organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cyprodinil

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 24 November 2014; accepted 25 November 2014; online 1 January 2015)

In the title compound, C14H15N3 (systematic name: 4-cyclo­propyl-6-methyl-N-phenyl­pyrimidin-2-amine), which is the anilino­pyrimidine fungicide cyprodinil, the dihedral angles between the planes of the central pyrimidine ring and the terminal phenyl ring and the mean plane of the cyclo­propane ring system are 14.52 (11) and 88.79 (10)°, respectively. In the crystal, weak ππ inter­actions [3.8551 (11) Å] connect the dimers into chains along the b-axis direction.

1. Related literature

For information on the fungicidal properties of the title compound, see: Sapp et al. (2003[Sapp, M., Ertunc, T., Bringmann, I., Schaffer, A. & Schmidt, S. (2003). Pest Manag. Sci. 60, 65-74.]). For a related crystal structure, see: Kang et al. (2014[Kang, G., Jeon, Y., Lee, S. & Kim, T. H. (2014). Acta Cryst. E70, o1265.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H15N3

  • Mr = 225.29

  • Monoclinic, P 21 /c

  • a = 13.1920 (6) Å

  • b = 5.3176 (2) Å

  • c = 16.8641 (7) Å

  • β = 100.288 (2)°

  • V = 1163.99 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.22 × 0.18 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.986

  • 18116 measured reflections

  • 2864 independent reflections

  • 2463 reflections with I > 2σ(I)

  • Rint = 0.056

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.166

  • S = 1.14

  • 2864 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyprodinil, C14H15N3, is a systemic pyrimidine fungicide for foliar applications on cereals and strawberries against plant pathogenic fungi (Sapp et al., 2003). Its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angles between the central pyrimidine ring and the terminal phenyl ring and mean plane of cyclopropane ring system are 14.52 (11) and 88.79 (10)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Kang et al., 2014).

In the crystal structure (Fig. 2), The crystal structure is stabilized by weak intermolecular ππ interaction between the pyrimidine ring and terminal phenyl ring systems [Cg1···Cg2ii, 3.8552 (11) Å] are present (Cg1 and Cg2 are the centroids of the C1—C6 and C7—N2—C8—C9—C10—N3 rings, respectively) [for symmetry codes: (ii), x, y - 1, z].

Related literature top

For information on the fungicidal properties of the title compound, see: Sapp et al. (2003). For a related crystal structure, see: Kang et al. (2014).

Experimental top

The title compound was purchased from the Chem Servies Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for amine group, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for Csp3—H, d(C—H) = 1.00 Å, Uiso = 1.2Ueq(C) for Csp3—H, and d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Structure description top

Cyprodinil, C14H15N3, is a systemic pyrimidine fungicide for foliar applications on cereals and strawberries against plant pathogenic fungi (Sapp et al., 2003). Its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angles between the central pyrimidine ring and the terminal phenyl ring and mean plane of cyclopropane ring system are 14.52 (11) and 88.79 (10)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Kang et al., 2014).

In the crystal structure (Fig. 2), The crystal structure is stabilized by weak intermolecular ππ interaction between the pyrimidine ring and terminal phenyl ring systems [Cg1···Cg2ii, 3.8552 (11) Å] are present (Cg1 and Cg2 are the centroids of the C1—C6 and C7—N2—C8—C9—C10—N3 rings, respectively) [for symmetry codes: (ii), x, y - 1, z].

For information on the fungicidal properties of the title compound, see: Sapp et al. (2003). For a related crystal structure, see: Kang et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The weak ππ interactions are shown as dashed lines.
4-Cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine top
Crystal data top
C14H15N3F(000) = 480
Mr = 225.29Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8168 reflections
a = 13.1920 (6) Åθ = 2.5–28.2°
b = 5.3176 (2) ŵ = 0.08 mm1
c = 16.8641 (7) ÅT = 173 K
β = 100.288 (2)°Block, colourless
V = 1163.99 (8) Å30.45 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.965, Tmax = 0.986k = 77
18116 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0577P)2 + 1.3715P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H15N3V = 1163.99 (8) Å3
Mr = 225.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1920 (6) ŵ = 0.08 mm1
b = 5.3176 (2) ÅT = 173 K
c = 16.8641 (7) Å0.45 × 0.22 × 0.18 mm
β = 100.288 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2463 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.986Rint = 0.056
18116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.14Δρmax = 0.29 e Å3
2864 reflectionsΔρmin = 0.31 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64381 (12)0.1086 (3)0.81833 (9)0.0210 (3)
H1N0.58820.06970.78340.025*
N20.70730 (12)0.3584 (3)0.93020 (9)0.0201 (3)
N30.53921 (12)0.4215 (3)0.84955 (9)0.0206 (3)
C10.83033 (14)0.0059 (4)0.85440 (11)0.0246 (4)
H10.84360.14370.89060.030*
C20.90995 (15)0.1513 (4)0.84207 (12)0.0277 (4)
H20.97780.11830.87000.033*
C30.89324 (15)0.3555 (4)0.79011 (12)0.0256 (4)
H30.94860.46210.78270.031*
C40.79368 (15)0.4010 (4)0.74907 (11)0.0241 (4)
H40.78080.53960.71310.029*
C50.71331 (14)0.2457 (4)0.76022 (11)0.0208 (4)
H50.64580.27870.73180.025*
C60.73029 (14)0.0402 (4)0.81301 (10)0.0195 (4)
C70.63140 (14)0.3035 (4)0.86853 (10)0.0189 (4)
C80.69016 (14)0.5539 (4)0.97648 (10)0.0208 (4)
C90.59859 (15)0.6871 (4)0.96202 (11)0.0233 (4)
H90.58730.82510.99510.028*
C100.52353 (14)0.6127 (4)0.89742 (11)0.0209 (4)
C110.77222 (15)0.6184 (4)1.04550 (11)0.0246 (4)
H110.75670.76221.07960.029*
C120.83749 (15)0.4101 (4)1.08962 (12)0.0276 (4)
H12A0.85850.42581.14880.033*
H12B0.82390.23601.06980.033*
C130.88371 (16)0.5880 (4)1.03804 (12)0.0300 (5)
H13A0.89890.52390.98630.036*
H13B0.93340.71361.06530.036*
C140.42255 (15)0.7483 (4)0.87894 (12)0.0255 (4)
H14A0.42830.88950.84270.038*
H14B0.40430.81180.92910.038*
H14C0.36900.63240.85300.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (7)0.0259 (8)0.0165 (7)0.0004 (6)0.0023 (5)0.0027 (6)
N20.0205 (7)0.0238 (8)0.0145 (7)0.0001 (6)0.0009 (5)0.0008 (6)
N30.0196 (7)0.0250 (8)0.0164 (7)0.0014 (6)0.0010 (5)0.0005 (6)
C10.0218 (9)0.0278 (10)0.0221 (9)0.0006 (8)0.0016 (7)0.0040 (8)
C20.0209 (9)0.0329 (11)0.0270 (9)0.0014 (8)0.0016 (7)0.0027 (8)
C30.0242 (9)0.0279 (10)0.0243 (9)0.0047 (8)0.0031 (7)0.0001 (8)
C40.0290 (10)0.0234 (10)0.0194 (8)0.0003 (8)0.0027 (7)0.0025 (7)
C50.0226 (9)0.0220 (9)0.0166 (8)0.0016 (7)0.0002 (6)0.0006 (7)
C60.0207 (8)0.0227 (9)0.0146 (7)0.0004 (7)0.0014 (6)0.0019 (7)
C70.0200 (8)0.0221 (9)0.0138 (7)0.0002 (7)0.0007 (6)0.0016 (7)
C80.0227 (9)0.0233 (9)0.0151 (8)0.0009 (7)0.0005 (6)0.0016 (7)
C90.0258 (9)0.0246 (10)0.0181 (8)0.0028 (8)0.0001 (7)0.0033 (7)
C100.0219 (9)0.0235 (9)0.0167 (8)0.0015 (7)0.0018 (6)0.0022 (7)
C110.0250 (9)0.0284 (10)0.0180 (8)0.0005 (8)0.0025 (7)0.0035 (7)
C120.0244 (9)0.0333 (11)0.0216 (9)0.0006 (8)0.0053 (7)0.0005 (8)
C130.0245 (9)0.0382 (12)0.0247 (9)0.0057 (8)0.0022 (7)0.0022 (9)
C140.0232 (9)0.0289 (10)0.0226 (9)0.0054 (8)0.0005 (7)0.0004 (8)
Geometric parameters (Å, º) top
N1—C71.367 (2)C5—H50.9500
N1—C61.404 (2)C8—C91.384 (3)
N1—H1N0.8800C8—C111.481 (2)
N2—C71.341 (2)C9—C101.392 (3)
N2—C81.343 (2)C9—H90.9500
N3—C101.337 (2)C10—C141.498 (3)
N3—C71.355 (2)C11—C131.507 (3)
C1—C21.387 (3)C11—C121.514 (3)
C1—C61.400 (2)C11—H111.0000
C1—H10.9500C12—C131.488 (3)
C2—C31.388 (3)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.392 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.383 (3)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C5—C61.402 (3)C14—H14C0.9800
C7—N1—C6130.97 (15)C8—C9—H9121.0
C7—N1—H1N114.5C10—C9—H9121.0
C6—N1—H1N114.5N3—C10—C9121.56 (17)
C7—N2—C8116.06 (16)N3—C10—C14117.93 (16)
C10—N3—C7116.01 (16)C9—C10—C14120.50 (17)
C2—C1—C6119.45 (18)C8—C11—C13119.78 (16)
C2—C1—H1120.3C8—C11—C12119.22 (18)
C6—C1—H1120.3C13—C11—C1258.99 (14)
C1—C2—C3121.81 (18)C8—C11—H11115.7
C1—C2—H2119.1C13—C11—H11115.7
C3—C2—H2119.1C12—C11—H11115.7
C2—C3—C4118.62 (18)C13—C12—C1160.26 (14)
C2—C3—H3120.7C13—C12—H12A117.7
C4—C3—H3120.7C11—C12—H12A117.7
C5—C4—C3120.47 (18)C13—C12—H12B117.7
C5—C4—H4119.8C11—C12—H12B117.7
C3—C4—H4119.8H12A—C12—H12B114.9
C4—C5—C6120.82 (17)C12—C13—C1160.74 (14)
C4—C5—H5119.6C12—C13—H13A117.7
C6—C5—H5119.6C11—C13—H13A117.7
C1—C6—C5118.84 (17)C12—C13—H13B117.7
C1—C6—N1125.02 (17)C11—C13—H13B117.7
C5—C6—N1116.12 (16)H13A—C13—H13B114.8
N2—C7—N3126.65 (17)C10—C14—H14A109.5
N2—C7—N1119.35 (16)C10—C14—H14B109.5
N3—C7—N1114.00 (16)H14A—C14—H14B109.5
N2—C8—C9121.73 (17)C10—C14—H14C109.5
N2—C8—C11117.43 (17)H14A—C14—H14C109.5
C9—C8—C11120.82 (17)H14B—C14—H14C109.5
C8—C9—C10117.96 (18)
C6—C1—C2—C30.5 (3)C6—N1—C7—N3172.68 (17)
C1—C2—C3—C40.5 (3)C7—N2—C8—C91.2 (3)
C2—C3—C4—C50.2 (3)C7—N2—C8—C11179.58 (16)
C3—C4—C5—C60.1 (3)N2—C8—C9—C100.0 (3)
C2—C1—C6—C50.2 (3)C11—C8—C9—C10178.32 (18)
C2—C1—C6—N1178.05 (18)C7—N3—C10—C91.0 (3)
C4—C5—C6—C10.1 (3)C7—N3—C10—C14179.81 (17)
C4—C5—C6—N1178.52 (17)C8—C9—C10—N31.2 (3)
C7—N1—C6—C18.8 (3)C8—C9—C10—C14179.64 (18)
C7—N1—C6—C5172.85 (18)N2—C8—C11—C1335.3 (3)
C8—N2—C7—N31.5 (3)C9—C8—C11—C13146.3 (2)
C8—N2—C7—N1179.34 (16)N2—C8—C11—C1233.6 (3)
C10—N3—C7—N20.4 (3)C9—C8—C11—C12144.84 (19)
C10—N3—C7—N1179.63 (16)C8—C11—C12—C13109.1 (2)
C6—N1—C7—N28.0 (3)C8—C11—C13—C12108.2 (2)
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B3003337).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, G., Jeon, Y., Lee, S. & Kim, T. H. (2014). Acta Cryst. E70, o1265.  CSD CrossRef IUCr Journals Google Scholar
First citationSapp, M., Ertunc, T., Bringmann, I., Schaffer, A. & Schmidt, S. (2003). Pest Manag. Sci. 60, 65–74.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds