research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (±)-(4RS,5RS,7SR)-4-[(1RS,2RS,3RS,6RS)-3-benzo­yl­oxy-2-(2-hy­dr­oxy­ethyl)-6-meth­­oxy­meth­­oxy-2-methyl­cyclo­hex­yl]-8,10,10-tri­methyl-2-oxo-1,3-dioxa­spiro­[4.5]dec-8-en-7-yl benzoate benzene monosolvate

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@a6.keio.jp

Edited by H. Ishida, Okayama University, Japan (Received 18 November 2014; accepted 27 November 2014; online 1 January 2015)

In the title compound, C36H44O10·C6H6, the dioxolane ring adopts an envelope conformation with the C atom bonded to the H atom as the flap, while the cyclo­hexene and cyclo­hexane rings are in half-chair and chair conformations, respectively. In the crystal, a pair of O—H⋯O hydrogen bonds with an R22(26) graph-set motif connect the benzoate mol­ecules into an inversion dimer. The dimers are linked by a weak C—H⋯O inter­action into a tape structure along [01-1]. The benzene mol­ecule links the tapes through C—H⋯O and C—H⋯π inter­actions, forming a sheet parallel to (100).

1. Chemical context

Paclitaxel is a well-known natural diterpenoid containing a taxane framework (tri­cyclo­[9.3.1.03,8]penta­decane; Fig. 1[link]), with potent anti­tumor activity (Wall & Wani, 1995[Wall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18-30.]). This unique and complicated structure has attracted significant inter­est, and a large number of synthetic studies have been reported. In these researches, whereas some structure data after cyclization into taxane or taxoid derivatives are available (§ 4), precursors just before cyclization are very few. The title compound has been obtained in our synthetic study of paclitaxel as a cyclization precursor to build the taxane skeleton (Fukaya et al., 2014[Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2014). In preparation.]).

[Scheme 1]
[Figure 1]
Figure 1
Left: the structure of the tri­cyclo­[9.3.1.03,8]penta­decane (taxane) skeleton. Right: the title compound. Red lines indicate the taxane skeleton with the expected bond (red dashed line). R1 = –OC(=O)Ph, R2 = –OCH2OCH3.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The dioxolane ring (O1/C2/O3/C4/C5) is in an envelope conformation with puckering parameters of Q(2) = 0.165 (2) Å and φ(2) = 114.5 (6)°. The flap atom C4 deviates from the mean plane of other atoms by 0.270 (3) Å. The cyclo­hexene ring (C5–C10), which is spiro-fused to the dioxolane ring, is in a half-chair conformation with puckering parameters of Q = 0.469 (2) Å, θ = 127.5 (2)°, φ(2) = 197.2 (3)°, Q(2) = 0.372 (2) Å and Q(3) = −0.285 (2) Å. Atoms C5 and C6 deviate from the mean plane of the other atoms by −0.493 (4) and 0.212 (4) Å, respectively. The cyclo­hexane ring (C24–C29) is in a chair conformation with puckering parameters Q = 0.587 (2) Å, θ = 4.6 (2)°, φ = 246 (3)°, Q(2) = 0.042 (2) Å and Q(3) = 0.585 (2) Å. The large substituents (C24—C4, C25—C39, C26—O30 and C29—O42) are in the equatorial positions. The meth­oxy­meth­oxy group (O42/C43/O44/C45) shows a helical form with torsion angles of 76.5 (3)° for C29—O42—C43—O44 and 64.8 (3)° for O42—C43—O44—C45 held by weak intra­molecular C—H⋯O inter­actions (Fig. 3[link], Table 1[link]). The atom pairs which may be connected by cyclization into a taxane framework are C9 and C40 (Figs. 1[link] and 3[link]) with their distance being 5.831 (3) Å in the present conformation. They are expected to approach each other by rotation about the C4–C24, C25–C39 and C39–C40 bonds.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C47–C52 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O42 0.99 2.32 3.095 (2) 135
C28—H28A⋯O44 0.99 2.37 2.989 (3) 120
O41—H41⋯O14i 0.84 2.06 2.888 (2) 170
C7—H7⋯O32i 1.00 2.34 3.269 (2) 155
C18—H18⋯O11ii 0.95 2.53 3.465 (2) 168
C49—H49⋯O11 0.95 2.46 3.300 (3) 147
C27—H27ACgiii 0.95 2.64 3.514 (2) 147
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The asymmetric unit of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only H atoms connected to O and chiral C atoms are shown for clarity.
[Figure 3]
Figure 3
The mol­ecular conformation indicating the intra­molecular C—H⋯O inter­actions with dashed lines. Only H atoms involved in hydrogen bonds are shown for clarity. The benzene solvent mol­ecule has been omitted.

3. Supra­molecular features

The crystal packing is stabilized by a pair of inter­molecular O—H⋯O hydrogen bonds (O41—H41⋯O14i; Table 1[link]) with an R22(26) graph-set motif, forming an inversion dimer (Fig. 4[link]). In the dimer, a pair of C—H⋯O hydrogen bonds (C7—H7⋯O32i; Table 1[link]) are also observed. The dimers are further linked by a weak inter­molecular C—H⋯O hydrogen bond (C18—H18⋯O11ii; Table 1[link]) into a tape along [01[\overline{1}]]. The benzene mol­ecule links adjacent tapes through C—H⋯O and C—H⋯π inter­actions (C49—H49⋯O11 and C27—H27ACgiii; Table 1[link]), forming a sheet parallel to (100).

[Figure 4]
Figure 4
The crystal packing viewed along the a axis. Dotted yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds which form the inversion dimers. Black dashed lines indicate the inter­molecular C—H⋯O and C—H⋯π inter­actions. Cg is the centroid of the benzene solvent mol­ecule. Only H atoms involved in hydrogen bonds are shown for clarity. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 1, −y + 1, −z + 2; (iii) −x + 1, −y + 1, −z + 1.]

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.35, November 2013; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), four compounds possessing a core of 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]dec-7-ene are found (Fig. 5[link]). These include its derivatives with 2-one (PUQLAO; Nishizawa et al., 1998[Nishizawa, M., Imagawa, H., Hyodo, I., Takeji, M., Morikuni, E., Asoh, K. & Yamada, H. (1998). Tetrahedron Lett. 39, 389-392.]) and 2,2-dimethyl (NEGBOQ; Poujol et al., 1997[Poujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169-5184.]) substitutes. Another tetra­cyclic taxoid (ILIQUP; Ohba et al., 2003[Ohba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476-o1477.]) with a core of 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]decan-2-one, obtained in our previous study, is closely related to the title compound. Only one crystalline compound just before cyclization is found in the literature (Nicolaou et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]), however it is not registered in the CSD.

[Figure 5]
Figure 5
Core substructures for database survey; (a) 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]dec-7-ene, (b) its 2-one derivative, (c) the 2,2-dimethyl derivative and (d) 6,6,8-trimethyl-1,3-dioxa­spiro­[4.5]decan-2-one.

5. Synthesis and crystallization

The title compound was obtained in a synthetic study on paclitaxel. The cyclo­hexene unit (C5–C10) was provided according to the reported procedure (Nicolaou et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]), and coupled with the substituted cyclo­hexane unit (C24–C29) synthesized from 3-methyl­anisole (Fukaya et al., 2014[Fukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2014). In preparation.]) by a Shapiro reaction (Nicolaou et al., 1995[Nicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634-644.]). Further manipulation of the functional groups afforded the title compound, which was purified by silica gel column chromatography. Colorless crystals were grown from a benzene solution under a pentane-saturated atmosphere by slow evaporation at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The H atom of hy­droxy group (O41) was placed guided by difference maps and then treated as riding, with O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O). 13 problematic reflections were omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C36H44O10·C6H6
Mr 714.82
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 9.6397 (6), 13.6008 (8), 15.0461 (10)
α, β, γ (°) 83.6966 (19), 77.488 (2), 77.9768 (18)
V3) 1879.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.37 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.96, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 25389, 6526, 5180
Rint 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.151, 0.93
No. of reflections 6526
No. of parameters 475
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(±)-(4RS,5RS,7SR)-4-[(1RS,2RS,3RS,6RS)-3-Benzoyloxy-2-(2-hydroxyethyl)-6-methoxymethoxy-2-methylcyclohexyl]-8,10,10-trimethyl-2-oxo-1,3-dioxaspiro[4.5]dec-8-en-7-yl benzoate benzene monosolvate top
Crystal data top
C36H44O10·C6H6F(000) = 764
Mr = 714.82Dx = 1.263 Mg m3
Triclinic, P1Melting point: 459.2 K
a = 9.6397 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6008 (8) ÅCell parameters from 9980 reflections
c = 15.0461 (10) Åθ = 2.2–25.1°
α = 83.6966 (19)°µ = 0.09 mm1
β = 77.488 (2)°T = 90 K
γ = 77.9768 (18)°Plate, colorless
V = 1879.2 (2) Å30.50 × 0.37 × 0.19 mm
Z = 2
Data collection top
Bruker D8 Venture
diffractometer
6526 independent reflections
Radiation source: fine-focus sealed tube5180 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.043
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 2.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1616
Tmin = 0.96, Tmax = 0.98l = 1717
25389 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0996P)2 + 1.0739P]
where P = (Fo2 + 2Fc2)/3
6526 reflections(Δ/σ)max = 0.023
475 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. Recrystallization from benzene, toluene, chloroform, dichloromethane, diethyl ether, tetrahydrofuran, ethyl acetate, acetonitrile and methanol solutions under the air were failed. These solutions under hexane atmosphere also gave unsatisfactory results. Only the condition mentioned above has been quite effective to afford the single crystals suitable for X-ray analysis.; M.p. 458.7–459.2 K (not corrected); IR (film): 3524, 2945, 2890, 1790, 1715, 1274, 714 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.13–8.10 (m, 2H), 8.03–7.99 (m, 2H), 7.60–7.53 (m, 2H), 7.48–7.42 (m, 4H), 5.56 (d, J = 6.0 Hz, 1H), 5.41 (t, J = 0.9 Hz, 1H), 5.09 (dd, J = 11.5, 4.6 Hz, 1H), 4.84 (s, 1H), 4.49 (d, J = 7.7 Hz, 1H), 4.13 (d, J = 7.7 Hz, 1H), 3.76–3.68 (m, 2H), 3.63 (ddd, J = 10.6, 7.2, 7.2 Hz, 1H), 3.08 (d, J = 14.9 Hz, 1H), 2.66 (s, 3H), 2.40 (dddd, J = 12.9, 4.3, 4.0, 4.0 Hz, 1H), 2.34 (d, J = 10.3 Hz, 1H), 2.29 (dd, J = 15.5, 6.3 Hz, 1H), 1.93 (dddd, J = 12.9, 4.3, 4.3, 4.0 Hz, 1H), 1.75 (d, J = 0.9 Hz, 3H), 1.73–1.60 (m, 3H), 1.59–1.45 (m, 2H), 1.22 (s, 3H), 1.20 (s, 3H), 1.11 (s, 3H); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 166.4 (C), 166.0 (C), 155.2 (C), 135.1 (CH), 133.4 (CH), 133.3 (CH), 130.5 (C), 130.2 (C), 130.0 (CH), 129.7 (CH), 129.0 (C), 128.7 (CH), 128.7 (CH), 97.9 (CH2), 87.1 (C), 76.9 (CH), 76.5 (CH), 75.1 (CH), 68.7 (CH), 58.3 (CH2), 54.7 (CH3), 45.9 (CH), 42.0 (C), 41.2 (C), 38.1 (CH2), 31.5 (CH2), 30.6 (CH2), 25.7 (CH3), 25.1 (CH2), 22.3 (CH3), 20.2 (CH3), 16.8 (CH3); HRMS (ESI): m/z calcd for C36H44O10Na+ [M+Na]+ 659.2832, found 659.2836.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Problematic 13 reflections with |I(obs)-I(calc)|/σW(I) greater than 10 (–8 –2 1, –8 –2 2, –8 –1 2, –7 –4 3, –8 –3 6, 3 11 7, 3 10 8, 0 9 9, 2 10 9, 2 8 10, 4 9 10, 2 7 11, 3 8 11) have been omitted in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25606 (14)0.79849 (9)0.81366 (8)0.0191 (3)
C20.2032 (2)0.71963 (14)0.79948 (13)0.0201 (4)
O30.16170 (14)0.73096 (9)0.71879 (9)0.0206 (3)
C40.2098 (2)0.81686 (14)0.66496 (13)0.0185 (4)
H40.12470.85970.64280.022*
C50.2481 (2)0.87501 (14)0.73783 (12)0.0181 (4)
C60.3931 (2)0.90852 (14)0.71464 (13)0.0194 (4)
H6A0.39180.96130.66380.023*
H6B0.46980.85060.69340.023*
C70.4298 (2)0.94956 (14)0.79519 (13)0.0204 (4)
H70.50420.99250.77160.024*
C80.3023 (2)1.01014 (14)0.85459 (13)0.0204 (4)
C90.1692 (2)1.01625 (14)0.84154 (13)0.0219 (4)
H90.0941.05820.87990.026*
C100.1244 (2)0.96338 (14)0.77197 (13)0.0206 (4)
O110.19139 (15)0.64864 (10)0.85222 (9)0.0258 (3)
O120.48877 (14)0.86671 (9)0.85533 (9)0.0206 (3)
C130.6265 (2)0.82130 (14)0.82802 (13)0.0204 (4)
O140.70642 (15)0.84907 (11)0.76027 (10)0.0279 (3)
C150.6684 (2)0.73187 (15)0.88941 (13)0.0221 (4)
C160.8142 (2)0.68716 (16)0.88007 (14)0.0264 (5)
H160.88530.71650.83780.032*
C170.8556 (2)0.60012 (16)0.93234 (16)0.0324 (5)
H170.9550.56990.92630.039*
C180.7518 (3)0.55705 (16)0.99346 (15)0.0328 (5)
H180.77990.49651.02850.039*
C190.6074 (3)0.60200 (16)1.00363 (15)0.0321 (5)
H190.53670.57291.04650.039*
C200.5651 (2)0.68926 (15)0.95176 (14)0.0269 (5)
H200.46560.71980.95880.032*
C210.0916 (2)1.04115 (15)0.69334 (15)0.0282 (5)
H21A0.02451.10080.71820.042*
H21B0.04761.01160.65240.042*
H21C0.18181.06060.65930.042*
C220.0155 (2)0.92602 (16)0.81716 (16)0.0299 (5)
H22A0.00110.88030.87050.045*
H22B0.0450.89020.77340.045*
H22C0.09210.98370.83650.045*
C230.3361 (2)1.06479 (16)0.92679 (14)0.0274 (5)
H23A0.24661.10540.95870.041*
H23B0.40421.10890.89810.041*
H23C0.37951.01570.97050.041*
C240.3249 (2)0.78089 (14)0.58056 (13)0.0191 (4)
H240.39260.82970.56590.023*
C250.2548 (2)0.78407 (15)0.49501 (13)0.0213 (4)
C260.3765 (2)0.74420 (15)0.41478 (13)0.0224 (4)
H260.44230.79390.39560.027*
C270.4645 (2)0.64260 (15)0.43479 (14)0.0269 (5)
H27A0.54110.6230.38090.032*
H27B0.40180.59150.44850.032*
C280.5328 (2)0.64693 (15)0.51624 (14)0.0248 (4)
H28A0.59160.58020.52960.03*
H28B0.59750.69670.50170.03*
C290.4158 (2)0.67659 (14)0.59900 (13)0.0208 (4)
H290.35130.62570.61330.025*
O300.30900 (16)0.73471 (10)0.33928 (9)0.0268 (3)
C310.3358 (2)0.79233 (15)0.26237 (13)0.0223 (4)
O320.40856 (17)0.85680 (11)0.25168 (10)0.0316 (4)
C330.2631 (2)0.76877 (15)0.19191 (13)0.0208 (4)
C340.2657 (2)0.83032 (15)0.11194 (13)0.0247 (5)
H340.31580.88490.10240.03*
C350.1955 (2)0.81243 (17)0.04616 (14)0.0286 (5)
H350.19680.8550.00840.034*
C360.1237 (2)0.73291 (18)0.05975 (14)0.0330 (5)
H360.0750.72090.01470.04*
C370.1222 (3)0.67046 (18)0.13876 (15)0.0344 (5)
H370.07320.61530.14760.041*
C380.1919 (2)0.68816 (16)0.20503 (14)0.0296 (5)
H380.19090.64520.25930.036*
C390.1840 (2)0.89252 (15)0.46698 (14)0.0253 (5)
H39A0.14770.89010.41070.03*
H39B0.09860.91410.51530.03*
C400.2753 (2)0.97374 (15)0.44990 (15)0.0303 (5)
H40A0.30690.9820.50660.036*
H40B0.36270.9540.40230.036*
O410.1917 (2)1.06636 (12)0.42091 (11)0.0461 (5)
H410.23051.08480.36790.069*
O420.47536 (14)0.68229 (10)0.67742 (9)0.0223 (3)
C430.5313 (3)0.58881 (17)0.71882 (16)0.0364 (6)
H43A0.54020.5990.78140.044*
H43B0.46180.54320.7240.044*
O440.6660 (2)0.54241 (13)0.67142 (12)0.0538 (5)
C450.7765 (3)0.5978 (3)0.6691 (3)0.0826 (13)
H45A0.74360.66830.64920.124*
H45B0.86390.56910.62620.124*
H45C0.79830.59430.73010.124*
C460.1359 (2)0.72061 (16)0.51442 (14)0.0273 (5)
H46A0.0960.72250.45950.041*
H46B0.05880.7480.56440.041*
H46C0.17710.65080.53180.041*
C470.1268 (2)0.40365 (17)0.63928 (16)0.0345 (5)
H470.07990.43030.590.041*
C480.1481 (2)0.46772 (17)0.69805 (16)0.0343 (5)
H480.11570.53830.68920.041*
C490.2161 (2)0.42938 (16)0.76949 (16)0.0335 (5)
H490.22980.47360.81020.04*
C500.2644 (3)0.32710 (17)0.78217 (16)0.0356 (5)
H500.31190.30080.83120.043*
C510.2433 (3)0.26278 (17)0.72304 (16)0.0350 (5)
H510.27690.19230.73140.042*
C520.1735 (2)0.30103 (17)0.65192 (16)0.0329 (5)
H520.15780.25690.61190.04*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (7)0.0173 (7)0.0177 (7)0.0039 (5)0.0048 (5)0.0020 (5)
C20.0178 (10)0.0194 (10)0.0209 (10)0.0022 (8)0.0001 (8)0.0021 (8)
O30.0242 (7)0.0203 (7)0.0186 (7)0.0082 (6)0.0052 (6)0.0023 (5)
C40.0169 (10)0.0187 (10)0.0202 (10)0.0046 (7)0.0050 (8)0.0029 (8)
C50.0185 (10)0.0174 (9)0.0168 (9)0.0019 (7)0.0045 (8)0.0045 (8)
C60.0198 (10)0.0191 (10)0.0190 (10)0.0024 (8)0.0063 (8)0.0030 (8)
C70.0214 (10)0.0179 (10)0.0223 (10)0.0037 (8)0.0089 (8)0.0056 (8)
C80.0252 (11)0.0160 (9)0.0202 (10)0.0040 (8)0.0065 (8)0.0021 (8)
C90.0240 (11)0.0171 (10)0.0229 (10)0.0012 (8)0.0040 (8)0.0005 (8)
C100.0165 (10)0.0198 (10)0.0255 (10)0.0021 (8)0.0060 (8)0.0011 (8)
O110.0350 (8)0.0217 (7)0.0201 (7)0.0099 (6)0.0021 (6)0.0025 (6)
O120.0216 (7)0.0199 (7)0.0212 (7)0.0036 (6)0.0088 (6)0.0026 (6)
C130.0185 (10)0.0228 (10)0.0232 (10)0.0073 (8)0.0083 (8)0.0012 (8)
O140.0221 (8)0.0314 (8)0.0292 (8)0.0074 (6)0.0062 (6)0.0090 (6)
C150.0234 (11)0.0225 (10)0.0220 (10)0.0046 (8)0.0083 (8)0.0000 (8)
C160.0227 (11)0.0294 (11)0.0286 (11)0.0074 (9)0.0074 (9)0.0006 (9)
C170.0279 (12)0.0309 (12)0.0389 (13)0.0003 (9)0.0163 (10)0.0041 (10)
C180.0432 (14)0.0257 (11)0.0294 (12)0.0017 (10)0.0157 (10)0.0064 (9)
C190.0397 (13)0.0277 (12)0.0258 (11)0.0066 (10)0.0023 (10)0.0034 (9)
C200.0264 (11)0.0275 (11)0.0248 (11)0.0033 (9)0.0046 (9)0.0022 (9)
C210.0295 (11)0.0220 (11)0.0359 (12)0.0001 (9)0.0170 (10)0.0024 (9)
C220.0181 (11)0.0296 (12)0.0413 (13)0.0026 (9)0.0032 (9)0.0092 (10)
C230.0284 (11)0.0287 (11)0.0265 (11)0.0050 (9)0.0080 (9)0.0042 (9)
C240.0206 (10)0.0190 (10)0.0188 (10)0.0053 (8)0.0060 (8)0.0013 (8)
C250.0249 (11)0.0238 (10)0.0171 (10)0.0059 (8)0.0087 (8)0.0022 (8)
C260.0293 (11)0.0230 (10)0.0180 (10)0.0079 (8)0.0093 (8)0.0001 (8)
C270.0346 (12)0.0238 (11)0.0212 (10)0.0040 (9)0.0041 (9)0.0024 (9)
C280.0275 (11)0.0201 (10)0.0248 (11)0.0016 (8)0.0056 (9)0.0038 (8)
C290.0228 (10)0.0209 (10)0.0195 (10)0.0027 (8)0.0083 (8)0.0003 (8)
O300.0391 (9)0.0297 (8)0.0164 (7)0.0147 (7)0.0100 (6)0.0027 (6)
C310.0229 (10)0.0226 (10)0.0191 (10)0.0027 (8)0.0018 (8)0.0011 (8)
O320.0425 (9)0.0319 (8)0.0260 (8)0.0188 (7)0.0114 (7)0.0054 (6)
C330.0200 (10)0.0236 (10)0.0165 (10)0.0013 (8)0.0003 (8)0.0039 (8)
C340.0237 (11)0.0251 (11)0.0227 (10)0.0014 (8)0.0022 (8)0.0013 (9)
C350.0271 (11)0.0364 (12)0.0180 (10)0.0023 (9)0.0036 (9)0.0017 (9)
C360.0323 (12)0.0495 (14)0.0196 (11)0.0069 (10)0.0068 (9)0.0109 (10)
C370.0412 (13)0.0407 (13)0.0272 (12)0.0188 (11)0.0063 (10)0.0072 (10)
C380.0351 (12)0.0334 (12)0.0218 (11)0.0120 (10)0.0039 (9)0.0012 (9)
C390.0263 (11)0.0296 (11)0.0181 (10)0.0001 (9)0.0077 (8)0.0029 (8)
C400.0350 (12)0.0222 (11)0.0282 (11)0.0008 (9)0.0038 (9)0.0043 (9)
O410.0580 (11)0.0276 (9)0.0340 (9)0.0095 (8)0.0067 (8)0.0132 (7)
O420.0253 (7)0.0208 (7)0.0203 (7)0.0018 (6)0.0096 (6)0.0009 (6)
C430.0510 (15)0.0277 (12)0.0318 (12)0.0042 (11)0.0239 (11)0.0017 (10)
O440.0635 (12)0.0453 (10)0.0521 (11)0.0305 (9)0.0381 (10)0.0268 (9)
C450.0367 (17)0.125 (3)0.092 (3)0.0260 (18)0.0341 (17)0.067 (2)
C460.0288 (11)0.0358 (12)0.0211 (10)0.0119 (9)0.0099 (9)0.0026 (9)
C470.0288 (12)0.0347 (13)0.0369 (13)0.0037 (10)0.0053 (10)0.0033 (10)
C480.0286 (12)0.0248 (11)0.0432 (14)0.0022 (9)0.0024 (10)0.0006 (10)
C490.0366 (13)0.0272 (12)0.0351 (13)0.0088 (10)0.0008 (10)0.0063 (10)
C500.0390 (13)0.0334 (13)0.0345 (13)0.0102 (10)0.0070 (10)0.0028 (10)
C510.0368 (13)0.0249 (12)0.0415 (14)0.0055 (10)0.0063 (11)0.0020 (10)
C520.0337 (13)0.0287 (12)0.0365 (13)0.0090 (10)0.0034 (10)0.0043 (10)
Geometric parameters (Å, º) top
O1—C21.334 (2)C27—C281.523 (3)
O1—C51.461 (2)C27—H27A0.99
C2—O111.189 (2)C27—H27B0.99
C2—O31.342 (2)C28—C291.516 (3)
O3—C41.446 (2)C28—H28A0.99
C4—C241.544 (3)C28—H28B0.99
C4—C51.566 (3)C29—O421.435 (2)
C4—H41.0C29—H291.0
C5—C61.517 (3)O30—C311.333 (2)
C5—C101.550 (3)C31—O321.209 (2)
C6—C71.524 (3)C31—C331.486 (3)
C6—H6A0.99C33—C381.385 (3)
C6—H6B0.99C33—C341.387 (3)
C7—O121.464 (2)C34—C351.381 (3)
C7—C81.501 (3)C34—H340.95
C7—H71.0C35—C361.375 (3)
C8—C91.324 (3)C35—H350.95
C8—C231.507 (3)C36—C371.382 (3)
C9—C101.513 (3)C36—H360.95
C9—H90.95C37—C381.383 (3)
C10—C221.534 (3)C37—H370.95
C10—C211.538 (3)C38—H380.95
O12—C131.338 (2)C39—C401.519 (3)
C13—O141.213 (2)C39—H39A0.99
C13—C151.485 (3)C39—H39B0.99
C15—C201.388 (3)C40—O411.427 (3)
C15—C161.393 (3)C40—H40A0.99
C16—C171.383 (3)C40—H40B0.99
C16—H160.95O41—H410.84
C17—C181.385 (3)O42—C431.408 (2)
C17—H170.95C43—O441.396 (3)
C18—C191.381 (3)C43—H43A0.99
C18—H180.95C43—H43B0.99
C19—C201.385 (3)O44—C451.420 (4)
C19—H190.95C45—H45A0.98
C20—H200.95C45—H45B0.98
C21—H21A0.98C45—H45C0.98
C21—H21B0.98C46—H46A0.98
C21—H21C0.98C46—H46B0.98
C22—H22A0.98C46—H46C0.98
C22—H22B0.98C47—C521.380 (3)
C22—H22C0.98C47—C481.380 (3)
C23—H23A0.98C47—H470.95
C23—H23B0.98C48—C491.378 (3)
C23—H23C0.98C48—H480.95
C24—C291.536 (3)C49—C501.378 (3)
C24—C251.571 (2)C49—H490.95
C24—H241.0C50—C511.386 (3)
C25—C461.535 (3)C50—H500.95
C25—C261.547 (3)C51—C521.383 (3)
C25—C391.545 (3)C51—H510.95
C26—O301.455 (2)C52—H520.95
C26—C271.500 (3)C9—C405.831 (3)
C26—H261.0
C2—O1—C5110.64 (14)C27—C26—C25114.64 (16)
O11—C2—O1124.53 (18)O30—C26—H26109.1
O11—C2—O3123.74 (17)C27—C26—H26109.1
O1—C2—O3111.71 (16)C25—C26—H26109.1
C2—O3—C4110.32 (14)C26—C27—C28109.18 (16)
O3—C4—C24109.71 (15)C26—C27—H27A109.8
O3—C4—C5102.47 (14)C28—C27—H27A109.8
C24—C4—C5120.64 (15)C26—C27—H27B109.8
O3—C4—H4107.8C28—C27—H27B109.8
C24—C4—H4107.8H27A—C27—H27B108.3
C5—C4—H4107.8C29—C28—C27110.00 (16)
O1—C5—C6106.35 (14)C29—C28—H28A109.7
O1—C5—C10107.29 (14)C27—C28—H28A109.7
C6—C5—C10110.80 (15)C29—C28—H28B109.7
O1—C5—C4101.92 (14)C27—C28—H28B109.7
C6—C5—C4117.25 (15)H28A—C28—H28B108.2
C10—C5—C4112.21 (15)O42—C29—C28111.95 (15)
C5—C6—C7112.96 (16)O42—C29—C24106.93 (15)
C5—C6—H6A109.0C28—C29—C24110.66 (16)
C7—C6—H6A109.0O42—C29—H29109.1
C5—C6—H6B109.0C28—C29—H29109.1
C7—C6—H6B109.0C24—C29—H29109.1
H6A—C6—H6B107.8C31—O30—C26119.33 (15)
O12—C7—C8105.62 (15)O32—C31—O30124.21 (18)
O12—C7—C6110.35 (14)O32—C31—C33124.19 (18)
C8—C7—C6114.15 (16)O30—C31—C33111.59 (16)
O12—C7—H7108.9C38—C33—C34119.78 (19)
C8—C7—H7108.9C38—C33—C31121.56 (18)
C6—C7—H7108.9C34—C33—C31118.65 (18)
C9—C8—C7120.99 (18)C35—C34—C33120.20 (19)
C9—C8—C23122.92 (19)C35—C34—H34119.9
C7—C8—C23116.07 (17)C33—C34—H34119.9
C8—C9—C10126.79 (18)C36—C35—C34119.9 (2)
C8—C9—H9116.6C36—C35—H35120.1
C10—C9—H9116.6C34—C35—H35120.1
C9—C10—C22108.36 (17)C35—C36—C37120.3 (2)
C9—C10—C21108.05 (16)C35—C36—H36119.9
C22—C10—C21108.13 (16)C37—C36—H36119.9
C9—C10—C5109.25 (15)C38—C37—C36120.1 (2)
C22—C10—C5111.47 (16)C38—C37—H37119.9
C21—C10—C5111.47 (16)C36—C37—H37119.9
C13—O12—C7117.11 (14)C37—C38—C33119.7 (2)
O14—C13—O12123.85 (17)C37—C38—H38120.1
O14—C13—C15124.22 (18)C33—C38—H38120.1
O12—C13—C15111.92 (16)C40—C39—C25118.35 (17)
C20—C15—C16119.80 (18)C40—C39—H39A107.7
C20—C15—C13121.31 (18)C25—C39—H39A107.7
C16—C15—C13118.79 (18)C40—C39—H39B107.7
C17—C16—C15120.06 (19)C25—C39—H39B107.7
C17—C16—H16120.0H39A—C39—H39B107.1
C15—C16—H16120.0O41—C40—C39109.16 (18)
C18—C17—C16119.9 (2)O41—C40—H40A109.8
C18—C17—H17120.0C39—C40—H40A109.8
C16—C17—H17120.0O41—C40—H40B109.8
C19—C18—C17120.1 (2)C39—C40—H40B109.8
C19—C18—H18120.0H40A—C40—H40B108.3
C17—C18—H18120.0C40—O41—H41109.5
C18—C19—C20120.4 (2)C43—O42—C29115.15 (15)
C18—C19—H19119.8O44—C43—O42113.8 (2)
C20—C19—H19119.8O44—C43—H43A108.8
C15—C20—C19119.7 (2)O42—C43—H43A108.8
C15—C20—H20120.1O44—C43—H43B108.8
C19—C20—H20120.1O42—C43—H43B108.8
C10—C21—H21A109.5H43A—C43—H43B107.7
C10—C21—H21B109.5C43—O44—C45112.71 (19)
H21A—C21—H21B109.5O44—C45—H45A109.5
C10—C21—H21C109.5O44—C45—H45B109.5
H21A—C21—H21C109.5H45A—C45—H45B109.5
H21B—C21—H21C109.5O44—C45—H45C109.5
C10—C22—H22A109.5H45A—C45—H45C109.5
C10—C22—H22B109.5H45B—C45—H45C109.5
H22A—C22—H22B109.5C25—C46—H46A109.5
C10—C22—H22C109.5C25—C46—H46B109.5
H22A—C22—H22C109.5H46A—C46—H46B109.5
H22B—C22—H22C109.5C25—C46—H46C109.5
C8—C23—H23A109.5H46A—C46—H46C109.5
C8—C23—H23B109.5H46B—C46—H46C109.5
H23A—C23—H23B109.5C52—C47—C48120.1 (2)
C8—C23—H23C109.5C52—C47—H47119.9
H23A—C23—H23C109.5C48—C47—H47119.9
H23B—C23—H23C109.5C49—C48—C47120.1 (2)
C29—C24—C4112.45 (15)C49—C48—H48120.0
C29—C24—C25111.56 (15)C47—C48—H48120.0
C4—C24—C25111.32 (15)C48—C49—C50120.2 (2)
C29—C24—H24107.1C48—C49—H49119.9
C4—C24—H24107.1C50—C49—H49119.9
C25—C24—H24107.1C49—C50—C51119.7 (2)
C46—C25—C26110.71 (16)C49—C50—H50120.2
C46—C25—C39107.03 (16)C51—C50—H50120.2
C26—C25—C39108.36 (15)C52—C51—C50120.2 (2)
C46—C25—C24111.22 (15)C52—C51—H51119.9
C26—C25—C24107.84 (15)C50—C51—H51119.9
C39—C25—C24111.66 (15)C47—C52—C51119.7 (2)
O30—C26—C27106.89 (15)C47—C52—H52120.2
O30—C26—C25107.73 (15)C51—C52—H52120.2
C5—O1—C2—O11176.77 (18)C5—C4—C24—C2987.2 (2)
C5—O1—C2—O31.9 (2)O3—C4—C24—C2594.64 (17)
O11—C2—O3—C4171.43 (18)C5—C4—C24—C25146.76 (16)
O1—C2—O3—C49.9 (2)C29—C24—C25—C4669.7 (2)
C2—O3—C4—C24113.11 (16)C4—C24—C25—C4656.9 (2)
C2—O3—C4—C516.21 (18)C29—C24—C25—C2651.9 (2)
C2—O1—C5—C6134.83 (16)C4—C24—C25—C26178.43 (15)
C2—O1—C5—C10106.55 (16)C29—C24—C25—C39170.86 (16)
C2—O1—C5—C411.50 (18)C4—C24—C25—C3962.6 (2)
O3—C4—C5—O116.00 (16)C46—C25—C26—O3050.78 (19)
C24—C4—C5—O1106.16 (17)C39—C25—C26—O3066.31 (18)
O3—C4—C5—C6131.61 (16)C24—C25—C26—O30172.66 (14)
C24—C4—C5—C69.4 (2)C46—C25—C26—C2768.1 (2)
O3—C4—C5—C1098.47 (16)C39—C25—C26—C27174.86 (16)
C24—C4—C5—C10139.36 (17)C24—C25—C26—C2753.8 (2)
O1—C5—C6—C757.91 (19)O30—C26—C27—C28177.59 (15)
C10—C5—C6—C758.4 (2)C25—C26—C27—C2858.3 (2)
C4—C5—C6—C7171.06 (15)C26—C27—C28—C2959.7 (2)
C5—C6—C7—O1281.26 (19)C27—C28—C29—O42179.61 (15)
C5—C6—C7—C837.5 (2)C27—C28—C29—C2460.4 (2)
O12—C7—C8—C9114.50 (19)C4—C24—C29—O4254.6 (2)
C6—C7—C8—C96.9 (3)C25—C24—C29—O42179.52 (14)
O12—C7—C8—C2367.2 (2)C4—C24—C29—C28176.75 (15)
C6—C7—C8—C23171.41 (16)C25—C24—C29—C2857.4 (2)
C7—C8—C9—C102.7 (3)C27—C26—O30—C31120.95 (19)
C23—C8—C9—C10179.15 (18)C25—C26—O30—C31115.37 (18)
C8—C9—C10—C22139.3 (2)C26—O30—C31—O323.6 (3)
C8—C9—C10—C21103.8 (2)C26—O30—C31—C33177.38 (16)
C8—C9—C10—C517.7 (3)O32—C31—C33—C38174.2 (2)
O1—C5—C10—C969.18 (18)O30—C31—C33—C386.9 (3)
C6—C5—C10—C946.5 (2)O32—C31—C33—C346.7 (3)
C4—C5—C10—C9179.68 (15)O30—C31—C33—C34172.23 (17)
O1—C5—C10—C2250.6 (2)C38—C33—C34—C351.1 (3)
C6—C5—C10—C22166.25 (16)C31—C33—C34—C35178.07 (18)
C4—C5—C10—C2260.6 (2)C33—C34—C35—C360.5 (3)
O1—C5—C10—C21171.49 (14)C34—C35—C36—C370.4 (3)
C6—C5—C10—C2172.82 (19)C35—C36—C37—C380.6 (3)
C4—C5—C10—C2160.3 (2)C36—C37—C38—C330.0 (3)
C8—C7—O12—C13158.97 (15)C34—C33—C38—C370.8 (3)
C6—C7—O12—C1377.20 (19)C31—C33—C38—C37178.25 (19)
C7—O12—C13—O145.0 (3)C46—C25—C39—C40175.91 (17)
C7—O12—C13—C15173.77 (15)C26—C25—C39—C4064.7 (2)
O14—C13—C15—C20163.81 (19)C24—C25—C39—C4054.0 (2)
O12—C13—C15—C2015.0 (3)C25—C39—C40—O41177.32 (17)
O14—C13—C15—C1612.6 (3)C28—C29—O42—C4374.0 (2)
O12—C13—C15—C16168.65 (17)C24—C29—O42—C43164.63 (17)
C20—C15—C16—C170.5 (3)C29—O42—C43—O4476.5 (2)
C13—C15—C16—C17175.95 (19)O42—C43—O44—C4564.8 (3)
C15—C16—C17—C180.5 (3)C52—C47—C48—C490.1 (3)
C16—C17—C18—C191.3 (3)C47—C48—C49—C500.6 (3)
C17—C18—C19—C201.2 (3)C48—C49—C50—C510.4 (3)
C16—C15—C20—C190.6 (3)C49—C50—C51—C520.3 (3)
C13—C15—C20—C19175.70 (19)C48—C47—C52—C510.8 (3)
C18—C19—C20—C150.2 (3)C50—C51—C52—C470.9 (3)
O3—C4—C24—C2931.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C47–C52 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O420.992.323.095 (2)135
C28—H28A···O440.992.372.989 (3)120
O41—H41···O14i0.842.062.888 (2)170
C7—H7···O32i1.002.343.269 (2)155
C18—H18···O11ii0.952.533.465 (2)168
C49—H49···O110.952.463.300 (3)147
C27—H27A···Cgiii0.952.643.514 (2)147
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor S. Ohba (Keio University, Japan) and Dr K. Yoza (Bruker AXS Inc.) for providing valuable advice.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukaya, K., Sugai, T., Yamaguchi, Y., Watanabe, A., Sato, T. & Chida, N. (2014). In preparation.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNicolaou, K. C., Liu, J.-J., Yang, Z., Ueno, H., Sorensen, E. J., Claiborne, C. F., Guy, R. K., Hwang, C.-K., Nakada, M. & Nantermet, P. G. (1995). J. Am. Chem. Soc. 117, 634–644.  CrossRef CAS Web of Science Google Scholar
First citationNishizawa, M., Imagawa, H., Hyodo, I., Takeji, M., Morikuni, E., Asoh, K. & Yamada, H. (1998). Tetrahedron Lett. 39, 389–392.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhba, S., Chinen, A., Matsumoto, Y. & Chida, N. (2003). Acta Cryst. E59, o1476–o1477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPoujol, H., Ahond, A., Al Mourabit, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1997). Tetrahedron, 53, 5169–5184.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWall, M. E. & Wani, M. C. (1995). ACS Symp. Ser. 583, 18–30.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds