metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(η5-cyclo­penta­dien­yl)(2,3-di­ethyl­butane-1,4-di­yl)hafnium(IV)

aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, 119991 Moscow, Russia, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 26 November 2014; accepted 8 December 2014; online 1 January 2015)

The title compound, [Hf(C5H5)2(C8H16)], proves a structural motif of hafna­cyclo­pentane besides the coordination of two cyclo­penta­dienyl ligands in an η5-fashion. The hafna­cyclo­pentane ring has a twist conformation and is substituted by two ethyl groups in the β,β′-positions, which are trans orientated to each other. One cyclo­penta­dienyl ring and one ethyl group are each disordered over two positions with site-occupancy ratios of 0.679 (15):0.321 (15) and 0.702 (18):0.298 (18), respectively.

1. Related literature

For crystal structures of unsubstituted metalla­cyclo­pentane complexes of group 4 metallocenes, see: Beweries, Fischer et al. (2009[Beweries, T., Fischer, C., Peitz, S., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A., Heller, D. & Rosenthal, U. (2009). J. Am. Chem. Soc. 131, 4463-4469.]); Mansel et al. (1997[Mansel, S., Thomas, D., Lefeber, C., Heller, D., Kempe, R., Baumann, W. & Rosenthal, U. (1997). Organometallics, 16, 2886-2890.]); Takahashi et al. (1996[Takahashi, T., Fischer, R., Xi, Z. & Nakajima, K. (1996). Chem. Lett. pp. 357-358.]); Klahn et al. (2009[Klahn, M., Baumann, W., Arndt, P., Burlakov, V. V., Schareina, T., Spannenberg, A. & Rosenthal, U. (2009). Organometallics, 28, 915-918.]); McGovern et al. (2012[McGovern, G. P., Hung-Low, F., Tye, J. W. & Bradley, C. A. (2012). Organometallics, 31, 3865-3879.]); Lee et al. (1999[Lee, L. W. M., Piers, W. E., Parvez, M., Rettig, S. J. & Young, V. G. Jr (1999). Organometallics, 18, 3904-3912.]). For crystal structures of 2,4-phenyl­substituted metalla­cyclo­pentane complexes of group 4 metallocenes, see: Beweries, Burlakov et al. (2009[Beweries, T., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2009). Eur. J. Inorg. Chem. pp. 1456-1459.]); Mansel et al. (1997[Mansel, S., Thomas, D., Lefeber, C., Heller, D., Kempe, R., Baumann, W. & Rosenthal, U. (1997). Organometallics, 16, 2886-2890.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Hf(C5H5)2(C8H16)]

  • Mr = 420.88

  • Monoclinic, P 21 /c

  • a = 12.7055 (6) Å

  • b = 15.5909 (5) Å

  • c = 8.1035 (3) Å

  • β = 93.982 (3)°

  • V = 1601.35 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.50 mm−1

  • T = 200 K

  • 0.50 × 0.48 × 0.15 mm

2.2. Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.157, Tmax = 0.361

  • 25548 measured reflections

  • 3679 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.15

  • 3679 reflections

  • 193 parameters

  • 64 restraints

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.55 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Synthesis and crystallization top

A suspension of Cp2HfCl2 (2.243 g, 5.91 mmol) in 20 ml of toluene was treated with 7.5 ml (12.0 mmol) of a 1.6 M solution of n-BuLi in n-hexane. The mixture was stirred for 30 minutes at room temperature. After filtration bis­(tri­methyl­silyl)acetyl­ene (1.5 ml, 6.67 mmol) and pyridine (0.60 ml, 7.45 mmol) were added to the resulting yellow solution. The reaction mixture was stirred 3.5 hours at 100 °C. All volatiles were evaporated from the dark purple solution and the residue was extracted with 40–50 ml of n-hexane at 55 °C. The solution was filtered, concentrated in vacuum to 10–15 ml and stored at –78°C. After one day dark purple crystals had formed which were isolated by decanting of the mother liquor, washed with cold n-hexane and dried in vacuum to give a mixture of the alkyne complex Cp2Hf(η2-Me3SiC2SiMe3)(py) and the title compound in a ratio of 2:1 (checked by NMR). After recrystallization from n-hexane brown crystals of the title complex were isolated: 0,120 g, yield: 5 %. Anal. Calcd. for C18H26Hf (420.89 g·mol-1): C 51.37, H 6.23%. Found: C 50.99, H 6.03%.

Single Crystals were obtained from a saturated solution (n-hexane) at ambient temperature.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. SADI and SAME instructions were used to improve the geometry of the cyclo­penta­dienyl rings. Additionally, the anisotropic displacement parameters of C6A–C10A were restrained to be equal (SIMU). SADI was used for the disordered ethyl group. For the ethyl group C15, C16 the use of DFIX was necessary due to unresolved disorder. Atoms of the disordered ethyl group and the minor occupied atoms of the disordered cyclo­penta­dienyl ring are refined isotropically. The highest peak in the final difference Fourier map is located 1.36 Å from C13 and the deepest hole 0.83 Å from C3.

Related literature top

For crystal structures of unsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Fischer et al. (2009); Mansel et al. (1997); Takahashi et al. (1996); Klahn et al. (2009); McGovern et al. (2012); Lee et al. (1999). For crystal structures of 2,4-phenylsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Burlakov et al. (2009); Mansel et al. (1997).

Structure description top

For crystal structures of unsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Fischer et al. (2009); Mansel et al. (1997); Takahashi et al. (1996); Klahn et al. (2009); McGovern et al. (2012); Lee et al. (1999). For crystal structures of 2,4-phenylsubstituted metallacyclopentane complexes of group 4 metallocenes, see: Beweries, Burlakov et al. (2009); Mansel et al. (1997).

Synthesis and crystallization top

A suspension of Cp2HfCl2 (2.243 g, 5.91 mmol) in 20 ml of toluene was treated with 7.5 ml (12.0 mmol) of a 1.6 M solution of n-BuLi in n-hexane. The mixture was stirred for 30 minutes at room temperature. After filtration bis­(tri­methyl­silyl)acetyl­ene (1.5 ml, 6.67 mmol) and pyridine (0.60 ml, 7.45 mmol) were added to the resulting yellow solution. The reaction mixture was stirred 3.5 hours at 100 °C. All volatiles were evaporated from the dark purple solution and the residue was extracted with 40–50 ml of n-hexane at 55 °C. The solution was filtered, concentrated in vacuum to 10–15 ml and stored at –78°C. After one day dark purple crystals had formed which were isolated by decanting of the mother liquor, washed with cold n-hexane and dried in vacuum to give a mixture of the alkyne complex Cp2Hf(η2-Me3SiC2SiMe3)(py) and the title compound in a ratio of 2:1 (checked by NMR). After recrystallization from n-hexane brown crystals of the title complex were isolated: 0,120 g, yield: 5 %. Anal. Calcd. for C18H26Hf (420.89 g·mol-1): C 51.37, H 6.23%. Found: C 50.99, H 6.03%.

Single Crystals were obtained from a saturated solution (n-hexane) at ambient temperature.

Refinement details top

H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 Å (CH), 0.99 Å (CH2) and 0.98 Å (CH3), and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. SADI and SAME instructions were used to improve the geometry of the cyclo­penta­dienyl rings. Additionally, the anisotropic displacement parameters of C6A–C10A were restrained to be equal (SIMU). SADI was used for the disordered ethyl group. For the ethyl group C15, C16 the use of DFIX was necessary due to unresolved disorder. Atoms of the disordered ethyl group and the minor occupied atoms of the disordered cyclo­penta­dienyl ring are refined isotropically. The highest peak in the final difference Fourier map is located 1.36 Å from C13 and the deepest hole 0.83 Å from C3.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 30% probability level. H atoms have been omitted for clarity.
Bis(η5-cyclopentadienyl)(2,3-diethylbutane-1,4-diyl)hafnium(IV) top
Crystal data top
[Hf(C5H5)2(C8H16)]F(000) = 824
Mr = 420.88Dx = 1.746 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7055 (6) ÅCell parameters from 7164 reflections
b = 15.5909 (5) Åθ = 2.0–29.6°
c = 8.1035 (3) ŵ = 6.50 mm1
β = 93.982 (3)°T = 200 K
V = 1601.35 (11) Å3Prism, colourless
Z = 40.50 × 0.48 × 0.15 mm
Data collection top
Stoe IPDS II
diffractometer
3679 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1616
Tmin = 0.157, Tmax = 0.361k = 2020
25548 measured reflectionsl = 1010
Refinement top
Refinement on F264 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0254P)2 + 4.0826P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3679 reflectionsΔρmax = 1.51 e Å3
193 parametersΔρmin = 1.55 e Å3
Crystal data top
[Hf(C5H5)2(C8H16)]V = 1601.35 (11) Å3
Mr = 420.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7055 (6) ŵ = 6.50 mm1
b = 15.5909 (5) ÅT = 200 K
c = 8.1035 (3) Å0.50 × 0.48 × 0.15 mm
β = 93.982 (3)°
Data collection top
Stoe IPDS II
diffractometer
3679 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
3120 reflections with I > 2σ(I)
Tmin = 0.157, Tmax = 0.361Rint = 0.033
25548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03264 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.15Δρmax = 1.51 e Å3
3679 reflectionsΔρmin = 1.55 e Å3
193 parameters
Special details top

Experimental. 1H NMR (400 MHz, C6D6, 297 K): 0.30 (dd, 2H, Hf-CH2); 1.02 (t, 6H, CH3); 1.14 (m, 2H, CH2); 1.18 (dd, 2H, Hf-CH2); 1.60 (m, 2H, CH); 1.78 (m, 2H, CH2); 5.79 (s, 10H, Cp).

13C NMR (100 MHz, C6D6, 297 K): 11.0 (CH3); 31.7 (CH2), 45.8 (CH), 50.9 (Hf-CH2), 110.8 (Cp).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8579 (5)0.5055 (4)0.1657 (8)0.0641 (18)
H10.92760.52670.14410.077*
C20.8303 (6)0.4204 (4)0.1904 (8)0.073 (2)
H20.87730.37290.18680.088*
C30.7219 (6)0.4168 (4)0.2213 (8)0.072 (2)
H30.68140.36650.24390.087*
C40.6830 (5)0.4995 (4)0.2133 (8)0.0659 (19)
H40.61100.51570.22960.079*
C50.7669 (4)0.5545 (4)0.1778 (8)0.0593 (17)
H50.76280.61490.16410.071*
C6A0.6598 (9)0.3385 (6)0.1957 (12)0.063 (2)0.679 (15)
H6A0.58650.33180.16710.075*0.679 (15)
C7A0.7430 (9)0.3033 (6)0.1132 (12)0.063 (2)0.679 (15)
H7A0.73560.26710.01890.075*0.679 (15)
C8A0.8388 (9)0.3302 (6)0.1926 (13)0.064 (2)0.679 (15)
H8A0.90720.31680.15960.077*0.679 (15)
C9A0.8161 (8)0.3803 (6)0.3292 (12)0.063 (2)0.679 (15)
H9A0.86600.40580.40720.076*0.679 (15)
C10A0.7060 (8)0.3858 (6)0.3289 (11)0.062 (2)0.679 (15)
H10A0.66850.41670.40700.074*0.679 (15)
C6B0.6940 (15)0.3112 (15)0.115 (3)0.058 (6)*0.321 (15)
H6B0.64230.29030.03500.070*0.321 (15)
C7B0.8033 (15)0.3073 (12)0.111 (2)0.045 (5)*0.321 (15)
H7B0.83930.27980.02670.054*0.321 (15)
C8B0.8529 (15)0.3498 (17)0.248 (3)0.069 (8)*0.321 (15)
H8B0.92660.35770.27040.083*0.321 (15)
C9B0.7724 (19)0.3784 (16)0.345 (3)0.064 (7)*0.321 (15)
H9B0.78150.40920.44640.077*0.321 (15)
C10B0.6771 (17)0.353 (2)0.265 (3)0.085 (9)*0.321 (15)
H10B0.60980.36270.30630.102*0.321 (15)
C110.6206 (5)0.5450 (4)0.1446 (9)0.0581 (15)
H11A0.56990.55470.04810.070*
H11B0.58280.51670.23260.070*
C120.6663 (5)0.6305 (4)0.2073 (9)0.0670 (18)
H120.68370.66290.10620.080*
C130.7739 (4)0.6145 (3)0.3070 (7)0.0437 (12)
H13A0.75720.57750.40260.052*0.702 (18)
H13B0.75100.56800.38160.052*0.298 (18)
C140.8524 (5)0.5617 (4)0.2094 (8)0.0505 (14)
H14A0.90680.53460.28590.061*
H14B0.88780.59890.13120.061*
C150.5878 (6)0.6866 (4)0.2924 (8)0.074 (2)
H15A0.61930.74380.31490.089*
H15B0.52350.69430.21770.089*
C160.5580 (7)0.6471 (5)0.4531 (8)0.083 (2)
H16A0.52940.58950.43170.125*
H16B0.50470.68290.50130.125*
H16C0.62070.64340.53030.125*
C17A0.8212 (6)0.6962 (5)0.3831 (12)0.048 (2)*0.702 (18)
H17A0.77030.72190.45600.057*0.702 (18)
H17B0.83240.73780.29370.057*0.702 (18)
C18A0.9256 (7)0.6813 (6)0.4832 (12)0.056 (3)*0.702 (18)
H18A0.95220.73600.52900.083*0.702 (18)
H18B0.91480.64120.57370.083*0.702 (18)
H18C0.97700.65710.41130.083*0.702 (18)
C17B0.8322 (14)0.6707 (13)0.4368 (19)0.051 (6)*0.298 (18)
H17C0.84740.63340.53450.061*0.298 (18)
H17D0.78020.71360.46960.061*0.298 (18)
C18B0.9336 (15)0.7204 (14)0.415 (3)0.060 (7)*0.298 (18)
H18D0.95450.75140.51700.090*0.298 (18)
H18E0.98970.68040.38930.090*0.298 (18)
H18F0.92170.76140.32370.090*0.298 (18)
Hf10.75401 (2)0.46108 (2)0.07167 (2)0.03553 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (4)0.096 (5)0.042 (3)0.001 (4)0.019 (3)0.012 (3)
C20.102 (6)0.078 (5)0.044 (4)0.023 (5)0.027 (4)0.001 (3)
C30.124 (7)0.049 (4)0.045 (4)0.030 (4)0.013 (4)0.013 (3)
C40.054 (4)0.097 (5)0.046 (4)0.007 (4)0.001 (3)0.022 (4)
C50.075 (4)0.056 (4)0.048 (3)0.005 (3)0.015 (3)0.019 (3)
C6A0.090 (5)0.047 (3)0.052 (3)0.007 (3)0.008 (3)0.013 (2)
C7A0.090 (5)0.045 (3)0.053 (3)0.004 (3)0.007 (3)0.011 (2)
C8A0.091 (5)0.047 (3)0.054 (3)0.001 (3)0.006 (3)0.012 (2)
C9A0.090 (5)0.048 (3)0.051 (3)0.002 (3)0.006 (3)0.014 (2)
C10A0.089 (5)0.048 (3)0.050 (3)0.005 (3)0.009 (3)0.014 (2)
C110.050 (3)0.065 (4)0.060 (4)0.000 (3)0.014 (3)0.014 (3)
C120.070 (4)0.067 (4)0.066 (4)0.013 (4)0.016 (3)0.005 (3)
C130.055 (3)0.037 (2)0.039 (3)0.010 (2)0.001 (2)0.003 (2)
C140.046 (3)0.050 (3)0.057 (4)0.004 (2)0.015 (3)0.014 (3)
C150.072 (5)0.076 (5)0.075 (5)0.010 (4)0.011 (4)0.007 (4)
C160.109 (7)0.083 (5)0.058 (5)0.005 (5)0.005 (4)0.005 (4)
Hf10.04715 (12)0.03087 (10)0.02962 (10)0.00094 (11)0.01014 (7)0.00135 (9)
Geometric parameters (Å, º) top
C1—C21.383 (4)C8B—H8B0.9500
C1—C51.384 (4)C9B—C10B1.390 (17)
C1—Hf12.505 (6)C9B—Hf12.56 (3)
C1—H10.9500C9B—H9B0.9500
C2—C31.383 (4)C10B—Hf12.54 (3)
C2—Hf12.477 (6)C10B—H10B0.9500
C2—H20.9500C11—C121.527 (9)
C3—C41.383 (4)C11—Hf12.253 (6)
C3—Hf12.478 (6)C11—H11A0.9900
C3—H30.9500C11—H11B0.9900
C4—C51.383 (4)C12—C151.526 (2)
C4—Hf12.493 (6)C12—C131.560 (9)
C4—H40.9500C12—H121.0000
C5—Hf12.506 (6)C13—C17A1.521 (8)
C5—H50.9500C13—C17B1.522 (8)
C6A—C10A1.401 (5)C13—C141.552 (7)
C6A—C7A1.402 (5)C13—H13A1.0000
C6A—Hf12.502 (9)C13—H13B1.0000
C6A—H6A0.9500C14—Hf12.253 (6)
C7A—C8A1.401 (5)C14—H14A0.9900
C7A—Hf12.488 (10)C14—H14B0.9900
C7A—H7A0.9500C15—C161.511 (2)
C8A—C9A1.401 (5)C15—H15A0.9900
C8A—Hf12.478 (10)C15—H15B0.9900
C8A—H8A0.9500C16—H16A0.9800
C9A—C10A1.401 (5)C16—H16B0.9800
C9A—Hf12.517 (10)C16—H16C0.9800
C9A—H9A0.9500C17A—C18A1.524 (10)
C10A—Hf12.504 (9)C17A—H17A0.9900
C10A—H10A0.9500C17A—H17B0.9900
C6B—C7B1.392 (16)C18A—H18A0.9800
C6B—C10B1.410 (17)C18A—H18B0.9800
C6B—Hf12.49 (2)C18A—H18C0.9800
C6B—H6B0.9500C17B—C18B1.524 (10)
C7B—C8B1.404 (17)C17B—H17C0.9900
C7B—Hf12.492 (18)C17B—H17D0.9900
C7B—H7B0.9500C18B—H18D0.9800
C8B—C9B1.407 (17)C18B—H18E0.9800
C8B—Hf12.53 (3)C18B—H18F0.9800
C2—C1—C5108.5 (5)C17A—C13—H13A105.5
C2—C1—Hf172.8 (4)C14—C13—H13A105.5
C5—C1—Hf174.0 (3)C12—C13—H13A105.5
C2—C1—H1125.7C17B—C13—H13B98.5
C5—C1—H1125.7C14—C13—H13B98.5
Hf1—C1—H1119.2C12—C13—H13B98.5
C1—C2—C3107.7 (6)C13—C14—Hf1105.5 (4)
C1—C2—Hf175.0 (4)C13—C14—H14A110.6
C3—C2—Hf173.8 (4)Hf1—C14—H14A110.6
C1—C2—H2126.1C13—C14—H14B110.6
C3—C2—H2126.1Hf1—C14—H14B110.6
Hf1—C2—H2117.1H14A—C14—H14B108.8
C4—C3—C2108.0 (5)C16—C15—C12111.5 (6)
C4—C3—Hf174.4 (4)C16—C15—H15A109.3
C2—C3—Hf173.8 (4)C12—C15—H15A109.3
C4—C3—H3126.0C16—C15—H15B109.3
C2—C3—H3126.0C12—C15—H15B109.3
Hf1—C3—H3117.8H15A—C15—H15B108.0
C3—C4—C5108.4 (5)C15—C16—H16A109.5
C3—C4—Hf173.3 (4)C15—C16—H16B109.5
C5—C4—Hf174.5 (3)H16A—C16—H16B109.5
C3—C4—H4125.8C15—C16—H16C109.5
C5—C4—H4125.8H16A—C16—H16C109.5
Hf1—C4—H4118.4H16B—C16—H16C109.5
C4—C5—C1107.4 (5)C13—C17A—C18A113.1 (7)
C4—C5—Hf173.4 (3)C13—C17A—H17A109.0
C1—C5—Hf173.9 (3)C18A—C17A—H17A109.0
C4—C5—H5126.3C13—C17A—H17B109.0
C1—C5—H5126.3C18A—C17A—H17B109.0
Hf1—C5—H5118.4H17A—C17A—H17B107.8
C10A—C6A—C7A106.4 (8)C17A—C18A—H18A109.5
C10A—C6A—Hf173.8 (5)C17A—C18A—H18B109.5
C7A—C6A—Hf173.1 (6)H18A—C18A—H18B109.5
C10A—C6A—H6A126.8C17A—C18A—H18C109.5
C7A—C6A—H6A126.8H18A—C18A—H18C109.5
Hf1—C6A—H6A118.4H18B—C18A—H18C109.5
C8A—C7A—C6A108.9 (8)C13—C17B—C18B125.9 (14)
C8A—C7A—Hf173.2 (6)C13—C17B—H17C105.8
C6A—C7A—Hf174.2 (5)C18B—C17B—H17C105.8
C8A—C7A—H7A125.5C13—C17B—H17D105.8
C6A—C7A—H7A125.5C18B—C17B—H17D105.8
Hf1—C7A—H7A118.8H17C—C17B—H17D106.2
C9A—C8A—C7A108.0 (8)C17B—C18B—H18D109.5
C9A—C8A—Hf175.2 (5)C17B—C18B—H18E109.5
C7A—C8A—Hf174.0 (6)H18D—C18B—H18E109.5
C9A—C8A—H8A126.0C17B—C18B—H18F109.5
C7A—C8A—H8A126.0H18D—C18B—H18F109.5
Hf1—C8A—H8A116.8H18E—C18B—H18F109.5
C10A—C9A—C8A107.0 (8)C11—Hf1—C1482.4 (2)
C10A—C9A—Hf173.3 (5)C11—Hf1—C2136.1 (3)
C8A—C9A—Hf172.2 (5)C14—Hf1—C2111.5 (2)
C10A—C9A—H9A126.5C11—Hf1—C8A133.6 (3)
C8A—C9A—H9A126.5C14—Hf1—C8A99.6 (3)
Hf1—C9A—H9A119.9C2—Hf1—C8A86.7 (3)
C9A—C10A—C6A109.6 (8)C11—Hf1—C3109.7 (2)
C9A—C10A—Hf174.3 (5)C14—Hf1—C3135.8 (2)
C6A—C10A—Hf173.7 (5)C2—Hf1—C332.41 (9)
C9A—C10A—H10A125.2C8A—Hf1—C3100.8 (3)
C6A—C10A—H10A125.2C11—Hf1—C7A119.2 (3)
Hf1—C10A—H10A118.6C14—Hf1—C7A131.0 (3)
C7B—C6B—C10B104.8 (16)C2—Hf1—C7A83.8 (3)
C7B—C6B—Hf173.8 (11)C8A—Hf1—C7A32.78 (13)
C10B—C6B—Hf175.8 (15)C3—Hf1—C7A81.2 (3)
C7B—C6B—H6B127.6C11—Hf1—C6B105.3 (5)
C10B—C6B—H6B127.6C14—Hf1—C6B138.4 (5)
Hf1—C6B—H6B115.4C2—Hf1—C6B91.3 (6)
C6B—C7B—C8B110.6 (15)C3—Hf1—C6B81.0 (5)
C6B—C7B—Hf173.7 (12)C11—Hf1—C7B135.4 (4)
C8B—C7B—Hf175.1 (13)C14—Hf1—C7B118.7 (5)
C6B—C7B—H7B124.7C2—Hf1—C7B75.7 (4)
C8B—C7B—H7B124.7C3—Hf1—C7B83.0 (4)
Hf1—C7B—H7B118.2C6B—Hf1—C7B32.4 (4)
C7B—C8B—C9B106.8 (15)C11—Hf1—C482.7 (2)
C7B—C8B—Hf172.5 (12)C14—Hf1—C4116.4 (2)
C9B—C8B—Hf175.3 (14)C2—Hf1—C453.5 (2)
C7B—C8B—H8B126.6C8A—Hf1—C4133.1 (3)
C9B—C8B—H8B126.6C3—Hf1—C432.30 (9)
Hf1—C8B—H8B117.7C7A—Hf1—C4110.0 (3)
C10B—C9B—C8B107.0 (15)C6B—Hf1—C4105.2 (5)
C10B—C9B—Hf173.5 (15)C7B—Hf1—C4114.9 (4)
C8B—C9B—Hf172.5 (14)C11—Hf1—C6A87.0 (3)
C10B—C9B—H9B126.5C14—Hf1—C6A126.7 (3)
C8B—C9B—H9B126.5C2—Hf1—C6A112.1 (3)
Hf1—C9B—H9B119.4C8A—Hf1—C6A54.5 (3)
C9B—C10B—C6B110.7 (16)C3—Hf1—C6A96.9 (3)
C9B—C10B—Hf174.9 (15)C7A—Hf1—C6A32.62 (13)
C6B—C10B—Hf171.7 (14)C4—Hf1—C6A113.8 (3)
C9B—C10B—H10B124.7C11—Hf1—C10A79.8 (3)
C6B—C10B—H10B124.7C14—Hf1—C10A94.2 (3)
Hf1—C10B—H10B120.3C2—Hf1—C10A136.5 (3)
C12—C11—Hf1108.6 (4)C8A—Hf1—C10A53.8 (3)
C12—C11—H11A110.0C3—Hf1—C10A129.3 (3)
Hf1—C11—H11A110.0C7A—Hf1—C10A53.5 (3)
C12—C11—H11B110.0C4—Hf1—C10A142.2 (3)
Hf1—C11—H11B110.0C6A—Hf1—C10A32.51 (13)
H11A—C11—H11B108.3C11—Hf1—C1119.2 (2)
C15—C12—C11113.9 (6)C14—Hf1—C183.3 (2)
C15—C12—C13115.7 (6)C2—Hf1—C132.22 (9)
C11—C12—C13109.4 (5)C8A—Hf1—C1107.1 (3)
C15—C12—H12105.6C3—Hf1—C153.3 (2)
C11—C12—H12105.6C7A—Hf1—C1114.5 (3)
C13—C12—H12105.6C6B—Hf1—C1123.4 (6)
C17A—C13—C14113.7 (5)C7B—Hf1—C1102.9 (4)
C17B—C13—C14111.0 (9)C4—Hf1—C153.0 (2)
C17A—C13—C12112.5 (5)C6A—Hf1—C1144.3 (3)
C17B—C13—C12129.3 (10)C10A—Hf1—C1160.1 (3)
C14—C13—C12113.1 (5)
C5—C1—C2—C31.2 (8)C10B—C6B—C7B—Hf170.1 (18)
Hf1—C1—C2—C367.1 (5)C6B—C7B—C8B—C9B2 (3)
C5—C1—C2—Hf166.0 (5)Hf1—C7B—C8B—C9B68.1 (18)
C1—C2—C3—C40.8 (8)C6B—C7B—C8B—Hf165.7 (15)
Hf1—C2—C3—C467.2 (5)C7B—C8B—C9B—C10B0 (3)
C1—C2—C3—Hf167.9 (5)Hf1—C8B—C9B—C10B66 (2)
C2—C3—C4—C50.0 (8)C7B—C8B—C9B—Hf166.1 (16)
Hf1—C3—C4—C566.7 (5)C8B—C9B—C10B—C6B2 (3)
C2—C3—C4—Hf166.7 (5)Hf1—C9B—C10B—C6B63 (2)
C3—C4—C5—C10.7 (7)C8B—C9B—C10B—Hf165.3 (19)
Hf1—C4—C5—C166.6 (4)C7B—C6B—C10B—C9B3 (3)
C3—C4—C5—Hf166.0 (5)Hf1—C6B—C10B—C9B65 (2)
C2—C1—C5—C41.2 (7)C7B—C6B—C10B—Hf168.7 (15)
Hf1—C1—C5—C466.3 (4)Hf1—C11—C12—C15168.5 (5)
C2—C1—C5—Hf165.2 (5)Hf1—C11—C12—C1337.3 (6)
C10A—C6A—C7A—C8A1.3 (11)C15—C12—C13—C17A46.1 (8)
Hf1—C6A—C7A—C8A65.5 (7)C11—C12—C13—C17A176.3 (6)
C10A—C6A—C7A—Hf166.8 (6)C15—C12—C13—C17B28.1 (13)
C6A—C7A—C8A—C9A2.0 (11)C11—C12—C13—C17B158.3 (10)
Hf1—C7A—C8A—C9A68.2 (7)C15—C12—C13—C14176.6 (5)
C6A—C7A—C8A—Hf166.2 (7)C11—C12—C13—C1453.2 (7)
C7A—C8A—C9A—C10A1.8 (11)C17A—C13—C14—Hf1169.1 (5)
Hf1—C8A—C9A—C10A65.5 (7)C17B—C13—C14—Hf1166.4 (10)
C7A—C8A—C9A—Hf167.3 (7)C12—C13—C14—Hf139.2 (6)
C8A—C9A—C10A—C6A1.0 (11)C11—C12—C15—C1667.2 (9)
Hf1—C9A—C10A—C6A65.8 (6)C13—C12—C15—C1660.9 (9)
C8A—C9A—C10A—Hf164.8 (7)C17B—C13—C17A—C18A37.4 (19)
C7A—C6A—C10A—C9A0.2 (10)C14—C13—C17A—C18A50.7 (10)
Hf1—C6A—C10A—C9A66.2 (7)C12—C13—C17A—C18A179.1 (7)
C7A—C6A—C10A—Hf166.4 (7)C17A—C13—C17B—C18B61 (2)
C10B—C6B—C7B—C8B4 (3)C14—C13—C17B—C18B40 (3)
Hf1—C6B—C7B—C8B66.6 (16)C12—C13—C17B—C18B109 (2)

Experimental details

Crystal data
Chemical formula[Hf(C5H5)2(C8H16)]
Mr420.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.7055 (6), 15.5909 (5), 8.1035 (3)
β (°) 93.982 (3)
V3)1601.35 (11)
Z4
Radiation typeMo Kα
µ (mm1)6.50
Crystal size (mm)0.50 × 0.48 × 0.15
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.157, 0.361
No. of measured, independent and
observed [I > 2σ(I)] reflections
25548, 3679, 3120
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.15
No. of reflections3679
No. of parameters193
No. of restraints64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 1.55

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We would like to thank our technical and analytical staff for assistance. Financial support by the Deutsche Forschungsgemeinschaft (RO 1269/9-1) and the Russian Foundation for Basic Research (project code 12-03-00036-a) is gratefully acknowledged.

References

First citationBeweries, T., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2009). Eur. J. Inorg. Chem. pp. 1456–1459.  Web of Science CSD CrossRef Google Scholar
First citationBeweries, T., Fischer, C., Peitz, S., Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A., Heller, D. & Rosenthal, U. (2009). J. Am. Chem. Soc. 131, 4463–4469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlahn, M., Baumann, W., Arndt, P., Burlakov, V. V., Schareina, T., Spannenberg, A. & Rosenthal, U. (2009). Organometallics, 28, 915–918.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, L. W. M., Piers, W. E., Parvez, M., Rettig, S. J. & Young, V. G. Jr (1999). Organometallics, 18, 3904–3912.  Web of Science CrossRef CAS Google Scholar
First citationMansel, S., Thomas, D., Lefeber, C., Heller, D., Kempe, R., Baumann, W. & Rosenthal, U. (1997). Organometallics, 16, 2886–2890.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcGovern, G. P., Hung-Low, F., Tye, J. W. & Bradley, C. A. (2012). Organometallics, 31, 3865–3879.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakahashi, T., Fischer, R., Xi, Z. & Nakajima, K. (1996). Chem. Lett. pp. 357–358.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds