research communications
S)-4-carbamoyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid1
of (aGraduate school of Advanced Science and Engineering, Waseda University (TWIns), Tokyo 162-8480, Japan, and bConsolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMeW), Tokyo 162-0041, Japan
*Correspondence e-mail: tasahi@waseda.jp
In the title compound, C13H12N2O5, the phthalimide ring system is essentially planar, with a maximum deviation of 0.0479 (14) Å. In the crystal, each molecule is linked via six neighbouring molecules into a three-dimensional network through N—H⋯O and O—H⋯O hydrogen bonds, which form an R32(8) ring motif.
Keywords: crystal structure; thalidomide; hydrogen bonds.
CCDC reference: 1038803
1. Chemical context
The title compound, 5-(aminoxy)-4-(3-oxo-2H-isoindol-2-oyl)valeric acid (phthaloylisoglutamine), is one of the first-step hydrolysis products of thalidomide. Thalidomide was first synthesized in 1953 and was marketed as a hypnotic medicine in 1956. After that, the teratogenic side effect of thalidomide was proved and caused serious drug disaster (Lenz, 1961). Blashke et al. (1979) reported that only (S)-thalidomide exhibits teratogenicity while (R)-thalidomide exhibits sedative effects. In other words, the hypnotic and teratogenic mechanisms of thalidomide are different. For a long time, the target protein of thalidomide has not been clarified. However in 2010, the protein cereblon, which is one of the E3 ubiquitin ligase proteins, was identified as the primary target of thalidomide teratogenicity (Ito et al., 2010). Furthermore, the conformation of a Cereblon and thalidomide complex has been reported (Fischer et al., 2014).
Hydrolysis compounds of thalidomide are generated rapidly in vivo (Schumacher et al., 1965; Nishimura et al., 1994) and some of these showed TNF-α production-inhibitory activity (Nakamura et al., 2007). Although the crystal structures of racemic and enantiomeric thalidomide were solved and reported earlier (Allen & Trotter, 1971; Suzuki et al., 2010), the crystal structures of hydrolysis compounds of thalidomide have not been reported. Considering that knowing the structure of the molecule enables us to calculate the affinity between ligand and receptor using computer simulation, our report herein will be helpful in clarifying the differences between the biological effects of thalidomide and phthaloylisoglutamine.
2. Structural commentary
The molecular structure of the title molecule is shown in Fig. 1. The asymmetric center is S for atom C9. The phthalimide ring (N1/C1–C8) is essentially planar, with a maximum deviation of 0.0479 (14) Å for N1. The carbon–oxygen distances in the carboxy group (COOH) show different lengths [C13—O4 = 1.206 (2) and C13—O5 = 1.316 (2) Å]. This difference indicates that the C—O bonds in the carboxy group are non-delocalized. These bonds are slightly strengthened by intermolecular O5—H12⋯O3 and O4⋯H7A—N2 hydrogen bonding (Fig. 2). The conformation of C9—C11—C12—C13 chain is slightly twisted gauche [torsion angle = 77.4 (2)°].
3. Supramolecular features
In the ). The three hydrogen bonds form a hydrogen-bonded ring with an R32(8) ring motif, which unites three molecules (Fig. 2). Taken together as shown in Fig. 3, one molecule (yellow) is linked to another six molecules (blue, red, and green) by three sets of circular hydrogen bonds.
each molecule has six hydrogen bonds, which are divided into three types (Table 14. Database survey
A search of the Cambridge Structural Database (Version 5.35 update in 2014; Groom & Allen, 2014) for the structure of thalidomide gave 11 hits, but there was no hydrolysis compound of thalidomide.
5. Synthesis and crystallization
The title compound was purchased from WuXi AppTec. The title compound (2 mg) was dissolved in ethanol (500 µl). After a few days of slow evaporation at 278 K, colourless single crystals suitable for X-ray diffraction were obtained.
6. Refinement
Crystal data, data collection and structure . All H atoms were included in calculated positions [C—H (aromatic) = 0.93, C—H (methine) = 0.98, C—H (methylene) = 0.97, N—H = 0.87 and O—H = 0.82 Å] and treated as riding atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N, O).
details are summarized in Table 2Supporting information
CCDC reference: 1038803
https://doi.org/10.1107/S2056989014027121/is5381sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014027121/is5381Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014027121/is5381Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).C13H12N2O5 | Dx = 1.448 Mg m−3 |
Mr = 276.25 | Cu Kα radiation, λ = 1.54187 Å |
Orthorhombic, P212121 | Cell parameters from 12101 reflections |
a = 8.4790 (3) Å | θ = 4.6–68.3° |
b = 9.6751 (3) Å | µ = 0.96 mm−1 |
c = 15.4488 (5) Å | T = 223 K |
V = 1267.35 (7) Å3 | Needle, colorless |
Z = 4 | 0.63 × 0.20 × 0.10 mm |
F(000) = 576.00 |
Rigaku R-AXIS RAPID diffractometer | 2245 reflections with F2 > 2σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.058 |
ω scans | θmax = 68.2°, θmin = 5.4° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −10→10 |
Tmin = 0.766, Tmax = 0.908 | k = −11→11 |
23228 measured reflections | l = −18→18 |
2320 independent reflections |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.1235P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.16 e Å−3 |
2320 reflections | Δρmin = −0.16 e Å−3 |
183 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.0357 (16) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.06 (4) |
Hydrogen site location: inferred from neighbouring sites |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60120 (16) | 0.50832 (14) | 0.65955 (9) | 0.0380 (4) | |
O2 | 0.22423 (15) | 0.29086 (15) | 0.81979 (8) | 0.0354 (3) | |
O3 | 0.28367 (17) | 0.34228 (17) | 0.49573 (8) | 0.0435 (4) | |
O4 | 0.32128 (15) | 0.66161 (14) | 0.78685 (8) | 0.0353 (3) | |
O5 | 0.08071 (16) | 0.6519 (2) | 0.84322 (9) | 0.0498 (4) | |
N1 | 0.39627 (16) | 0.38300 (15) | 0.71946 (9) | 0.0246 (3) | |
N2 | 0.48080 (19) | 0.24502 (17) | 0.57047 (10) | 0.0342 (4) | |
C1 | 0.7414 (2) | 0.4824 (2) | 0.84759 (13) | 0.0358 (4) | |
C2 | 0.7647 (2) | 0.4539 (2) | 0.93501 (13) | 0.0416 (5) | |
C3 | 0.6535 (2) | 0.3840 (2) | 0.98308 (13) | 0.0395 (5) | |
C4 | 0.5124 (2) | 0.3393 (2) | 0.94584 (11) | 0.0326 (4) | |
C5 | 0.4892 (2) | 0.36838 (17) | 0.85916 (11) | 0.0255 (4) | |
C6 | 0.6010 (2) | 0.43761 (18) | 0.81107 (11) | 0.0274 (4) | |
C7 | 0.5420 (2) | 0.45217 (18) | 0.72098 (11) | 0.0266 (4) | |
C8 | 0.3518 (2) | 0.33864 (17) | 0.80233 (11) | 0.0250 (4) | |
C9 | 0.2867 (2) | 0.38767 (19) | 0.64668 (11) | 0.0269 (4) | |
C10 | 0.3548 (2) | 0.32287 (19) | 0.56467 (11) | 0.0281 (4) | |
C11 | 0.2218 (2) | 0.5328 (2) | 0.62906 (12) | 0.0337 (4) | |
C12 | 0.1075 (2) | 0.5854 (2) | 0.69751 (13) | 0.0396 (5) | |
C13 | 0.1827 (2) | 0.63585 (19) | 0.77980 (12) | 0.0311 (4) | |
H1 | 0.81748 | 0.52994 | 0.8148 | 0.0429* | |
H2 | 0.85847 | 0.48296 | 0.96185 | 0.0499* | |
H3 | 0.67296 | 0.36605 | 1.04192 | 0.0475* | |
H4 | 0.43628 | 0.2915 | 0.97838 | 0.0392* | |
H5 | 0.19512 | 0.32999 | 0.66336 | 0.0323* | |
H6B | 0.51794 | 0.20427 | 0.52459 | 0.0513* | |
H7A | 0.52731 | 0.23407 | 0.62019 | 0.0513* | |
H8A | 0.31049 | 0.59737 | 0.62494 | 0.0404* | |
H9B | 0.16801 | 0.53233 | 0.5729 | 0.0404* | |
H10A | 0.04576 | 0.66122 | 0.67253 | 0.0475* | |
H11B | 0.03387 | 0.51082 | 0.71193 | 0.0475* | |
H12 | 0.1288 | 0.66053 | 0.8897 | 0.0747* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0368 (7) | 0.0480 (8) | 0.0294 (7) | −0.0115 (7) | 0.0044 (6) | 0.0064 (6) |
O2 | 0.0285 (7) | 0.0478 (8) | 0.0299 (7) | −0.0078 (6) | 0.0024 (6) | 0.0079 (6) |
O3 | 0.0411 (8) | 0.0673 (10) | 0.0221 (7) | 0.0098 (8) | −0.0079 (6) | −0.0063 (6) |
O4 | 0.0307 (7) | 0.0439 (7) | 0.0313 (7) | −0.0037 (6) | −0.0003 (6) | −0.0053 (6) |
O5 | 0.0331 (7) | 0.0856 (12) | 0.0306 (8) | −0.0014 (8) | 0.0020 (6) | −0.0085 (8) |
N1 | 0.0237 (7) | 0.0314 (7) | 0.0188 (7) | −0.0022 (6) | −0.0007 (6) | 0.0021 (6) |
N2 | 0.0352 (9) | 0.0442 (9) | 0.0233 (8) | 0.0063 (7) | −0.0016 (7) | −0.0053 (7) |
C1 | 0.0269 (9) | 0.0432 (10) | 0.0373 (11) | −0.0013 (9) | −0.0037 (8) | −0.0049 (9) |
C2 | 0.0322 (10) | 0.0538 (12) | 0.0388 (11) | 0.0062 (10) | −0.0146 (9) | −0.0102 (10) |
C3 | 0.0436 (12) | 0.0508 (11) | 0.0243 (10) | 0.0134 (10) | −0.0094 (9) | −0.0036 (9) |
C4 | 0.0362 (10) | 0.0392 (10) | 0.0225 (9) | 0.0074 (9) | 0.0008 (8) | 0.0014 (8) |
C5 | 0.0262 (9) | 0.0286 (9) | 0.0219 (9) | 0.0046 (7) | 0.0000 (7) | −0.0023 (7) |
C6 | 0.0257 (8) | 0.0315 (8) | 0.0251 (9) | 0.0030 (8) | −0.0013 (7) | −0.0024 (8) |
C7 | 0.0239 (8) | 0.0315 (8) | 0.0244 (9) | −0.0024 (7) | 0.0012 (7) | 0.0001 (8) |
C8 | 0.0272 (9) | 0.0268 (8) | 0.0210 (8) | 0.0026 (7) | 0.0004 (7) | 0.0023 (7) |
C9 | 0.0242 (8) | 0.0364 (9) | 0.0203 (9) | −0.0034 (7) | −0.0031 (7) | 0.0016 (8) |
C10 | 0.0259 (9) | 0.0366 (9) | 0.0217 (9) | −0.0053 (8) | −0.0027 (7) | 0.0003 (7) |
C11 | 0.0376 (10) | 0.0409 (10) | 0.0226 (9) | 0.0074 (9) | −0.0064 (8) | 0.0017 (8) |
C12 | 0.0318 (9) | 0.0517 (12) | 0.0351 (11) | 0.0115 (9) | −0.0089 (9) | −0.0073 (9) |
C13 | 0.0321 (10) | 0.0321 (9) | 0.0291 (10) | 0.0051 (8) | −0.0018 (8) | 0.0016 (8) |
O1—C7 | 1.203 (2) | C9—C10 | 1.527 (2) |
O2—C8 | 1.207 (2) | C9—C11 | 1.532 (3) |
O3—C10 | 1.238 (2) | C11—C12 | 1.522 (3) |
O4—C13 | 1.206 (2) | C12—C13 | 1.503 (3) |
O5—C13 | 1.316 (2) | O5—H12 | 0.830 |
N1—C7 | 1.405 (2) | N2—H6B | 0.870 |
N1—C8 | 1.402 (2) | N2—H7A | 0.870 |
N1—C9 | 1.460 (2) | C1—H1 | 0.940 |
N2—C10 | 1.310 (2) | C2—H2 | 0.940 |
C1—C2 | 1.393 (3) | C3—H3 | 0.940 |
C1—C6 | 1.387 (3) | C4—H4 | 0.940 |
C2—C3 | 1.378 (3) | C9—H5 | 0.990 |
C3—C4 | 1.396 (3) | C11—H8A | 0.980 |
C4—C5 | 1.382 (2) | C11—H9B | 0.980 |
C5—C6 | 1.378 (2) | C12—H10A | 0.980 |
C5—C8 | 1.487 (2) | C12—H11B | 0.980 |
C6—C7 | 1.486 (2) | ||
C7—N1—C8 | 111.52 (14) | O4—C13—C12 | 123.81 (17) |
C7—N1—C9 | 123.92 (14) | O5—C13—C12 | 112.90 (16) |
C8—N1—C9 | 122.81 (14) | C13—O5—H12 | 109.469 |
C2—C1—C6 | 117.00 (17) | C10—N2—H6B | 120.005 |
C1—C2—C3 | 121.55 (19) | C10—N2—H7A | 120.001 |
C2—C3—C4 | 121.08 (18) | H6B—N2—H7A | 119.994 |
C3—C4—C5 | 117.28 (17) | C2—C1—H1 | 121.519 |
C4—C5—C6 | 121.54 (16) | C6—C1—H1 | 121.506 |
C4—C5—C8 | 130.11 (16) | C1—C2—H2 | 119.202 |
C6—C5—C8 | 108.34 (15) | C3—C2—H2 | 119.210 |
C1—C6—C5 | 121.54 (16) | C2—C3—H3 | 119.482 |
C1—C6—C7 | 129.83 (16) | C4—C3—H3 | 119.476 |
C5—C6—C7 | 108.63 (15) | C3—C4—H4 | 121.355 |
O1—C7—N1 | 124.67 (16) | C5—C4—H4 | 121.352 |
O1—C7—C6 | 129.86 (16) | N1—C9—H5 | 106.340 |
N1—C7—C6 | 105.47 (14) | C10—C9—H5 | 106.336 |
O2—C8—N1 | 124.22 (16) | C11—C9—H5 | 106.343 |
O2—C8—C5 | 130.12 (16) | C9—C11—H8A | 108.681 |
N1—C8—C5 | 105.63 (14) | C9—C11—H9B | 108.685 |
N1—C9—C10 | 112.66 (14) | C12—C11—H8A | 108.682 |
N1—C9—C11 | 113.19 (15) | C12—C11—H9B | 108.682 |
C10—C9—C11 | 111.39 (14) | H8A—C11—H9B | 107.616 |
O3—C10—N2 | 122.91 (17) | C11—C12—H10A | 108.474 |
O3—C10—C9 | 117.83 (16) | C11—C12—H11B | 108.468 |
N2—C10—C9 | 119.20 (15) | C13—C12—H10A | 108.470 |
C9—C11—C12 | 114.32 (16) | C13—C12—H11B | 108.470 |
C11—C12—C13 | 115.22 (16) | H10A—C12—H11B | 107.495 |
O4—C13—O5 | 123.27 (17) | ||
C7—N1—C8—O2 | 171.27 (15) | C4—C5—C6—C7 | 179.74 (15) |
C7—N1—C8—C5 | −6.74 (17) | C4—C5—C8—O2 | 5.8 (3) |
C8—N1—C7—O1 | −174.78 (15) | C4—C5—C8—N1 | −176.37 (17) |
C8—N1—C7—C6 | 5.92 (17) | C6—C5—C8—O2 | −172.97 (16) |
C7—N1—C9—C10 | 63.76 (19) | C6—C5—C8—N1 | 4.88 (17) |
C7—N1—C9—C11 | −63.74 (19) | C8—C5—C6—C1 | 178.32 (13) |
C9—N1—C7—O1 | −9.5 (3) | C8—C5—C6—C7 | −1.38 (18) |
C9—N1—C7—C6 | 171.19 (13) | C1—C6—C7—O1 | −1.5 (3) |
C8—N1—C9—C10 | −132.59 (14) | C1—C6—C7—N1 | 177.71 (17) |
C8—N1—C9—C11 | 99.91 (17) | C5—C6—C7—O1 | 178.13 (16) |
C9—N1—C8—O2 | 5.8 (2) | C5—C6—C7—N1 | −2.62 (18) |
C9—N1—C8—C5 | −172.20 (13) | N1—C9—C10—O3 | −167.77 (14) |
C2—C1—C6—C5 | 0.2 (3) | N1—C9—C10—N2 | 15.1 (2) |
C2—C1—C6—C7 | 179.85 (16) | N1—C9—C11—C12 | −70.37 (18) |
C6—C1—C2—C3 | 0.2 (3) | C10—C9—C11—C12 | 161.47 (13) |
C1—C2—C3—C4 | −0.2 (3) | C11—C9—C10—O3 | −39.3 (2) |
C2—C3—C4—C5 | −0.1 (3) | C11—C9—C10—N2 | 143.54 (15) |
C3—C4—C5—C6 | 0.5 (3) | C9—C11—C12—C13 | 77.4 (2) |
C3—C4—C5—C8 | −178.13 (16) | C11—C12—C13—O4 | 15.2 (3) |
C4—C5—C6—C1 | −0.6 (3) | C11—C12—C13—O5 | −166.20 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H12···O3i | 0.83 | 1.80 | 2.6230 (19) | 172 |
N2—H6B···O3ii | 0.87 | 2.32 | 2.891 (2) | 123 |
N2—H7A···O4iii | 0.87 | 2.05 | 2.886 (2) | 161 |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+3/2. |
Footnotes
1Trivial name (S)-phthaloylisoglutamine, one of the hydrolysis products of thalidomide.
References
Allen, F. H. & Trotter, J. (1971). J. Chem. Soc. B, 6, 1073–1079. CSD CrossRef Google Scholar
Blashke, G., Kraft, H. P., Fickentscher, K. & Kohler, F. (1979). Arzneim. Forsch. 29, 1640–1642. Google Scholar
Fischer, E. S., Böhm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., Nagel, J., Serluca, F., Acker, V., Lingaraju, G. M., Tichkule, R. B., Schebesta, M., Forrester, W. C., Schirle, M., Hassiepen, U., Ottl, J., Hild, M., Beckwith, R. E. J., Harper, J. W., Jenkins, J. L. & Thomä, H. (2014). Nature, 512, 49–53. CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y. & Handa, H. (2010). Science, 327, 1345–1350. CrossRef CAS PubMed Google Scholar
Lenz, W. (1961). Lancet, 2, 45–46. Google Scholar
Nakamura, T., Noguchi, T., Miyachi, H. & Hashimoto, Y. (2007). Chem. Pharm. Bull. 55, 651–654. CrossRef PubMed CAS Google Scholar
Nishimura, K., Hashimoto, Y. & Iwasaki, Y. (1994). Chem. Pharm. Bull. 42, 1157–1159. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schumacher, H., Williams, R. L. & Williams, R. T. (1965). Br. J. Pharmacol. 25, 338–351. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, T., Tanaka, M., Shiro, M., Shibata, N., Osaka, T. & Asahi, T. (2010). Phase Transitions, 3, 223–234. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.