5
C2—C7—C6122.3 (5)C16—C15—C14121.0 (5)
C2—C7—H7118.8C16—C15—H15119.5
C6—C7—H7118.8C14—C15—H15119.5
O1—C8—C10108.5 (4)C15—C16—C11120.4 (5)
O1—C8—S113.6 (3)C15—C16—H16119.8
C10—C8—S108.9 (3)C11—C16—H16119.8
O1—C8—H8108.6C8—O1—C9113.7 (3)
C10—C8—H8108.6C5—S—C8101.8 (2)
S—C8—H8108.6
C7—C2—C3—C40.8 (7)O2—C10—C11—C16177.7 (4)
C1—C2—C3—C4178.2 (4)C8—C10—C11—C162.3 (6)
C2—C3—C4—C51.0 (7)C16—C11—C12—C131.2 (6)
C3—C4—C5—C60.7 (6)C10—C11—C12—C13178.7 (4)
C3—C4—C5—S177.5 (4)C11—C12—C13—C140.5 (7)
C4—C5—C6—C70.3 (6)C12—C13—C14—C150.8 (7)
S—C5—C6—C7177.9 (4)C13—C14—C15—C160.6 (8)
C3—C2—C7—C60.3 (7)C14—C15—C16—C112.4 (8)
C1—C2—C7—C6178.7 (4)C12—C11—C16—C152.7 (7)
C5—C6—C7—C20.0 (7)C10—C11—C16—C15180.0 (4)
O1—C8—C10—O218.2 (5)C10—C8—O1—C9164.3 (3)
S—C8—C10—O2105.9 (4)S—C8—O1—C974.4 (4)
O1—C8—C10—C11161.7 (3)C6—C5—S—C883.1 (4)
S—C8—C10—C1174.1 (4)C4—C5—S—C898.8 (4)
O2—C10—C11—C124.9 (6)O1—C8—S—C563.2 (4)
C8—C10—C11—C12175.0 (4)C10—C8—S—C557.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.962.493.366 (6)152
C8—H8···O2ii0.982.463.323 (6)146
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.962.493.366 (6)152
C8—H8···O2ii0.982.463.323 (6)146
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y+2, z1/2.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013-2 to JZS; 301180/2013-0 to PRO) and FAPESP are acknowledged for financial support.

References

First citationAli, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.  Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationDistefano, G., Dal Colle, M., De Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617–626.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds