research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of iso­quinoline–3-chloro-2-nitro­benzoic acid (1/1) and isoquinolinium 4-chloro-2-nitro­benzoate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 17 November 2014; accepted 28 November 2014; online 1 January 2015)

In each of the title isomeric compounds, C9H7.3N·C7H3.7ClNO4, (I), and C9H8N·C7H3ClNO4, (II), of iso­quinoline with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid, the two components are linked by a short hydrogen bond between a base N atom and a carb­oxy O atom. In the hydrogen-bonded unit of (I), the H atom is disordered over two positions with N and O site occupancies of 0.30 (3) and 0.70 (3), respectively, while in (II), an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site. In the crystal of (I), the acid–base units are connected through C—H⋯O hydrogen bonds into a tape structure along the b-axis direction. Inversion-related adjacent tapes are further linked through ππ inter­actions [centroid–centroid distances = 3.6389 (7)–3.7501 (7) Å], forming a layer parallel to (001). In the crystal of (II), the acid–base units are connected through C—H⋯O hydrogen bonds into a ladder structure along the a-axis direction. The ladders are further linked by another C—H⋯O hydrogen bond into a layer parallel to (001).

1. Chemical context

The hydrogen bonds formed between organic acids and organic bases vary from an O—H⋯N to an O⋯H—N+ type with increasing ΔpKa [pKa(base) − pKa(acid)], and at an appropriate ΔpKa value, a short strong hydrogen bond with a broad single minimum potential energy curve for the H atom or a double-minimum potential is observed (Jerzykiewicz et al., 1998[Jerzykiewicz, L. B., Malarski, Z., Sobczyk, L., Lis, T. & Grech, E. (1998). J. Mol. Struct. 440, 175-185.]; Kalenik et al., 1989[Kalenik, J., Majerz, I., Sobczyk, L., Grech, E. & Habeeb, M. M. (1989). J. Chem. Soc. Faraday Trans. 1, 85, 3187-3193.]; Steiner et al., 2001[Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651-2654]; Schmidtmann & Wilson, 2008[Schmidtmann, M. & Wilson, C. C. (2008). CrystEngComm, 10, 177-183.]; Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). In The Nature of the Hydrogen Bond. Oxford University Press.]). For the system of pyridine derivative–chloro- and nitro-substituted benzoic acid (1/1), we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid, and two compounds of phthal­azine with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid have a short double-well N⋯H⋯O hydrogen bond between the aromatic N atom and the carb­oxy O atom (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.], 2011a[Gotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473-o478.]).

[Scheme 1]

We report here two isomeric compounds of iso­quinoline with chloro- and nitro-substituted benzoic acids, namely, iso­quinoline–3-chloro-2-nitro­benzoic acid (1/1), (I)[link], and 4-chloro-2-nitro­benzoate isoquinolinium, (II)[link], in order to extend our studies of hydrogen bonding in the system of pyridine derivative–chloro- and nitro-substituted benzoic acid (Gotoh & Ishida, 2011b[Gotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883.],c[Gotoh, K. & Ishida, H. (2011c). Acta Cryst. E67, o3222.]).

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The base and acid mol­ecules are held together by a short hydrogen bond between the N atom of the base and the carb­oxy O atom. The H atom in the hydrogen bond is disordered over two positions with the N and O sites occupancies refined to 0.30 (3) and 0.70 (3), respectively. In addition, a C—H⋯O hydrogen bond (C8—H8⋯O2; Table 1[link]) is observed in the hydrogen-bonded acid–base unit. In the unit, the iso­quinoline ring system, the carb­oxy group and the benzene ring of the acid mol­ecule are almost coplanar with each other; the carb­oxy group makes dihedral angles of 5.35 (15) and 5.91 (15)°, respectively, with the iso­quinoline ring system and the benzene ring, and the dihedral angle between the iso­quinoline ring system and the benzene ring is 1.21 (4)°. On the other hand, the nitro group and the benzene ring are almost perpendicular with a dihedral angle of 83.71 (13)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 (2) 1.74 (2) 2.5725 (12) 177 (2)
N2—H2⋯O1 0.88 (2) 1.69 (5) 2.5725 (12) 172 (5)
C5—H5⋯O2i 0.95 2.49 3.3427 (14) 149
C8—H8⋯O2 0.95 2.53 3.1977 (14) 128
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
A mol­ecular view of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The disordered O—H⋯N/N—H⋯O hydrogen bond and the C—H⋯O inter­action are indicated by dashed lines.

The mol­ecular structure of (II)[link] is shown in Fig. 2[link]. An acid–base inter­action involving H-atom transfer occurs and the base and acid mol­ecules are linked by an N+—H⋯O hydrogen bond. In the hydrogen-bonded unit, the iso­quinoline ring system make dihedral angles of 54.12 (15) and 71.89 (5)°, respectively, with the carb­oxy group and the benzene ring of the acid. In the acid mol­ecule, the benzene ring makes dihedral angles of 26.59 (15) and 67.69 (15)°, respectively, with the carb­oxy and nitro groups.

[Figure 2]
Figure 2
A mol­ecular view of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

3. Supra­molecular features

In the crystal of (I)[link], the hydrogen-bonded acid-base units are linked by a C—H⋯O hydrogen bond (C5—H5⋯O2i; Table 1[link]), forming a tape structure along the b-axis direction (Fig. 3[link]). Adjacent tapes, which are related by an inversion center, are further linked through ππ inter­actions between the benzene ring of the acid and the iso­quinoline ring system (Fig. 4[link]), forming a layer parallel to the (001) plane. The centroid–centroid distances are in the range 3.6389 (7)–3.7501 (7) Å [Cg1⋯Cg2iii = 3.7501 (7), Cg1⋯Cg2iv = 3.6674 (7), Cg1⋯Cg3iii = 3.6637 (7) and Cg1⋯Cg3iv = 3.6389 (7) Å, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6 benzene ring of the acid, and the N2/C8–C10/C15/C16 rings of the base, respectively. Symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1.]

[Figure 3]
Figure 3
A packing diagram of (I)[link], showing the hydrogen-bonded tape structure along the b axis. The dashed lines indicate disordered O—H⋯N/N—H⋯O hydrogen bonds and the C—H⋯O inter­actions. [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z.]
[Figure 4]
Figure 4
A packing diagram of (I)[link], showing the ππ stacking structure along the a axis. The dashed lines indicate disordered O—H⋯N/N—H⋯O hydrogen bonds and H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1.]

In the crystal of (II)[link], the acid–base units are connected through C—H⋯O hydrogen bonds (C3—H3⋯O2i and C13—H13⋯O3ii; Table 2[link]) into a ladder structure along the a-axis direction (Fig. 5[link]). Adjacent ladders are further linked by another C—H⋯O hydrogen bond (C16—H16⋯O1iii; Table 2[link]), forming a layer parallel to the (001) plane.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.91 (2) 1.67 (2) 2.5738 (14) 169 (2)
C3—H3⋯O2i 0.95 2.21 3.1580 (15) 174
C13—H13⋯O3ii 0.95 2.52 3.3405 (19) 145
C16—H16⋯O1iii 0.95 2.43 3.3477 (15) 163
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
A packing diagram of (II)[link], showing the hydrogen-bonded ladder structure along the a axis. The dashed lines indicate N—H⋯O and C—H⋯O hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y, −z + 1.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) showed 49 structures of co-crystals/salts of pyridine (or amine) derivative–chloro- and nitro-substituted benzoic acid: 16 structures containing 2-chloro-4-nitro­benzoic acid, nine for 2-chloro-5-nitro­benzoic acid, three for 3-chloro-2-nitro­benzoic acid, five for 3-chloro-6-nitro­benzoic acid, eight for 4-chloro-2-nitro­benzoic acid and eight for 4-chloro-3-nitro­benzoic acid. On the other hand, there were eight structures of co-crystals/salts of iso­quinoline with organic acids. The N⋯O distances of the N—H⋯O/O—H⋯N hydrogen bonds are in the range 2.578 (2)–2.8718 (17) Å. No disordered H atoms were observed in the hydrogen bonds.

5. Synthesis and crystallization

Crystals of compounds (I)[link] and (II)[link] were obtained by slow evaporation from aceto­nitrile solutions of iso­quinoline with the corresponding chloro- and nitro-substituted benzoic acid in a 1:1 molar ratio at room temperature [50 ml aceto­nitrile solution of iso­quinoline (0.202 g) and 3-chloro-2-nitro­benzoic acid (0.315 g) for (I)[link], and 150 ml solution of iso­quinoline (0.204 g) and 4-chloro-2-nitro­benzoic acid (0.318 g) for (II)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms in compounds (I)[link] and (II)[link] were found in difference Fourier maps. The H atom in (I)[link], which is involved in the N⋯H⋯O hydrogen bonds, was found to be disordered over two positions in a difference Fourier map. Since the site-occupancy factors and isotropic displacement parameters were strongly correlated, the occupancy factors were refined, with Uiso(H) = 1.5Ueq(N or O). The positional parameters were refined with bond restraints of O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. Atom H2 in (II)[link] was refined freely [refined distance N2—H2 = 0.91 (2) Å]. Other H atoms of compounds (I)[link] and (II)[link] were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C9H7.3N·C7H3.7ClNO4 C9H8N+·C7H3ClNO4
Mr 330.73 330.73
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 190 190
a, b, c (Å) 6.93986 (15), 7.6629 (5), 13.9475 (5) 7.5916 (3), 7.7607 (3), 13.0456 (4)
α, β, γ (°) 83.945 (3), 87.6039 (16), 85.117 (4) 74.8360 (11), 80.1736 (10), 80.3642 (13)
V3) 734.50 (6) 724.84 (4)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.28 0.29
Crystal size (mm) 0.35 × 0.28 × 0.10 0.39 × 0.32 × 0.23
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.918, 0.972 0.903, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 15432, 4278, 3729 21510, 4224, 3559
Rint 0.022 0.024
(sin θ/λ)max−1) 0.704 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.08 0.039, 0.117, 1.07
No. of reflections 4278 4224
No. of parameters 219 212
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.22 0.42, −0.16
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

(I) Isoquinoline113-chloro-2-nitrobenzoic acid (1/1) top
Crystal data top
C9H7.3N·C7H3.7ClNO4Z = 2
Mr = 330.73F(000) = 340.00
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.93986 (15) ÅCell parameters from 13329 reflections
b = 7.6629 (5) Åθ = 3.2–30.1°
c = 13.9475 (5) ŵ = 0.28 mm1
α = 83.945 (3)°T = 190 K
β = 87.6039 (16)°Prism, colorless
γ = 85.117 (4)°0.35 × 0.28 × 0.10 mm
V = 734.50 (6) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3729 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 99
Tmin = 0.918, Tmax = 0.972k = 1010
15432 measured reflectionsl = 1919
4278 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1994P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4278 reflectionsΔρmax = 0.41 e Å3
219 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.34388 (4)0.30344 (4)0.03598 (2)0.03254 (9)
O10.27369 (15)0.39376 (11)0.48183 (6)0.0351 (2)
H10.250 (4)0.474 (3)0.5180 (18)0.053*0.70 (3)
O20.22586 (17)0.61166 (11)0.36405 (6)0.0439 (2)
O30.43819 (15)0.63013 (11)0.17433 (7)0.0412 (2)
O40.13125 (16)0.61492 (13)0.15530 (8)0.0469 (3)
N10.28995 (15)0.55342 (12)0.18246 (6)0.0290 (2)
N20.21395 (14)0.63768 (12)0.59551 (6)0.02651 (19)
H20.234 (8)0.547 (5)0.561 (4)0.040*0.30 (3)
C10.30225 (15)0.32097 (13)0.32234 (7)0.02176 (19)
C20.30705 (14)0.36753 (12)0.22318 (7)0.02149 (18)
C30.33329 (15)0.24164 (13)0.15844 (7)0.02282 (19)
C40.35608 (16)0.06470 (13)0.19197 (8)0.0257 (2)
H40.37270.02220.14790.031*
C50.35442 (17)0.01595 (13)0.29030 (8)0.0276 (2)
H50.37110.10510.31390.033*
C60.32847 (16)0.14294 (13)0.35468 (7)0.0248 (2)
H60.32860.10760.42200.030*
C70.26468 (17)0.45769 (14)0.39226 (8)0.0261 (2)
C80.18964 (17)0.80800 (15)0.55602 (8)0.0284 (2)
H80.19190.83170.48780.034*
C90.16227 (17)0.94575 (15)0.61069 (8)0.0288 (2)
H90.14551.06290.58060.035*
C100.15886 (15)0.91357 (14)0.71228 (8)0.0248 (2)
C110.13139 (18)1.04938 (16)0.77399 (9)0.0337 (2)
H110.11081.16870.74770.040*
C120.13459 (18)1.00797 (19)0.87164 (9)0.0383 (3)
H120.11761.09950.91290.046*
C130.16253 (18)0.8323 (2)0.91205 (9)0.0374 (3)
H130.165 (3)0.808 (2)0.9796 (14)0.051 (5)*
C140.18547 (17)0.69811 (17)0.85431 (8)0.0322 (2)
H140.20170.57940.88220.039*
C150.18491 (15)0.73674 (14)0.75304 (7)0.02394 (19)
C160.21142 (17)0.60377 (14)0.68986 (8)0.0266 (2)
H160.22820.48450.71670.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04465 (17)0.03447 (15)0.01898 (12)0.00229 (11)0.00104 (10)0.00566 (9)
O10.0583 (6)0.0276 (4)0.0198 (4)0.0007 (4)0.0001 (4)0.0063 (3)
O20.0840 (7)0.0222 (4)0.0253 (4)0.0024 (4)0.0070 (4)0.0062 (3)
O30.0578 (6)0.0236 (4)0.0419 (5)0.0106 (4)0.0128 (4)0.0012 (3)
O40.0582 (6)0.0335 (5)0.0460 (5)0.0162 (4)0.0114 (5)0.0023 (4)
N10.0455 (5)0.0197 (4)0.0207 (4)0.0021 (4)0.0034 (4)0.0031 (3)
N20.0320 (5)0.0275 (4)0.0212 (4)0.0033 (3)0.0002 (3)0.0076 (3)
C10.0250 (5)0.0208 (4)0.0202 (4)0.0041 (3)0.0027 (3)0.0048 (3)
C20.0256 (5)0.0177 (4)0.0212 (4)0.0019 (3)0.0010 (3)0.0029 (3)
C30.0262 (5)0.0235 (4)0.0195 (4)0.0033 (3)0.0010 (3)0.0055 (3)
C40.0299 (5)0.0207 (4)0.0278 (5)0.0043 (4)0.0028 (4)0.0082 (4)
C50.0347 (5)0.0189 (4)0.0293 (5)0.0041 (4)0.0047 (4)0.0027 (4)
C60.0296 (5)0.0224 (4)0.0224 (4)0.0050 (4)0.0037 (4)0.0015 (3)
C70.0342 (5)0.0236 (4)0.0215 (4)0.0060 (4)0.0039 (4)0.0063 (4)
C80.0354 (6)0.0310 (5)0.0189 (4)0.0026 (4)0.0004 (4)0.0027 (4)
C90.0350 (6)0.0257 (5)0.0251 (5)0.0005 (4)0.0010 (4)0.0023 (4)
C100.0235 (5)0.0281 (5)0.0237 (5)0.0013 (4)0.0008 (4)0.0081 (4)
C110.0348 (6)0.0321 (6)0.0361 (6)0.0004 (4)0.0026 (5)0.0153 (5)
C120.0317 (6)0.0526 (7)0.0341 (6)0.0009 (5)0.0010 (5)0.0256 (6)
C130.0297 (6)0.0622 (8)0.0212 (5)0.0028 (5)0.0004 (4)0.0141 (5)
C140.0320 (6)0.0433 (6)0.0204 (5)0.0017 (5)0.0008 (4)0.0033 (4)
C150.0236 (5)0.0294 (5)0.0192 (4)0.0013 (4)0.0003 (3)0.0051 (4)
C160.0330 (5)0.0246 (5)0.0225 (5)0.0021 (4)0.0000 (4)0.0041 (4)
Geometric parameters (Å, º) top
Cl1—C31.7240 (10)C5—H50.9500
O1—C71.2948 (13)C6—H60.9500
O1—H10.840 (17)C8—C91.3621 (15)
O2—C71.2150 (14)C8—H80.9500
O3—N11.2230 (14)C9—C101.4119 (15)
O4—N11.2196 (14)C9—H90.9500
N1—C21.4738 (13)C10—C151.4129 (15)
N2—C161.3138 (13)C10—C111.4147 (14)
N2—C81.3616 (14)C11—C121.3661 (18)
N2—H20.88 (2)C11—H110.9500
C1—C61.3901 (14)C12—C131.404 (2)
C1—C21.3911 (13)C12—H120.9500
C1—C71.5048 (14)C13—C141.3667 (17)
C2—C31.3853 (13)C13—H130.941 (19)
C3—C41.3849 (14)C14—C151.4124 (14)
C4—C51.3827 (15)C14—H140.9500
C4—H40.9500C15—C161.4116 (14)
C5—C61.3880 (14)C16—H160.9500
C7—O1—H1110.2 (19)N2—C8—C9122.49 (10)
O4—N1—O3125.54 (10)N2—C8—H8118.8
O4—N1—C2117.20 (10)C9—C8—H8118.8
O3—N1—C2117.14 (9)C8—C9—C10119.69 (10)
C16—N2—C8119.17 (9)C8—C9—H9120.2
C16—N2—H2117 (4)C10—C9—H9120.2
C8—N2—H2124 (4)C9—C10—C15117.69 (9)
C6—C1—C2117.62 (9)C9—C10—C11123.08 (11)
C6—C1—C7121.03 (9)C15—C10—C11119.23 (10)
C2—C1—C7121.33 (9)C12—C11—C10119.63 (12)
C3—C2—C1121.56 (9)C12—C11—H11120.2
C3—C2—N1117.06 (9)C10—C11—H11120.2
C1—C2—N1121.36 (8)C11—C12—C13121.09 (11)
C4—C3—C2120.01 (9)C11—C12—H12119.5
C4—C3—Cl1119.44 (8)C13—C12—H12119.5
C2—C3—Cl1120.53 (8)C14—C13—C12120.59 (11)
C5—C4—C3119.28 (9)C14—C13—H13120.3 (11)
C5—C4—H4120.4C12—C13—H13119.1 (11)
C3—C4—H4120.4C13—C14—C15119.68 (12)
C4—C5—C6120.34 (9)C13—C14—H14120.2
C4—C5—H5119.8C15—C14—H14120.2
C6—C5—H5119.8C16—C15—C14122.15 (10)
C5—C6—C1121.18 (10)C16—C15—C10118.08 (9)
C5—C6—H6119.4C14—C15—C10119.77 (10)
C1—C6—H6119.4N2—C16—C15122.89 (10)
O2—C7—O1125.26 (10)N2—C16—H16118.6
O2—C7—C1121.07 (10)C15—C16—H16118.6
O1—C7—C1113.66 (9)
C6—C1—C2—C31.20 (15)C6—C1—C7—O14.66 (15)
C7—C1—C2—C3177.18 (9)C2—C1—C7—O1177.02 (10)
C6—C1—C2—N1177.04 (9)C16—N2—C8—C90.12 (17)
C7—C1—C2—N14.58 (15)N2—C8—C9—C100.13 (18)
O4—N1—C2—C382.77 (12)C8—C9—C10—C150.13 (16)
O3—N1—C2—C393.64 (12)C8—C9—C10—C11179.94 (11)
O4—N1—C2—C198.92 (12)C9—C10—C11—C12178.41 (11)
O3—N1—C2—C184.67 (12)C15—C10—C11—C121.40 (17)
C1—C2—C3—C40.19 (16)C10—C11—C12—C130.74 (19)
N1—C2—C3—C4178.12 (10)C11—C12—C13—C140.6 (2)
C1—C2—C3—Cl1178.58 (8)C12—C13—C14—C151.27 (18)
N1—C2—C3—Cl10.28 (13)C13—C14—C15—C16178.85 (11)
C2—C3—C4—C50.70 (16)C13—C14—C15—C100.58 (17)
Cl1—C3—C4—C5177.70 (8)C9—C10—C15—C160.38 (15)
C3—C4—C5—C60.56 (17)C11—C10—C15—C16179.81 (10)
C4—C5—C6—C10.48 (17)C9—C10—C15—C14179.07 (10)
C2—C1—C6—C51.33 (16)C11—C10—C15—C140.74 (16)
C7—C1—C6—C5177.05 (10)C8—N2—C16—C150.16 (17)
C6—C1—C7—O2173.83 (12)C14—C15—C16—N2179.03 (11)
C2—C1—C7—O24.49 (17)C10—C15—C16—N20.41 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.84 (2)1.74 (2)2.5725 (12)177 (2)
N2—H2···O10.88 (2)1.69 (5)2.5725 (12)172 (5)
C5—H5···O2i0.952.493.3427 (14)149
C8—H8···O20.952.533.1977 (14)128
Symmetry code: (i) x, y1, z.
(II) Isoquinolinium 4-chloro-2-nitrobenzoate top
Crystal data top
C9H8N+·C7H3ClNO4Z = 2
Mr = 330.73F(000) = 340.00
Triclinic, P1Dx = 1.515 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.5916 (3) ÅCell parameters from 17960 reflections
b = 7.7607 (3) Åθ = 3.0–30.1°
c = 13.0456 (4) ŵ = 0.29 mm1
α = 74.8360 (11)°T = 190 K
β = 80.1736 (10)°Block, colorless
γ = 80.3642 (13)°0.39 × 0.32 × 0.23 mm
V = 724.84 (4) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3559 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.024
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.903, Tmax = 0.936k = 1010
21510 measured reflectionsl = 1818
4224 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4224 reflectionsΔρmax = 0.42 e Å3
212 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89304 (5)0.83272 (5)0.98941 (3)0.04513 (12)
O10.49156 (12)0.48077 (13)0.69271 (7)0.0359 (2)
O20.25649 (12)0.50987 (15)0.81971 (8)0.0427 (2)
O30.78736 (17)0.25408 (13)0.80657 (10)0.0503 (3)
O40.91034 (13)0.46177 (16)0.68317 (9)0.0465 (3)
N10.81282 (13)0.40954 (14)0.76667 (9)0.0328 (2)
N20.31990 (13)0.26809 (14)0.63693 (8)0.0313 (2)
C10.53627 (14)0.58384 (14)0.83982 (8)0.0253 (2)
C20.72336 (14)0.54307 (14)0.82731 (8)0.0257 (2)
C30.83671 (15)0.61582 (16)0.87214 (9)0.0293 (2)
H30.96390.58620.86080.035*
C40.75517 (17)0.73430 (15)0.93451 (9)0.0310 (2)
C50.56930 (18)0.77436 (16)0.95367 (10)0.0338 (2)
H50.51660.85220.99920.041*
C60.46123 (16)0.69972 (15)0.90582 (9)0.0299 (2)
H60.33390.72810.91820.036*
C70.41584 (15)0.51806 (15)0.78102 (9)0.0281 (2)
C80.24974 (17)0.14032 (19)0.71997 (10)0.0357 (3)
H80.23680.15510.79100.043*
C90.19825 (16)0.00741 (18)0.70253 (10)0.0344 (2)
H90.14970.09570.76100.041*
C100.21705 (14)0.02954 (15)0.59708 (9)0.0282 (2)
C110.17073 (17)0.18170 (17)0.57248 (12)0.0363 (3)
H110.12570.27610.62820.044*
C120.19101 (18)0.19246 (19)0.46842 (13)0.0417 (3)
H120.15860.29460.45240.050*
C130.25903 (18)0.0555 (2)0.38392 (11)0.0404 (3)
H130.27190.06640.31210.048*
C140.30629 (16)0.09202 (18)0.40472 (9)0.0339 (2)
H140.35280.18390.34780.041*
C150.28566 (14)0.10747 (15)0.51186 (9)0.0264 (2)
C160.33645 (15)0.25579 (16)0.53682 (9)0.0294 (2)
H160.38340.34860.48080.035*
H20.369 (3)0.354 (3)0.6545 (17)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0583 (2)0.0493 (2)0.03860 (18)0.02822 (16)0.00558 (14)0.01675 (14)
O10.0312 (4)0.0486 (5)0.0341 (4)0.0119 (4)0.0042 (3)0.0166 (4)
O20.0260 (4)0.0626 (6)0.0428 (5)0.0125 (4)0.0022 (3)0.0155 (4)
O30.0648 (7)0.0320 (5)0.0575 (6)0.0025 (4)0.0139 (5)0.0187 (4)
O40.0342 (5)0.0670 (7)0.0459 (5)0.0106 (4)0.0058 (4)0.0311 (5)
N10.0273 (4)0.0377 (5)0.0386 (5)0.0004 (4)0.0087 (4)0.0185 (4)
N20.0251 (4)0.0361 (5)0.0365 (5)0.0036 (4)0.0051 (4)0.0146 (4)
C10.0255 (5)0.0250 (5)0.0250 (5)0.0044 (4)0.0037 (4)0.0044 (4)
C20.0260 (5)0.0265 (5)0.0258 (5)0.0040 (4)0.0029 (4)0.0085 (4)
C30.0278 (5)0.0340 (5)0.0286 (5)0.0085 (4)0.0039 (4)0.0090 (4)
C40.0404 (6)0.0285 (5)0.0281 (5)0.0131 (4)0.0055 (4)0.0078 (4)
C50.0436 (6)0.0274 (5)0.0317 (5)0.0042 (4)0.0024 (5)0.0114 (4)
C60.0295 (5)0.0287 (5)0.0298 (5)0.0013 (4)0.0021 (4)0.0070 (4)
C70.0257 (5)0.0289 (5)0.0304 (5)0.0061 (4)0.0070 (4)0.0045 (4)
C80.0319 (6)0.0482 (7)0.0287 (5)0.0040 (5)0.0029 (4)0.0133 (5)
C90.0311 (5)0.0417 (6)0.0274 (5)0.0074 (5)0.0014 (4)0.0028 (4)
C100.0220 (5)0.0308 (5)0.0309 (5)0.0021 (4)0.0054 (4)0.0052 (4)
C110.0296 (5)0.0312 (5)0.0491 (7)0.0039 (4)0.0098 (5)0.0082 (5)
C120.0349 (6)0.0391 (6)0.0602 (8)0.0020 (5)0.0175 (6)0.0247 (6)
C130.0360 (6)0.0527 (8)0.0381 (6)0.0052 (5)0.0128 (5)0.0227 (6)
C140.0298 (5)0.0430 (6)0.0278 (5)0.0002 (5)0.0062 (4)0.0080 (4)
C150.0207 (4)0.0313 (5)0.0267 (5)0.0012 (4)0.0048 (4)0.0063 (4)
C160.0228 (5)0.0328 (5)0.0323 (5)0.0035 (4)0.0044 (4)0.0068 (4)
Geometric parameters (Å, º) top
Cl1—C41.7326 (12)C6—H60.9500
O1—C71.2784 (15)C8—C91.3550 (19)
O2—C71.2340 (14)C8—H80.9500
O3—N11.2162 (15)C9—C101.4108 (17)
O4—N11.2220 (15)C9—H90.9500
N1—C21.4734 (14)C10—C111.4131 (17)
N2—C161.3176 (16)C10—C151.4168 (15)
N2—C81.3632 (17)C11—C121.363 (2)
N2—H20.91 (2)C11—H110.9500
C1—C61.3931 (15)C12—C131.410 (2)
C1—C21.3933 (15)C12—H120.9500
C1—C71.5118 (15)C13—C141.3590 (19)
C2—C31.3814 (15)C13—H130.9500
C3—C41.3855 (16)C14—C151.4140 (16)
C3—H30.9500C14—H140.9500
C4—C51.3869 (18)C15—C161.4025 (16)
C5—C61.3862 (17)C16—H160.9500
C5—H50.9500
O3—N1—O4125.41 (11)C9—C8—N2120.89 (11)
O3—N1—C2116.47 (10)C9—C8—H8119.6
O4—N1—C2118.08 (10)N2—C8—H8119.6
C16—N2—C8121.77 (11)C8—C9—C10119.69 (11)
C16—N2—H2121.1 (13)C8—C9—H9120.2
C8—N2—H2116.6 (13)C10—C9—H9120.2
C6—C1—C2116.80 (10)C9—C10—C11123.14 (11)
C6—C1—C7119.68 (10)C9—C10—C15118.36 (11)
C2—C1—C7123.42 (10)C11—C10—C15118.50 (11)
C3—C2—C1124.21 (10)C12—C11—C10119.70 (12)
C3—C2—N1115.37 (9)C12—C11—H11120.2
C1—C2—N1120.38 (9)C10—C11—H11120.2
C2—C3—C4116.52 (10)C11—C12—C13121.55 (12)
C2—C3—H3121.7C11—C12—H12119.2
C4—C3—H3121.7C13—C12—H12119.2
C3—C4—C5121.97 (10)C14—C13—C12120.33 (12)
C3—C4—Cl1117.91 (9)C14—C13—H13119.8
C5—C4—Cl1120.12 (9)C12—C13—H13119.8
C6—C5—C4119.35 (11)C13—C14—C15119.39 (12)
C6—C5—H5120.3C13—C14—H14120.3
C4—C5—H5120.3C15—C14—H14120.3
C5—C6—C1121.06 (11)C16—C15—C14121.11 (11)
C5—C6—H6119.5C16—C15—C10118.34 (10)
C1—C6—H6119.5C14—C15—C10120.53 (11)
O2—C7—O1126.47 (11)N2—C16—C15120.90 (11)
O2—C7—C1118.47 (11)N2—C16—H16119.6
O1—C7—C1115.02 (9)C15—C16—H16119.6
C6—C1—C2—C32.85 (16)C2—C1—C7—O124.68 (15)
C7—C1—C2—C3173.44 (10)C16—N2—C8—C91.66 (18)
C6—C1—C2—N1174.65 (10)N2—C8—C9—C100.10 (19)
C7—C1—C2—N19.05 (16)C8—C9—C10—C11178.39 (11)
O3—N1—C2—C3110.00 (12)C8—C9—C10—C151.62 (17)
O4—N1—C2—C367.61 (14)C9—C10—C11—C12179.31 (11)
O3—N1—C2—C167.71 (14)C15—C10—C11—C120.68 (17)
O4—N1—C2—C1114.67 (12)C10—C11—C12—C130.57 (19)
C1—C2—C3—C41.06 (17)C11—C12—C13—C140.04 (19)
N1—C2—C3—C4176.56 (10)C12—C13—C14—C150.36 (19)
C2—C3—C4—C51.76 (17)C13—C14—C15—C16178.64 (11)
C2—C3—C4—Cl1178.43 (8)C13—C14—C15—C100.24 (17)
C3—C4—C5—C62.62 (18)C9—C10—C15—C161.85 (15)
Cl1—C4—C5—C6177.57 (9)C11—C10—C15—C16178.16 (10)
C4—C5—C6—C10.69 (18)C9—C10—C15—C14179.71 (10)
C2—C1—C6—C51.91 (16)C11—C10—C15—C140.28 (16)
C7—C1—C6—C5174.53 (10)C8—N2—C16—C151.40 (17)
C6—C1—C7—O226.60 (16)C14—C15—C16—N2178.81 (10)
C2—C1—C7—O2157.21 (11)C10—C15—C16—N20.38 (16)
C6—C1—C7—O1151.51 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.91 (2)1.67 (2)2.5738 (14)169 (2)
C3—H3···O2i0.952.213.1580 (15)174
C13—H13···O3ii0.952.523.3405 (19)145
C16—H16···O1iii0.952.433.3477 (15)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). In The Nature of the Hydrogen Bond. Oxford University Press.  Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011c). Acta Cryst. E67, o3222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJerzykiewicz, L. B., Malarski, Z., Sobczyk, L., Lis, T. & Grech, E. (1998). J. Mol. Struct. 440, 175–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalenik, J., Majerz, I., Sobczyk, L., Grech, E. & Habeeb, M. M. (1989). J. Chem. Soc. Faraday Trans. 1, 85, 3187–3193.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchmidtmann, M. & Wilson, C. C. (2008). CrystEngComm, 10, 177–183.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651–2654  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds