research communications
of 4,4′-(ethane-1,2-diyl)bis(2,6-dibromoaniline)
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de
In the title compound, C14H12Br4N2, the molecule lies across an inversion center and hence the benzene rings are strictly coplanar. In the crystal, molecules are linked by N—H⋯N and weak N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (101). In addition, type II Br⋯Br interactions [3.625 (4) Å] complete a three-dimensional supramolecular network.
Keywords: crystal structure; 4,4′-(ethane-1,2-diyl)bis(2,6-dibromoaniline); framework structures.
CCDC reference: 1038844
1. Chemical context
Spacer-type compounds are vital for the generation of a variety of framework structures including metal organic (MOF) (MacGillivray, 2010), hydrogen-bonded (HBN) (Elemans et al., 2009) or covalent organic (COF) (El-Kaden et al., 2007) network species. The title compound is an intermediate substance of a corresponding synthesis of a corresponding spacer molecule. Moreover, tecton-like molecules having terminally attached interacting sites are interesting building blocks in the field of organic crystal engineering (Tiekink et al., 2010), in particular involving potentially competitive groups, in itself forming hydrogen bonds (Braga & Crepioni, 2004) or halogen contacts (Awwadi et al., 2006; Metrangolo & Resnati, 2008) by preference in the crystal state. Such a test case is given with the oligobromoamino-containing title compound.
2. Structural commentary
The title molecule lies across an inversion center and hence the benzene rings are strictly coplanar (Fig. 1). The conformation of the molecular backbone agrees well with those found in the structure of 1,2-biphenylethane (Harada & Ogawa, 2001) and a great number of its ring-substituted derivatives (Kahr et al., 1995; Moorthy et al., 2005). The Csp3—Csp3 and Csp3—Csp2 bond lengths of 1.535 (6) and 1.514 (4) Å are in the normal range.
3. Supramolecular features
The amino group hydrogen atoms take part in molecular association (Table 1) by forming conventional N—H⋯N hydrogen bonds (Jeffrey, 1997, see Table 1) and weak N—H⋯Br contacts (Desiraju & Steiner, 1999) resulting in the formation of a layer structure parallel to (101) (Fig. 2). Interlayer association is accomplished by type II, Br⋯Br contacts [3.625 (4) Å, θ1 = 109.7 (2), θ2 = 150.7 (2)°] (Awwadi et al., 2006; Metrangolo & Resnati, 2008).
4. Synthesis and crystallization
In an imitation of a described procedure (Berger et al., 1998) preparation of the title compound was achieved by a bromination reaction of a solution of 4,4′-diaminobiphenyl (10.0 g, 47.14 mmol) in glacial acetic acid (760 ml) using bromine (30.3 g, 0.19 mol, dissolved in 40 ml glacial acetic acid). After having stirred for 2 h at room temperature, water was added to the mixture. The raw product which precipitated was collected, washed with water and treated with boiling glacial acetic acid to yield 19.6 g (79%) of a greenish powder. Slow crystallization from toluene gave colourless needles of the title compound suitable for X-ray structural analysis. M.p. >593 K. IR (KBr) 3329, 3190, 3033, 2940, 2915, 2851, 1617, 1581, 1542, 1486, 1060, 892, 871. MS (EI) m/z: found – 527.5; calculated for C14H12N2Br4 – 527.87. Elemental analysis: found – C 31.53, H 2.34, N 5.59; calculated for C14H12N2Br4 – C 31.85, H 2.29, N 5.31. 4,4′-Diaminobibenzyl was purchased (Sigma–Aldrich). The melting point was measured on a hot-stage microscope (Rapido Dresden). IR and mass (EI–MS) spectra were performed using Nicolet 510 FTIR and Finnigan Mat 8200 instruments, respectively.
5. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93 Å for aromatic and C—H 0.97 Å for methylene H) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The amino H atoms were located in a Fourier map and the N—H distances restrained to 0.89 (1) Å.
details are summarized in Table 2Supporting information
CCDC reference: 1038844
https://doi.org/10.1107/S2056989014027182/lh5742sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014027182/lh5742Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989014027182/lh5742Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H12Br4N2 | F(000) = 500 |
Mr = 527.86 | Dx = 2.245 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3117 reflections |
a = 8.1219 (4) Å | θ = 2.6–26.4° |
b = 4.4962 (2) Å | µ = 10.30 mm−1 |
c = 21.5327 (9) Å | T = 153 K |
β = 96.706 (3)° | Needle, colourless |
V = 780.95 (6) Å3 | 0.30 × 0.20 × 0.08 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1356 independent reflections |
Radiation source: fine-focus sealed tube | 1213 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 25.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.148, Tmax = 0.493 | k = −5→4 |
6211 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0287P)2 + 0.4643P] where P = (Fo2 + 2Fc2)/3 |
1356 reflections | (Δ/σ)max < 0.001 |
99 parameters | Δρmax = 0.52 e Å−3 |
2 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The distances of N—H bonds were restrained to a target value of 0.89(0.01) Å. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.57978 (4) | 0.36821 (8) | 0.225361 (14) | 0.03020 (13) | |
Br2 | −0.06304 (4) | 0.52607 (9) | 0.094219 (15) | 0.03690 (14) | |
N1 | 0.2009 (3) | 0.2907 (7) | 0.19806 (11) | 0.0243 (6) | |
H1A | 0.260 (3) | 0.140 (5) | 0.2143 (13) | 0.020 (9)* | |
H1B | 0.102 (2) | 0.223 (8) | 0.1841 (14) | 0.033 (9)* | |
C1 | 0.3975 (4) | 0.8813 (7) | 0.07282 (13) | 0.0216 (7) | |
C2 | 0.4981 (3) | 0.7477 (7) | 0.12150 (13) | 0.0221 (7) | |
H2 | 0.6107 | 0.7920 | 0.1274 | 0.026* | |
C3 | 0.4334 (3) | 0.5501 (7) | 0.16131 (13) | 0.0203 (7) | |
C4 | 0.2654 (3) | 0.4736 (7) | 0.15549 (12) | 0.0190 (7) | |
C5 | 0.1679 (3) | 0.6141 (7) | 0.10623 (13) | 0.0210 (7) | |
C6 | 0.2309 (4) | 0.8108 (7) | 0.06593 (13) | 0.0222 (7) | |
H6 | 0.1604 | 0.8969 | 0.0338 | 0.027* | |
C7 | 0.4705 (4) | 1.0862 (8) | 0.02740 (14) | 0.0279 (7) | |
H7A | 0.5633 | 1.1936 | 0.0493 | 0.034* | |
H7B | 0.3875 | 1.2306 | 0.0113 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02849 (19) | 0.0311 (3) | 0.02914 (19) | 0.00445 (14) | −0.00444 (13) | −0.00097 (14) |
Br2 | 0.02079 (19) | 0.0507 (3) | 0.0385 (2) | −0.00335 (15) | 0.00032 (14) | 0.00005 (17) |
N1 | 0.0284 (14) | 0.0220 (17) | 0.0237 (13) | −0.0027 (12) | 0.0073 (11) | 0.0028 (13) |
C1 | 0.0308 (16) | 0.0158 (18) | 0.0196 (14) | 0.0001 (13) | 0.0095 (12) | −0.0052 (13) |
C2 | 0.0205 (14) | 0.0208 (18) | 0.0264 (15) | −0.0016 (13) | 0.0089 (12) | −0.0068 (15) |
C3 | 0.0232 (15) | 0.0212 (19) | 0.0171 (13) | 0.0019 (13) | 0.0044 (12) | −0.0044 (13) |
C4 | 0.0234 (15) | 0.0183 (18) | 0.0165 (13) | −0.0006 (13) | 0.0070 (12) | −0.0056 (13) |
C5 | 0.0198 (14) | 0.0220 (19) | 0.0218 (14) | 0.0003 (12) | 0.0051 (11) | −0.0061 (14) |
C6 | 0.0311 (16) | 0.0189 (19) | 0.0172 (13) | 0.0041 (13) | 0.0050 (12) | −0.0015 (13) |
C7 | 0.0422 (19) | 0.0171 (19) | 0.0273 (16) | −0.0008 (15) | 0.0159 (14) | −0.0017 (14) |
Br1—C3 | 1.898 (3) | C2—H2 | 0.9300 |
Br2—C5 | 1.905 (3) | C3—C4 | 1.398 (4) |
N1—C4 | 1.380 (4) | C4—C5 | 1.398 (4) |
N1—H1A | 0.877 (10) | C5—C6 | 1.378 (4) |
N1—H1B | 0.879 (10) | C6—H6 | 0.9300 |
C1—C6 | 1.381 (4) | C7—C7i | 1.535 (6) |
C1—C2 | 1.388 (4) | C7—H7A | 0.9700 |
C1—C7 | 1.514 (4) | C7—H7B | 0.9700 |
C2—C3 | 1.381 (4) | ||
C4—N1—H1A | 119.6 (19) | C3—C4—C5 | 114.7 (3) |
C4—N1—H1B | 113 (2) | C6—C5—C4 | 123.3 (3) |
H1A—N1—H1B | 108 (3) | C6—C5—Br2 | 118.6 (2) |
C6—C1—C2 | 117.7 (3) | C4—C5—Br2 | 118.1 (2) |
C6—C1—C7 | 121.5 (3) | C5—C6—C1 | 120.7 (3) |
C2—C1—C7 | 120.7 (3) | C5—C6—H6 | 119.7 |
C3—C2—C1 | 120.9 (3) | C1—C6—H6 | 119.7 |
C3—C2—H2 | 119.5 | C1—C7—C7i | 111.7 (4) |
C1—C2—H2 | 119.5 | C1—C7—H7A | 109.3 |
C2—C3—C4 | 122.8 (3) | C7i—C7—H7A | 109.3 |
C2—C3—Br1 | 118.5 (2) | C1—C7—H7B | 109.3 |
C4—C3—Br1 | 118.8 (2) | C7i—C7—H7B | 109.3 |
N1—C4—C3 | 122.0 (3) | H7A—C7—H7B | 107.9 |
N1—C4—C5 | 123.2 (3) | ||
C6—C1—C2—C3 | 0.4 (4) | C3—C4—C5—C6 | 0.5 (4) |
C7—C1—C2—C3 | −177.0 (3) | N1—C4—C5—Br2 | −4.4 (4) |
C1—C2—C3—C4 | −0.2 (5) | C3—C4—C5—Br2 | −179.9 (2) |
C1—C2—C3—Br1 | 178.3 (2) | C4—C5—C6—C1 | −0.4 (5) |
C2—C3—C4—N1 | −175.7 (3) | Br2—C5—C6—C1 | 180.0 (2) |
Br1—C3—C4—N1 | 5.8 (4) | C2—C1—C6—C5 | −0.1 (4) |
C2—C3—C4—C5 | −0.2 (4) | C7—C1—C6—C5 | 177.3 (3) |
Br1—C3—C4—C5 | −178.7 (2) | C6—C1—C7—C7i | −89.9 (4) |
N1—C4—C5—C6 | 176.0 (3) | C2—C1—C7—C7i | 87.4 (4) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N1ii | 0.88 (2) | 2.45 (3) | 3.206 (4) | 145 (2) |
N1—H1B···Br1ii | 0.88 (2) | 3.03 (3) | 3.521 (4) | 117 (2) |
Symmetry code: (ii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the priority program `Porous Metal-Organic Frameworks' (DFG-Project SPP 1362).
References
Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. Web of Science CrossRef PubMed CAS Google Scholar
Berger, R., Beckmann, R. & Reichelt, H. (1998). Ger. Offen. DE 19643769 A1 19980430. Google Scholar
Braga, D. & Crepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry, pp. 357–363. Boca Raton: CRC Press. Google Scholar
Bruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press. Google Scholar
Elemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298–7332. Web of Science CrossRef CAS Google Scholar
El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O'Keeffe, M. & Yaghi, O. M. (2007). Science, 316, 268–272. Web of Science PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harada, J. & Ogawa, K. (2001). Struct. Chem. 12, 243–250. Web of Science CSD CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Kahr, B., Mitchell, C. A., Chance, J. M., Clark, R. V., Gantzel, P., Baldridge, K. K. & Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 4479–4482. CSD CrossRef CAS Web of Science Google Scholar
MacGillivray, L. R. (2010). Editor. Metal–Organic Frameworks. Hoboken: Wiley. Google Scholar
Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding – Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer. Google Scholar
Moorthy, J. N., Natarajan, R. & Venugopalan, R. (2005). J. Mol. Struct. 741, 107–114. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.