research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (S)-4-carbamoyl-4-(1,3-dioxo­isoindolin-2-yl)butanoic acid1

aGraduate school of Advanced Science and Engineering, Waseda University (TWIns), Tokyo 162-8480, Japan, and bConsolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMeW), Tokyo 162-0041, Japan
*Correspondence e-mail: tasahi@waseda.jp

Edited by H. Ishida, Okayama University, Japan (Received 29 October 2014; accepted 11 December 2014; online 1 January 2015)

In the title compound, C13H12N2O5, the phthalimide ring system is essentially planar, with a maximum deviation of 0.0479 (14) Å. In the crystal, each mol­ecule is linked via six neighbouring mol­ecules into a three-dimensional network through N—H⋯O and O—H⋯O hydrogen bonds, which form an R32(8) ring motif.

1. Chemical context

The title compound, 5-(amin­oxy)-4-(3-oxo-2H-isoindol-2-oyl)valeric acid (phthaloylisoglutamine), is one of the first-step hydrolysis products of thalidomide. Thalidomide was first synthesized in 1953 and was marketed as a hypnotic medicine in 1956. After that, the teratogenic side effect of thalidomide was proved and caused serious drug disaster (Lenz, 1961[Lenz, W. (1961). Lancet, 2, 45-46.]). Blashke et al. (1979[Blashke, G., Kraft, H. P., Fickentscher, K. & Kohler, F. (1979). Arzneim. Forsch. 29, 1640-1642.]) reported that only (S)-thalidomide exhibits teratogenicity while (R)-thalidomide exhibits sedative effects. In other words, the hypnotic and teratogenic mechanisms of thalidomide are different. For a long time, the target protein of thalidomide has not been clarified. However in 2010, the protein cereblon, which is one of the E3 ubiquitin ligase proteins, was identified as the primary target of thalidomide teratogenicity (Ito et al., 2010[Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y. & Handa, H. (2010). Science, 327, 1345-1350.]). Furthermore, the conformation of a Cereblon and thalidomide complex has been reported (Fischer et al., 2014[Fischer, E. S., Böhm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G. M., Tichkule, R. B., Schebesta, M., Forrester, W. C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R. E. J., Harper, J. W., Jenkins, J. L. & Thomä, H. (2014). Nature, 512, 49-53.]).

[Scheme 1]

Hydrolysis compounds of thalidomide are generated rapidly in vivo (Schumacher et al., 1965[Schumacher, H., Williams, R. L. & Williams, R. T. (1965). Br. J. Pharmacol. 25, 338-351.]; Nishimura et al., 1994[Nishimura, K., Hashimoto, Y. & Iwasaki, Y. (1994). Chem. Pharm. Bull. 42, 1157-1159.]) and some of these showed TNF-α production-inhibitory activity (Nakamura et al., 2007[Nakamura, T., Noguchi, T., Miyachi, H. & Hashimoto, Y. (2007). Chem. Pharm. Bull. 55, 651-654.]). Although the crystal structures of racemic and enanti­omeric thalidomide were solved and reported earlier (Allen & Trotter, 1971[Allen, F. H. & Trotter, J. (1971). J. Chem. Soc. B, 6, 1073-1079.]; Suzuki et al., 2010[Suzuki, T., Tanaka, M., Shiro, M., Shibata, N., Osaka, T. & Asahi, T. (2010). Phase Transitions, 3, 223-234.]), the crystal structures of hydrolysis compounds of thalidomide have not been reported. Considering that knowing the structure of the mol­ecule enables us to calculate the affinity between ligand and receptor using computer simulation, our report herein will be helpful in clarifying the differences between the biological effects of thalidomide and phthaloylisoglutamine.

2. Structural commentary

The mol­ecular structure of the title mol­ecule is shown in Fig. 1[link]. The asymmetric center is S for atom C9. The phthalimide ring (N1/C1–C8) is essentially planar, with a maximum deviation of 0.0479 (14) Å for N1. The carbon–oxygen distances in the carb­oxy group (COOH) show different lengths [C13—O4 = 1.206 (2) and C13—O5 = 1.316 (2) Å]. This difference indicates that the C—O bonds in the carb­oxy group are non-delocalized. These bonds are slightly strengthened by inter­molecular O5—H12⋯O3 and O4⋯H7A—N2 hydrogen bonding (Fig. 2[link]). The conformation of C9—C11—C12—C13 chain is slightly twisted gauche [torsion angle = 77.4 (2)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
A trimer structure of the title compound and an R32(8) ring motif formed through O5iii—H12iii⋯O3ii, N2—H6B⋯O3ii and N2—H7A⋯O4iii hydrogen bonds. [Symmetry codes: (ii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}].]

3. Supra­molecular features

In the crystal structure, each mol­ecule has six hydrogen bonds, which are divided into three types (Table 1[link]). The three hydrogen bonds form a hydrogen-bonded ring with an R32(8) ring motif, which unites three mol­ecules (Fig. 2[link]). Taken together as shown in Fig. 3[link], one mol­ecule (yellow) is linked to another six mol­ecules (blue, red, and green) by three sets of circular hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H12⋯O3i 0.83 1.80 2.6230 (19) 172
N2—H6B⋯O3ii 0.87 2.32 2.891 (2) 123
N2—H7A⋯O4iii 0.87 2.05 2.886 (2) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A crystal packing view of the title compound, showing the inter­molecular hydrogen bonds. A yellow mol­ecule is linked with two red, two green and two blue mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35 update in 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the structure of thalidomide gave 11 hits, but there was no hydrolysis compound of thalidomide.

5. Synthesis and crystallization

The title compound was purchased from WuXi AppTec. The title compound (2 mg) was dissolved in ethanol (500 µl). After a few days of slow evaporation at 278 K, colourless single crystals suitable for X-ray diffraction were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were included in calculated positions [C—H (aromatic) = 0.93, C—H (methine) = 0.98, C—H (methyl­ene) = 0.97, N—H = 0.87 and O—H = 0.82 Å] and treated as riding atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N, O).

Table 2
Experimental details

Crystal data
Chemical formula C13H12N2O5
Mr 276.25
Crystal system, space group Orthorhombic, P212121
Temperature (K) 223
a, b, c (Å) 8.4790 (3), 9.6751 (3), 15.4488 (5)
V3) 1267.35 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.63 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.766, 0.908
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 23228, 2320, 2245
Rint 0.058
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.08
No. of reflections 2320
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Absolute structure Flack x determined using 914 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (4)
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS2013 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

(S)-4-Carbamoyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid top
Crystal data top
C13H12N2O5Dx = 1.448 Mg m3
Mr = 276.25Cu Kα radiation, λ = 1.54187 Å
Orthorhombic, P212121Cell parameters from 12101 reflections
a = 8.4790 (3) Åθ = 4.6–68.3°
b = 9.6751 (3) ŵ = 0.96 mm1
c = 15.4488 (5) ÅT = 223 K
V = 1267.35 (7) Å3Needle, colorless
Z = 40.63 × 0.20 × 0.10 mm
F(000) = 576.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2245 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.058
ω scansθmax = 68.2°, θmin = 5.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1010
Tmin = 0.766, Tmax = 0.908k = 1111
23228 measured reflectionsl = 1818
2320 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.1235P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.16 e Å3
2320 reflectionsΔρmin = 0.16 e Å3
183 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0357 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (4)
Hydrogen site location: inferred from neighbouring sites
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60120 (16)0.50832 (14)0.65955 (9)0.0380 (4)
O20.22423 (15)0.29086 (15)0.81979 (8)0.0354 (3)
O30.28367 (17)0.34228 (17)0.49573 (8)0.0435 (4)
O40.32128 (15)0.66161 (14)0.78685 (8)0.0353 (3)
O50.08071 (16)0.6519 (2)0.84322 (9)0.0498 (4)
N10.39627 (16)0.38300 (15)0.71946 (9)0.0246 (3)
N20.48080 (19)0.24502 (17)0.57047 (10)0.0342 (4)
C10.7414 (2)0.4824 (2)0.84759 (13)0.0358 (4)
C20.7647 (2)0.4539 (2)0.93501 (13)0.0416 (5)
C30.6535 (2)0.3840 (2)0.98308 (13)0.0395 (5)
C40.5124 (2)0.3393 (2)0.94584 (11)0.0326 (4)
C50.4892 (2)0.36838 (17)0.85916 (11)0.0255 (4)
C60.6010 (2)0.43761 (18)0.81107 (11)0.0274 (4)
C70.5420 (2)0.45217 (18)0.72098 (11)0.0266 (4)
C80.3518 (2)0.33864 (17)0.80233 (11)0.0250 (4)
C90.2867 (2)0.38767 (19)0.64668 (11)0.0269 (4)
C100.3548 (2)0.32287 (19)0.56467 (11)0.0281 (4)
C110.2218 (2)0.5328 (2)0.62906 (12)0.0337 (4)
C120.1075 (2)0.5854 (2)0.69751 (13)0.0396 (5)
C130.1827 (2)0.63585 (19)0.77980 (12)0.0311 (4)
H10.817480.529940.81480.0429*
H20.858470.482960.961850.0499*
H30.672960.366051.041920.0475*
H40.436280.29150.978380.0392*
H50.195120.329990.663360.0323*
H6B0.517940.204270.524590.0513*
H7A0.527310.234070.620190.0513*
H8A0.310490.597370.624940.0404*
H9B0.168010.532330.57290.0404*
H10A0.045760.661220.672530.0475*
H11B0.033870.510820.711930.0475*
H120.12880.660530.88970.0747*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (7)0.0480 (8)0.0294 (7)0.0115 (7)0.0044 (6)0.0064 (6)
O20.0285 (7)0.0478 (8)0.0299 (7)0.0078 (6)0.0024 (6)0.0079 (6)
O30.0411 (8)0.0673 (10)0.0221 (7)0.0098 (8)0.0079 (6)0.0063 (6)
O40.0307 (7)0.0439 (7)0.0313 (7)0.0037 (6)0.0003 (6)0.0053 (6)
O50.0331 (7)0.0856 (12)0.0306 (8)0.0014 (8)0.0020 (6)0.0085 (8)
N10.0237 (7)0.0314 (7)0.0188 (7)0.0022 (6)0.0007 (6)0.0021 (6)
N20.0352 (9)0.0442 (9)0.0233 (8)0.0063 (7)0.0016 (7)0.0053 (7)
C10.0269 (9)0.0432 (10)0.0373 (11)0.0013 (9)0.0037 (8)0.0049 (9)
C20.0322 (10)0.0538 (12)0.0388 (11)0.0062 (10)0.0146 (9)0.0102 (10)
C30.0436 (12)0.0508 (11)0.0243 (10)0.0134 (10)0.0094 (9)0.0036 (9)
C40.0362 (10)0.0392 (10)0.0225 (9)0.0074 (9)0.0008 (8)0.0014 (8)
C50.0262 (9)0.0286 (9)0.0219 (9)0.0046 (7)0.0000 (7)0.0023 (7)
C60.0257 (8)0.0315 (8)0.0251 (9)0.0030 (8)0.0013 (7)0.0024 (8)
C70.0239 (8)0.0315 (8)0.0244 (9)0.0024 (7)0.0012 (7)0.0001 (8)
C80.0272 (9)0.0268 (8)0.0210 (8)0.0026 (7)0.0004 (7)0.0023 (7)
C90.0242 (8)0.0364 (9)0.0203 (9)0.0034 (7)0.0031 (7)0.0016 (8)
C100.0259 (9)0.0366 (9)0.0217 (9)0.0053 (8)0.0027 (7)0.0003 (7)
C110.0376 (10)0.0409 (10)0.0226 (9)0.0074 (9)0.0064 (8)0.0017 (8)
C120.0318 (9)0.0517 (12)0.0351 (11)0.0115 (9)0.0089 (9)0.0073 (9)
C130.0321 (10)0.0321 (9)0.0291 (10)0.0051 (8)0.0018 (8)0.0016 (8)
Geometric parameters (Å, º) top
O1—C71.203 (2)C9—C101.527 (2)
O2—C81.207 (2)C9—C111.532 (3)
O3—C101.238 (2)C11—C121.522 (3)
O4—C131.206 (2)C12—C131.503 (3)
O5—C131.316 (2)O5—H120.830
N1—C71.405 (2)N2—H6B0.870
N1—C81.402 (2)N2—H7A0.870
N1—C91.460 (2)C1—H10.940
N2—C101.310 (2)C2—H20.940
C1—C21.393 (3)C3—H30.940
C1—C61.387 (3)C4—H40.940
C2—C31.378 (3)C9—H50.990
C3—C41.396 (3)C11—H8A0.980
C4—C51.382 (2)C11—H9B0.980
C5—C61.378 (2)C12—H10A0.980
C5—C81.487 (2)C12—H11B0.980
C6—C71.486 (2)
C7—N1—C8111.52 (14)O4—C13—C12123.81 (17)
C7—N1—C9123.92 (14)O5—C13—C12112.90 (16)
C8—N1—C9122.81 (14)C13—O5—H12109.469
C2—C1—C6117.00 (17)C10—N2—H6B120.005
C1—C2—C3121.55 (19)C10—N2—H7A120.001
C2—C3—C4121.08 (18)H6B—N2—H7A119.994
C3—C4—C5117.28 (17)C2—C1—H1121.519
C4—C5—C6121.54 (16)C6—C1—H1121.506
C4—C5—C8130.11 (16)C1—C2—H2119.202
C6—C5—C8108.34 (15)C3—C2—H2119.210
C1—C6—C5121.54 (16)C2—C3—H3119.482
C1—C6—C7129.83 (16)C4—C3—H3119.476
C5—C6—C7108.63 (15)C3—C4—H4121.355
O1—C7—N1124.67 (16)C5—C4—H4121.352
O1—C7—C6129.86 (16)N1—C9—H5106.340
N1—C7—C6105.47 (14)C10—C9—H5106.336
O2—C8—N1124.22 (16)C11—C9—H5106.343
O2—C8—C5130.12 (16)C9—C11—H8A108.681
N1—C8—C5105.63 (14)C9—C11—H9B108.685
N1—C9—C10112.66 (14)C12—C11—H8A108.682
N1—C9—C11113.19 (15)C12—C11—H9B108.682
C10—C9—C11111.39 (14)H8A—C11—H9B107.616
O3—C10—N2122.91 (17)C11—C12—H10A108.474
O3—C10—C9117.83 (16)C11—C12—H11B108.468
N2—C10—C9119.20 (15)C13—C12—H10A108.470
C9—C11—C12114.32 (16)C13—C12—H11B108.470
C11—C12—C13115.22 (16)H10A—C12—H11B107.495
O4—C13—O5123.27 (17)
C7—N1—C8—O2171.27 (15)C4—C5—C6—C7179.74 (15)
C7—N1—C8—C56.74 (17)C4—C5—C8—O25.8 (3)
C8—N1—C7—O1174.78 (15)C4—C5—C8—N1176.37 (17)
C8—N1—C7—C65.92 (17)C6—C5—C8—O2172.97 (16)
C7—N1—C9—C1063.76 (19)C6—C5—C8—N14.88 (17)
C7—N1—C9—C1163.74 (19)C8—C5—C6—C1178.32 (13)
C9—N1—C7—O19.5 (3)C8—C5—C6—C71.38 (18)
C9—N1—C7—C6171.19 (13)C1—C6—C7—O11.5 (3)
C8—N1—C9—C10132.59 (14)C1—C6—C7—N1177.71 (17)
C8—N1—C9—C1199.91 (17)C5—C6—C7—O1178.13 (16)
C9—N1—C8—O25.8 (2)C5—C6—C7—N12.62 (18)
C9—N1—C8—C5172.20 (13)N1—C9—C10—O3167.77 (14)
C2—C1—C6—C50.2 (3)N1—C9—C10—N215.1 (2)
C2—C1—C6—C7179.85 (16)N1—C9—C11—C1270.37 (18)
C6—C1—C2—C30.2 (3)C10—C9—C11—C12161.47 (13)
C1—C2—C3—C40.2 (3)C11—C9—C10—O339.3 (2)
C2—C3—C4—C50.1 (3)C11—C9—C10—N2143.54 (15)
C3—C4—C5—C60.5 (3)C9—C11—C12—C1377.4 (2)
C3—C4—C5—C8178.13 (16)C11—C12—C13—O415.2 (3)
C4—C5—C6—C10.6 (3)C11—C12—C13—O5166.20 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H12···O3i0.831.802.6230 (19)172
N2—H6B···O3ii0.872.322.891 (2)123
N2—H7A···O4iii0.872.052.886 (2)161
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2.
 

Footnotes

1Trivial name (S)-phthaloylisoglutamine, one of the hydrolysis products of thalidomide.

References

First citationAllen, F. H. & Trotter, J. (1971). J. Chem. Soc. B, 6, 1073–1079.  CSD CrossRef Google Scholar
First citationBlashke, G., Kraft, H. P., Fickentscher, K. & Kohler, F. (1979). Arzneim. Forsch. 29, 1640–1642.  Google Scholar
First citationFischer, E. S., Böhm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G. M., Tichkule, R. B., Schebesta, M., Forrester, W. C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R. E. J., Harper, J. W., Jenkins, J. L. & Thomä, H. (2014). Nature, 512, 49–53.  CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIto, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y. & Handa, H. (2010). Science, 327, 1345–1350.  CrossRef CAS PubMed Google Scholar
First citationLenz, W. (1961). Lancet, 2, 45–46.  Google Scholar
First citationNakamura, T., Noguchi, T., Miyachi, H. & Hashimoto, Y. (2007). Chem. Pharm. Bull. 55, 651–654.  CrossRef PubMed CAS Google Scholar
First citationNishimura, K., Hashimoto, Y. & Iwasaki, Y. (1994). Chem. Pharm. Bull. 42, 1157–1159.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchumacher, H., Williams, R. L. & Williams, R. T. (1965). Br. J. Pharmacol. 25, 338–351.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, T., Tanaka, M., Shiro, M., Shibata, N., Osaka, T. & Asahi, T. (2010). Phase Transitions, 3, 223–234.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds