research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an eight-coordinate terbium(III) ion chelated by N,N′-bis­­(2-hy­dr­oxy­benz­yl)-N,N′-bis­­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (bbpen2−) and nitrate

aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba-PR, Brazil, and bSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: d.l.hughes@uea.ac.uk

Edited by A. J. Lough, University of Toronto, Canada (Received 24 November 2014; accepted 5 December 2014; online 1 January 2015)

The reaction of terbium(III) nitrate penta­hydrate in aceto­nitrile with N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (H2bbpen), previously deprotonated with tri­ethyl­amine, produced the mononuclear compound [N,N′-bis­(2-oxidobenzyl-κO)-N,N′-bis­(pyridin-2-ylmethyl-κN)ethylenedi­amine-κ2N,N′](nitrato-κ2O,O′)terbium(III), [Tb(C28H28N4O2)(NO3)]. The mol­ecule lies on a twofold rotation axis and the TbIII ion is eight-coordinate with a slightly distorted dodeca­hedral coordination geometry. In the symmetry-unique part of the mol­ecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. In the mol­ecular structure, the N4O4 coordination environment is defined by the hexa­dentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C—H⋯O hydrogen bond links mol­ecules into a two-dimensional network parallel to (001).

1. Chemical context

As far as biological and biomedical applications are concerned, complexes of polydentate ligands with a range of metal ions in different oxidation states have been synthesized to model active sites of metalloproteins and to shed light on the consequences of heavy-metal chelation in living organisms, among many other applications (Colotti et al., 2013[Colotti, G., Ilari, A., Boffi, A. & Morea, V. (2013). Mini Rev. Med. Chem. 13, 211-221.]; Nurchi et al., 2013[Nurchi, V. M., Crespo-Alonso, M., Toso, L., Lachowicz, J. I. & Crisponi, G. (2013). Mini Rev. Med. Chem. 13, 1541-1549.]; Sears, 2013[Sears, M. E. (2013). Sci. World J., article no. 219840.]; Happe & Hemschemeier, 2014[Happe, T. & Hemschemeier, A. (2014). Trends Biotechnol. 32, 170-176.]). Pyridyl and phenolate groups have been incorporated into these ligands because of their potential to mimic the coordination environments provided by the amino acids histidine and tyrosine, respectively (Hancock, 2013[Hancock, R. D. (2013). Chem. Soc. Rev. 42, 1500-1524.]; Lenze et al., 2013[Lenze, M., Sedinkin, S. L. & Bauer, E. B. (2013). J. Mol. Catal. A Chem. 373, 161-171.]). In this context, the heterotrifunctional Lewis base N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (H2bbpen) is suitable for the coordination of a range of p-, d- and f-block ions because of its versatile soft donor atoms in the pyridine rings and hard donors in the amine and phenolate groups (Neves et al., 1992[Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749-4755.]; Schwingel et al., 1996[Schwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31-37.]). Electrochemical studies of the mononuclear [Mn(bbpen)]PF6, for example, revealed that this complex mimics some of the redox features of the photosystem II (PSII) (Neves et al., 1992[Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749-4755.]). Complexes of bbpen2– with vanadium(III) and oxido-vanadium(IV) have been obtained as models of the vanadium-modified transferrin, the probable vanadium-transporting protein in higher organisms (Neves et al., 1991[Neves, A., Ceccato, A. S., Erthal, S. M. D., Vencato, I., Nuber, B. & Weiss, J. (1991). Inorg. Chim. Acta, 187, 119-121.], 1993[Neves, A., Ceccatto, A. S., Erasmus-Buhr, C., Gehring, S., Haase, W., Paulus, H., Nascimento, O. R. & Batista, A. A. (1993). J. Chem. Soc. Chem. Commun. pp. 1782-1784.]). Iron complexes of bbpen2– modified with electron-donating and -withdrawing groups (Me, Br, NO2), in turn, have been synthesized to provide detailed chemical information on the enzymatic activity of iron-tyrosinate proteins (Lanznaster et al., 2006[Lanznaster, M., Neves, A., Bortoluzzi, A. J., Assumpção, A. M. C., Vencato, I., Machado, S. P. & Drechsel, S. M. (2006). Inorg. Chem. 45, 1005-1011.]). This ligand has also been employed to prepare lanthanide(III), gallium(III) and indium(III) complexes for medicinal applications such as the development of new contrast agents for magnetic resonance imaging, MRI (Wong et al., 1995[Wong, E., Liu, S., Rettig, S. & Orvig, C. (1995). Inorg. Chem. 34, 3057-3064.], 1996[Wong, E., Caravan, P., Liu, S., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 715-724.]; Setyawati et al., 2000[Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496-507.]).

[Scheme 1]

More recently, lanthanide(III) chelate complexes have also attracted attention in the field of mol­ecular magnetism due to their highly significant single-ion magnetic anisotropy (Sessoli & Powell, 2009[Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328-2341.]; Luzon & Sessoli, 2012[Luzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556-13567.]). Accordingly, a number of examples of mononuclear lanthanide complexes that exhibit single-mol­ecule magnet (SMM) behaviour have been reported (Rinehart & Long, 2011[Rinehart, J. D. & Long, J. R. (2011). Chem. Sci. 2, 2078-2085.]; Chilton et al., 2013[Chilton, N. F., Langley, S. K., Moubaraki, B., Soncini, A., Batten, S. R. & Murray, K. S. (2013). Chem. Sci. 4, 1719-1730.]; Ungur et al., 2014[Ungur, L., Le Roy, J. J., Korobkov, I., Murugesu, M. & Chibotaru, L. F. (2014). Angew. Chem. Int. Ed. 53, 4413-4417.]; Zhang et al., 2014[Zhang, P., Zhang, L., Wang, C., Xue, S. F., Lin, S. Y. & Tang, J. K. (2014). J. Am. Chem. Soc. 136, 4484-4487.]). Our inter­est in the class of lanthanide complexes in which two coordination sites are occupied by relatively labile ligands, as in the title complex, comes from the possibility of using them as starting materials for the preparation of heteronuclear aggregates of d- and f-block ions that present SMM features. In this case, the replacement of the labile ligands by specific bidentate metallo­ligands can give rise to heteronuclear metal aggregates in which desirable ferromagnetic or ferrimagnetic exchange inter­actions are favoured (Totaro et al., 2013[Totaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416-4426.]; Westrup et al., 2014[Westrup, K. C. M., Boulon, M.-E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681-13691.]).

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The TbIII ion is eight-coordinate with a dodeca­hedral array of N and O atoms (Table 1[link]); the four N atoms of the O2N4-ligand (bbpen) form one plane, the four O atoms the other, with the phenolic O atoms in the B-sites (roughly equatorial) and the nitrate group O atoms in the A-sites (above and below the equatorial plane). The normals to the two planes are essentially perpendicular. A twofold rotation axis passes through O3 and N1 of the nitrate group, the terbium(III) atom and the mid-point of the C7—C7i bond [symmetry code (i) 1 − x, y, −z + [{1\over 2}]]. In the symmetry-unique part of the mol­ecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. The eightfold coordination pattern might also be described as a distorted bicapped trigonal prism with O1 and N2 as the capping atoms. However, this ignores the symmetry of the coordination, e.g. O1 and O1i would occupy different sites in the coordination polyhedron. Also, some of the rectangular faces of the prism are difficult to identify. In contrast, the dodeca­hedral pattern incorporates the twofold symmetry and the distortion from the ideal geometry is minimal.

Table 1
Selected bond lengths (Å)

Tb1—O1 2.1947 (13) Tb1—N3 2.5558 (16)
Tb1—O2 2.4764 (15) Tb1—N1 2.891 (2)
Tb1—N2 2.5521 (17)    
[Figure 1]
Figure 1
View of a mol­ecule of [Tb(bbpen)(NO3)], indicating the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) −x + 1, y, −z + [{1\over 2}]].

3. Supra­molecular features

In the crystal, a weak C—H⋯O hydrogen bond (Table 2[link]) links mol­ecules into a two-dimensional network parallel to (001), Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3ii 0.99 2.37 3.338 (3) 166
Symmetry code: (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A sheet of mol­ecules, lying in a plane normal to the c axis, linked through short `weak hydrogen bonds', as C8—H8B⋯O3ii [symmetry codes: (ii) x + [{1\over 2}], y + [{1\over 2}], z; (iii) x − [{1\over 2}], y − [{1\over 2}], z].

4. Database survey

Some examples of complexes with bbpen2– and related ligands with d-block metal ions appear in the literature (Xu et al., 2000[Xu, L., Setyawati, I. A., Pierreroy, J., Pink, M., Young, V. G., Patrick, B. O., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 5958-5963.]; dos Anjos et al., 2006[Anjos, A. dos, Bortoluzzi, A. J., Caro, M. S. B., Peralta, R. A., Friedermann, G. R., Mangrich, A. S. & Neves, A. (2006). J. Braz. Chem. Soc. 17, 1540-1550.]; Lanznaster et al., 2006[Lanznaster, M., Neves, A., Bortoluzzi, A. J., Assumpção, A. M. C., Vencato, I., Machado, S. P. & Drechsel, S. M. (2006). Inorg. Chem. 45, 1005-1011.]; Golchoubian & Gholamnezhad, 2009[Golchoubian, H. & Gholamnezhad, P. (2009). X-Ray Struct. Anal. Online, 25, 95-96.]; Thomas et al., 2010[Thomas, F., Arora, H., Philouze, C. & Jarjayes, O. (2010). Inorg. Chim. Acta, 363, 3122-3130.]) as well as p-block metal(III) compounds (Wong et al., 1995[Wong, E., Liu, S., Rettig, S. & Orvig, C. (1995). Inorg. Chem. 34, 3057-3064.], 1996[Wong, E., Caravan, P., Liu, S., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 715-724.]) and related yttrium(III) and lanthanide(III) complexes (Setyawati et al., 2000[Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496-507.]; Yamada et al., 2010[Yamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996-1012.]).

5. Synthesis and crystallization

Tb(NO3)3·5H2O, ethyl­enedi­amine, salicyl­aldehyde, sodium borohydride, 2-picolyl-chloride hydro­chloride and tri­ethyl­amine were purchased from Aldrich and used without purification. N,N′-bis­(salicyl­idene)ethyl­enedi­amine (H2salen) (Diehl et al., 2007[Diehl, H., Hach, C. C. & Bailar, J. C. (2007). Inorganic Synthesis, pp. 196-201. New York: John Wiley & Sons Inc.]), N,N′-bis­(2-hy­droxy­benz­yl)ethyl­enedi­amine (H2bben) and N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis(2-pyridyl­meth­yl)ethyl­enedi­amine (H2bbpen) (Neves et al., 1992[Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749-4755.]) were prepared as described in the literature. The preparation of the title complex was carried out under N2(g) using standard Schlenk and glove-box techniques. Aceto­nitrile was dried with CaH2 and distilled prior to use. A solution containing tri­ethyl­amine (300 µl, 2.15 mmol) in aceto­nitrile (10 ml) was added to a suspension of H2bbpen (0.454 g, 1.00 mmol) in aceto­nitrile (25 ml) under stirring, giving a clear light-orange solution. After 15 min, this solution was added to a colourless solution of Tb(NO3)3·5H2O (0.434 g, 0.998 mmol) in aceto­nitrile (25 ml). A pale-yellow solution was obtained, which gave a 65% yield of the solid of the title compound upon cooling at 253 K for 2–3 days. Recrystallization of this solid by vapor diffusion of di­meth­oxy­ethane into the reaction mixture gave pale-pink crystals after two weeks at room temperature. These crystals are air-stable and insoluble in all common organic solvents.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included in idealized positions (with C—H distances set at 0.97 and 0.93 Å for the methyl­ene and trigonal–planar groups, respectively) and their Uiso values were set to ride (1.2×) on the Ueq values of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Tb(C28H28N4O2)(NO3)]
Mr 673.47
Crystal system, space group Orthorhombic, C2221
Temperature (K) 100
a, b, c (Å) 8.5947 (6), 18.2401 (17), 16.9272 (13)
V3) 2653.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.71
Crystal size (mm) 0.43 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS2014/2; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.581, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 75009, 3320, 3289
Rint 0.020
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.010, 0.027, 1.15
No. of reflections 3320
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.87, −0.30
Absolute structure Flack x determined using 1431 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter −0.0107 (19)
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

[N,N'-Bis(2-oxidobenzyl-κO)-N,N'-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2N,N'](nitrato-κ2O,O')terbium(III) top
Crystal data top
[Tb(C28H28N4O2)(NO3)]Dx = 1.686 Mg m3
Mr = 673.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 9558 reflections
a = 8.5947 (6) Åθ = 2.9–28.3°
b = 18.2401 (17) ŵ = 2.71 mm1
c = 16.9272 (13) ÅT = 100 K
V = 2653.6 (4) Å3Prism, pale pink
Z = 40.43 × 0.20 × 0.20 mm
F(000) = 1344
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3320 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.4167 pixels mm-1θmax = 28.4°, θmin = 2.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS2014/2; Bruker, 2014)
k = 2424
Tmin = 0.581, Tmax = 0.746l = 2222
75009 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0139P)2 + 1.0428P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.027(Δ/σ)max = 0.004
S = 1.15Δρmax = 0.87 e Å3
3320 reflectionsΔρmin = 0.30 e Å3
178 parametersAbsolute structure: Flack x determined using 1431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
0 restraintsAbsolute structure parameter: 0.0107 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.50000.51826 (2)0.25000.01172 (4)
O10.59854 (16)0.54526 (8)0.13398 (8)0.0167 (3)
O20.4357 (2)0.39605 (9)0.30473 (10)0.0312 (4)
O30.50000.29285 (11)0.25000.0586 (9)
N10.50000.35974 (11)0.25000.0293 (6)
N20.7540 (2)0.49068 (9)0.32221 (10)0.0183 (3)
N30.66305 (19)0.63257 (8)0.27777 (9)0.0130 (3)
C10.8272 (3)0.42575 (12)0.32538 (14)0.0249 (4)
H10.78090.38510.29930.030*
C20.9672 (2)0.41490 (13)0.36483 (14)0.0275 (5)
H21.01550.36810.36560.033*
C31.0342 (2)0.47389 (13)0.40282 (14)0.0253 (5)
H31.13040.46850.42980.030*
C40.9590 (2)0.54124 (13)0.40111 (12)0.0203 (4)
H41.00220.58230.42780.024*
C50.8200 (2)0.54783 (11)0.35990 (10)0.0151 (3)
C60.7349 (2)0.62034 (12)0.35643 (12)0.0160 (4)
H6A0.65280.62120.39750.019*
H6B0.80880.66060.36790.019*
C70.5652 (2)0.69987 (10)0.28069 (12)0.0156 (3)
H7A0.63230.74320.27190.019*
H7B0.51900.70430.33400.019*
C80.7933 (2)0.64051 (11)0.21953 (12)0.0162 (4)
H8A0.85660.59520.22120.019*
H8B0.86070.68140.23720.019*
C90.7479 (2)0.65450 (12)0.13510 (12)0.0161 (4)
C100.6559 (2)0.60220 (10)0.09514 (11)0.0155 (4)
C110.6273 (2)0.61288 (12)0.01400 (12)0.0188 (4)
H110.56630.57820.01420.023*
C120.6873 (3)0.67359 (13)0.02515 (12)0.0232 (4)
H120.66640.68010.07980.028*
C130.7777 (3)0.72492 (13)0.01476 (14)0.0251 (4)
H130.81860.76630.01230.030*
C140.8073 (2)0.71496 (11)0.09491 (12)0.0199 (4)
H140.86880.74980.12250.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01260 (5)0.01031 (5)0.01225 (5)0.0000.00008 (7)0.000
O10.0177 (6)0.0180 (6)0.0145 (6)0.0021 (5)0.0023 (5)0.0009 (5)
O20.0439 (9)0.0209 (7)0.0287 (8)0.0086 (7)0.0077 (7)0.0083 (6)
O30.096 (2)0.0096 (8)0.0704 (19)0.0000.046 (3)0.000
N10.0418 (14)0.0119 (9)0.0343 (13)0.0000.028 (2)0.000
N20.0170 (8)0.0191 (8)0.0188 (8)0.0028 (7)0.0021 (6)0.0002 (6)
N30.0124 (7)0.0136 (7)0.0128 (6)0.0003 (6)0.0002 (5)0.0006 (5)
C10.0244 (10)0.0208 (10)0.0294 (11)0.0046 (8)0.0059 (9)0.0027 (8)
C20.0250 (14)0.0275 (10)0.0298 (10)0.0106 (8)0.0037 (8)0.0042 (8)
C30.0180 (13)0.0364 (11)0.0214 (9)0.0023 (8)0.0036 (7)0.0102 (8)
C40.0176 (11)0.0282 (10)0.0153 (8)0.0033 (7)0.0028 (6)0.0061 (8)
C50.0147 (8)0.0196 (9)0.0110 (8)0.0001 (7)0.0013 (6)0.0032 (7)
C60.0162 (9)0.0181 (9)0.0138 (9)0.0009 (8)0.0022 (7)0.0010 (8)
C70.0161 (8)0.0110 (8)0.0198 (8)0.0006 (7)0.0002 (7)0.0012 (7)
C80.0124 (8)0.0210 (9)0.0153 (8)0.0023 (7)0.0007 (7)0.0021 (7)
C90.0136 (9)0.0209 (10)0.0139 (9)0.0017 (8)0.0009 (7)0.0012 (8)
C100.0130 (8)0.0175 (9)0.0158 (8)0.0028 (7)0.0024 (7)0.0001 (7)
C110.0181 (9)0.0231 (10)0.0153 (9)0.0024 (8)0.0000 (7)0.0021 (8)
C120.0266 (11)0.0286 (11)0.0142 (9)0.0029 (9)0.0004 (8)0.0042 (8)
C130.0303 (11)0.0238 (10)0.0210 (11)0.0032 (9)0.0013 (9)0.0080 (8)
C140.0196 (9)0.0208 (9)0.0194 (10)0.0012 (8)0.0002 (8)0.0022 (8)
Geometric parameters (Å, º) top
Tb1—O1i2.1947 (13)C3—H30.9500
Tb1—O12.1947 (13)C4—C51.389 (3)
Tb1—O2i2.4764 (15)C4—H40.9500
Tb1—O22.4764 (15)C5—C61.513 (3)
Tb1—N2i2.5521 (17)C6—H6A0.9900
Tb1—N22.5521 (17)C6—H6B0.9900
Tb1—N3i2.5558 (16)C7—C7i1.529 (4)
Tb1—N32.5558 (16)C7—H7A0.9900
Tb1—N12.891 (2)C7—H7B0.9900
O1—C101.324 (2)C8—C91.503 (3)
O2—N11.266 (2)C8—H8A0.9900
O3—N11.220 (3)C8—H8B0.9900
N1—O2i1.266 (2)C9—C141.393 (3)
N2—C11.342 (3)C9—C101.412 (3)
N2—C51.347 (3)C10—C111.409 (3)
N3—C61.485 (2)C11—C121.390 (3)
N3—C71.489 (2)C11—H110.9500
N3—C81.498 (2)C12—C131.391 (3)
C1—C21.391 (3)C12—H120.9500
C1—H10.9500C13—C141.392 (3)
C2—C31.380 (3)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.388 (3)
O1i—Tb1—O1154.07 (7)C8—N3—Tb1111.56 (11)
O1i—Tb1—O2i128.52 (6)N2—C1—C2123.4 (2)
O1—Tb1—O2i77.36 (6)N2—C1—H1118.3
O1i—Tb1—O277.36 (6)C2—C1—H1118.3
O1—Tb1—O2128.52 (6)C3—C2—C1118.3 (2)
O2i—Tb1—O251.64 (9)C3—C2—H2120.9
O1i—Tb1—N2i98.20 (5)C1—C2—H2120.9
O1—Tb1—N2i86.89 (5)C2—C3—C4119.11 (19)
O2i—Tb1—N2i80.45 (6)C2—C3—H3120.4
O2—Tb1—N2i79.10 (6)C4—C3—H3120.4
O1i—Tb1—N286.89 (5)C3—C4—C5119.2 (2)
O1—Tb1—N298.20 (5)C3—C4—H4120.4
O2i—Tb1—N279.10 (6)C5—C4—H4120.4
O2—Tb1—N280.45 (6)N2—C5—C4122.21 (19)
N2i—Tb1—N2157.26 (8)N2—C5—C6117.05 (16)
O1i—Tb1—N3i76.70 (5)C4—C5—C6120.74 (19)
O1—Tb1—N3i82.18 (5)N3—C6—C5111.54 (16)
O2i—Tb1—N3i141.99 (5)N3—C6—H6A109.3
O2—Tb1—N3i132.91 (6)C5—C6—H6A109.3
N2i—Tb1—N3i66.65 (5)N3—C6—H6B109.3
N2—Tb1—N3i135.88 (5)C5—C6—H6B109.3
O1i—Tb1—N382.18 (5)H6A—C6—H6B108.0
O1—Tb1—N376.70 (5)N3—C7—C7i113.05 (13)
O2i—Tb1—N3132.91 (6)N3—C7—H7A109.0
O2—Tb1—N3141.99 (5)C7i—C7—H7A109.0
N2i—Tb1—N3135.88 (5)N3—C7—H7B109.0
N2—Tb1—N366.65 (5)C7i—C7—H7B109.0
N3i—Tb1—N370.67 (7)H7A—C7—H7B107.8
O1i—Tb1—N1102.97 (4)N3—C8—C9116.63 (16)
O1—Tb1—N1102.97 (4)N3—C8—H8A108.1
O2i—Tb1—N125.82 (4)C9—C8—H8A108.1
O2—Tb1—N125.82 (4)N3—C8—H8B108.1
N2i—Tb1—N178.63 (4)C9—C8—H8B108.1
N2—Tb1—N178.63 (4)H8A—C8—H8B107.3
N3i—Tb1—N1144.67 (4)C14—C9—C10120.42 (18)
N3—Tb1—N1144.67 (4)C14—C9—C8120.25 (19)
C10—O1—Tb1139.80 (12)C10—C9—C8119.08 (19)
N1—O2—Tb195.73 (12)O1—C10—C11121.83 (18)
O3—N1—O2121.55 (11)O1—C10—C9120.05 (17)
O3—N1—O2i121.55 (11)C11—C10—C9118.13 (18)
O2—N1—O2i116.9 (2)C12—C11—C10120.67 (19)
O3—N1—Tb1180.0C12—C11—H11119.7
O2—N1—Tb158.45 (11)C10—C11—H11119.7
O2i—N1—Tb158.45 (11)C11—C12—C13120.8 (2)
C1—N2—C5117.83 (17)C11—C12—H12119.6
C1—N2—Tb1126.43 (14)C13—C12—H12119.6
C5—N2—Tb1115.74 (12)C12—C13—C14119.2 (2)
C6—N3—C7109.19 (15)C12—C13—H13120.4
C6—N3—C8107.09 (15)C14—C13—H13120.4
C7—N3—C8111.34 (15)C13—C14—C9120.8 (2)
C6—N3—Tb1105.69 (12)C13—C14—H14119.6
C7—N3—Tb1111.67 (11)C9—C14—H14119.6
Tb1—O2—N1—O3180.000 (1)Tb1—N3—C7—C7i38.2 (2)
Tb1—O2—N1—O2i0.000 (1)C6—N3—C8—C9179.19 (19)
C5—N2—C1—C20.5 (3)C7—N3—C8—C959.9 (2)
Tb1—N2—C1—C2178.82 (17)Tb1—N3—C8—C965.61 (19)
N2—C1—C2—C30.2 (4)N3—C8—C9—C14125.3 (2)
C1—C2—C3—C40.8 (3)N3—C8—C9—C1060.3 (3)
C2—C3—C4—C51.3 (3)Tb1—O1—C10—C11142.18 (16)
C1—N2—C5—C40.0 (3)Tb1—O1—C10—C937.5 (3)
Tb1—N2—C5—C4179.43 (14)C14—C9—C10—O1179.29 (18)
C1—N2—C5—C6179.33 (18)C8—C9—C10—O16.3 (3)
Tb1—N2—C5—C61.2 (2)C14—C9—C10—C110.4 (3)
C3—C4—C5—N20.9 (3)C8—C9—C10—C11174.00 (18)
C3—C4—C5—C6179.80 (18)O1—C10—C11—C12179.21 (19)
C7—N3—C6—C5173.14 (16)C9—C10—C11—C120.5 (3)
C8—N3—C6—C566.2 (2)C10—C11—C12—C130.3 (3)
Tb1—N3—C6—C552.88 (17)C11—C12—C13—C140.2 (4)
N2—C5—C6—N338.3 (2)C12—C13—C14—C90.1 (3)
C4—C5—C6—N3142.41 (18)C10—C9—C14—C130.2 (3)
C6—N3—C7—C7i154.7 (2)C8—C9—C14—C13174.1 (2)
C8—N3—C7—C7i87.2 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3ii0.992.373.338 (3)166
Symmetry code: (ii) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support from the Brazilian agencies CNPq (grant No. 307592/2012–0) and CAPES (grant PVE A099/2013) is gratefully acknowledged. The authors also thank CNPq, CAPES and Fundação Araucária (Brazil) for fellowships.

References

First citationAnjos, A. dos, Bortoluzzi, A. J., Caro, M. S. B., Peralta, R. A., Friedermann, G. R., Mangrich, A. S. & Neves, A. (2006). J. Braz. Chem. Soc. 17, 1540–1550.  CSD CrossRef Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilton, N. F., Langley, S. K., Moubaraki, B., Soncini, A., Batten, S. R. & Murray, K. S. (2013). Chem. Sci. 4, 1719–1730.  Web of Science CSD CrossRef CAS Google Scholar
First citationColotti, G., Ilari, A., Boffi, A. & Morea, V. (2013). Mini Rev. Med. Chem. 13, 211–221.  Web of Science CAS PubMed Google Scholar
First citationDiehl, H., Hach, C. C. & Bailar, J. C. (2007). Inorganic Synthesis, pp. 196–201. New York: John Wiley & Sons Inc.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolchoubian, H. & Gholamnezhad, P. (2009). X-Ray Struct. Anal. Online, 25, 95–96.  CSD CrossRef CAS Google Scholar
First citationHancock, R. D. (2013). Chem. Soc. Rev. 42, 1500–1524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHappe, T. & Hemschemeier, A. (2014). Trends Biotechnol. 32, 170–176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLanznaster, M., Neves, A., Bortoluzzi, A. J., Assumpção, A. M. C., Vencato, I., Machado, S. P. & Drechsel, S. M. (2006). Inorg. Chem. 45, 1005–1011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLenze, M., Sedinkin, S. L. & Bauer, E. B. (2013). J. Mol. Catal. A Chem. 373, 161–171.  Web of Science CrossRef CAS Google Scholar
First citationLuzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556–13567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeves, A., Ceccato, A. S., Erthal, S. M. D., Vencato, I., Nuber, B. & Weiss, J. (1991). Inorg. Chim. Acta, 187, 119–121.  CSD CrossRef CAS Web of Science Google Scholar
First citationNeves, A., Ceccatto, A. S., Erasmus-Buhr, C., Gehring, S., Haase, W., Paulus, H., Nascimento, O. R. & Batista, A. A. (1993). J. Chem. Soc. Chem. Commun. pp. 1782–1784.  CrossRef Web of Science Google Scholar
First citationNeves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755.  CSD CrossRef CAS Web of Science Google Scholar
First citationNurchi, V. M., Crespo-Alonso, M., Toso, L., Lachowicz, J. I. & Crisponi, G. (2013). Mini Rev. Med. Chem. 13, 1541–1549.  Web of Science CAS PubMed Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRinehart, J. D. & Long, J. R. (2011). Chem. Sci. 2, 2078–2085.  Web of Science CrossRef CAS Google Scholar
First citationSchwingel, E. W., Arend, K., Zarling, J., Neves, A. & Szpoganicz, B. (1996). J. Braz. Chem. Soc. 7, 31–37.  CrossRef CAS Google Scholar
First citationSears, M. E. (2013). Sci. World J., article no. 219840.  Google Scholar
First citationSessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.  Web of Science CrossRef CAS Google Scholar
First citationSetyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496–507.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, F., Arora, H., Philouze, C. & Jarjayes, O. (2010). Inorg. Chim. Acta, 363, 3122–3130.  Web of Science CSD CrossRef CAS Google Scholar
First citationTotaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416–4426.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUngur, L., Le Roy, J. J., Korobkov, I., Murugesu, M. & Chibotaru, L. F. (2014). Angew. Chem. Int. Ed. 53, 4413–4417.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrup, K. C. M., Boulon, M.-E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681–13691.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWong, E., Caravan, P., Liu, S., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 715–724.  CSD CrossRef CAS Web of Science Google Scholar
First citationWong, E., Liu, S., Rettig, S. & Orvig, C. (1995). Inorg. Chem. 34, 3057–3064.  CSD CrossRef CAS Web of Science Google Scholar
First citationXu, L., Setyawati, I. A., Pierreroy, J., Pink, M., Young, V. G., Patrick, B. O., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 5958–5963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996–1012.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, P., Zhang, L., Wang, C., Xue, S. F., Lin, S. Y. & Tang, J. K. (2014). J. Am. Chem. Soc. 136, 4484–4487.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds