research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-(ethane-1,2-di­yl)bis­­(2,6-di­bromo­aniline)

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

Edited by A. J. Lough, University of Toronto, Canada (Received 25 November 2014; accepted 11 December 2014; online 1 January 2015)

In the title compound, C14H12Br4N2, the mol­ecule lies across an inversion center and hence the benzene rings are strictly coplanar. In the crystal, mol­ecules are linked by N—H⋯N and weak N—H⋯Br hydrogen bonds, forming a two-dimensional network parallel to (101). In addition, type II Br⋯Br inter­actions [3.625 (4) Å] complete a three-dimensional supra­molecular network.

1. Chemical context

Spacer-type compounds are vital for the generation of a variety of framework structures including metal organic (MOF) (MacGillivray, 2010[MacGillivray, L. R. (2010). Editor. Metal-Organic Frameworks. Hoboken: Wiley.]), hydrogen-bonded (HBN) (Elemans et al., 2009[Elemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298-7332.]) or covalent organic (COF) (El-Kaden et al., 2007[El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O'Keeffe, M. & Yaghi, O. M. (2007). Science, 316, 268-272.]) network species. The title compound is an inter­mediate substance of a corresponding synthesis of a corresponding spacer molecule. Moreover, tecton-like mol­ecules having terminally attached inter­acting sites are inter­esting building blocks in the field of organic crystal engineering (Tiekink et al., 2010[Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.]), in particular involving potentially competitive groups, in itself forming hydrogen bonds (Braga & Crepioni, 2004[Braga, D. & Crepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry, pp. 357-363. Boca Raton: CRC Press.]) or halogen contacts (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]; Metrangolo & Resnati, 2008[Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding - Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer.]) by preference in the crystal state. Such a test case is given with the oligo­bromo­amino-containing title compound.

[Scheme 1]

2. Structural commentary

The title mol­ecule lies across an inversion center and hence the benzene rings are strictly coplanar (Fig. 1[link]). The conformation of the mol­ecular backbone agrees well with those found in the structure of 1,2-bi­phenyl­ethane (Harada & Ogawa, 2001[Harada, J. & Ogawa, K. (2001). Struct. Chem. 12, 243-250.]) and a great number of its ring-substituted derivatives (Kahr et al., 1995[Kahr, B., Mitchell, C. A., Chance, J. M., Clark, R. V., Gantzel, P., Baldridge, K. K. & Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 4479-4482.]; Moorthy et al., 2005[Moorthy, J. N., Natarajan, R. & Venugopalan, R. (2005). J. Mol. Struct. 741, 107-114.]). The Csp3—Csp3 and Csp3—Csp2 bond lengths of 1.535 (6) and 1.514 (4) Å are in the normal range.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level. Unlabeled atoms are related by the symmetry operator (−x + 1, −y + 2, −z).

3. Supra­molecular features

The amino group hydrogen atoms take part in mol­ecular association (Table 1[link]) by forming conventional N—H⋯N hydrogen bonds (Jeffrey, 1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.], see Table 1[link]) and weak N—H⋯Br contacts (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.]) resulting in the formation of a layer structure parallel to (101) (Fig. 2[link]). Inter­layer association is accomplished by type II, Br⋯Br contacts [3.625 (4) Å, θ1 = 109.7 (2), θ2 = 150.7 (2)°] (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]; Metrangolo & Resnati, 2008[Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding - Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.88 (2) 2.45 (3) 3.206 (4) 145 (2)
N1—H1B⋯Br1i 0.88 (2) 3.03 (3) 3.521 (4) 117 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure viewed along the b axis. N atoms are displayed as blue and Br atoms as violet circles. Hydrogen bonds and Br⋯Br contacts are shown as dashed lines.

4. Synthesis and crystallization

In an imitation of a described procedure (Berger et al., 1998[Berger, R., Beckmann, R. & Reichelt, H. (1998). Ger. Offen. DE 19643769 A1 19980430.]) preparation of the title compound was achieved by a bromination reaction of a solution of 4,4′-di­amino­biphenyl (10.0 g, 47.14 mmol) in glacial acetic acid (760 ml) using bromine (30.3 g, 0.19 mol, dissolved in 40 ml glacial acetic acid). After having stirred for 2 h at room temperature, water was added to the mixture. The raw product which precipitated was collected, washed with water and treated with boiling glacial acetic acid to yield 19.6 g (79%) of a greenish powder. Slow crystallization from toluene gave colourless needles of the title compound suitable for X-ray structural analysis. M.p. >593 K. IR (KBr) 3329, 3190, 3033, 2940, 2915, 2851, 1617, 1581, 1542, 1486, 1060, 892, 871. MS (EI) m/z: found – 527.5; calculated for C14H12N2Br4 – 527.87. Elemental analysis: found – C 31.53, H 2.34, N 5.59; calculated for C14H12N2Br4 – C 31.85, H 2.29, N 5.31. 4,4′-Di­amino­bibenzyl was purchased (Sigma–Aldrich). The melting point was measured on a hot-stage microscope (Rapido Dresden). IR and mass (EI–MS) spectra were performed using Nicolet 510 FTIR and Finnigan Mat 8200 instruments, respectively.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.93 Å for aromatic and C—H 0.97 Å for methyl­ene H) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The amino H atoms were located in a Fourier map and the N—H distances restrained to 0.89 (1) Å.

Table 2
Experimental details

Crystal data
Chemical formula C14H12Br4N2
Mr 527.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 153
a, b, c (Å) 8.1219 (4), 4.4962 (2), 21.5327 (9)
β (°) 96.706 (3)
V3) 780.95 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.30
Crystal size (mm) 0.30 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.148, 0.493
No. of measured, independent and observed [I > 2σ(I)] reflections 6211, 1356, 1213
Rint 0.034
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.05
No. of reflections 1356
No. of parameters 99
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4'-(Ethane-1,2-diyl)bis(2,6-dibromoaniline) top
Crystal data top
C14H12Br4N2F(000) = 500
Mr = 527.86Dx = 2.245 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3117 reflections
a = 8.1219 (4) Åθ = 2.6–26.4°
b = 4.4962 (2) ŵ = 10.30 mm1
c = 21.5327 (9) ÅT = 153 K
β = 96.706 (3)°Needle, colourless
V = 780.95 (6) Å30.30 × 0.20 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1356 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.148, Tmax = 0.493k = 54
6211 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
1356 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The distances of N—H bonds were restrained to a target value of 0.89(0.01) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57978 (4)0.36821 (8)0.225361 (14)0.03020 (13)
Br20.06304 (4)0.52607 (9)0.094219 (15)0.03690 (14)
N10.2009 (3)0.2907 (7)0.19806 (11)0.0243 (6)
H1A0.260 (3)0.140 (5)0.2143 (13)0.020 (9)*
H1B0.102 (2)0.223 (8)0.1841 (14)0.033 (9)*
C10.3975 (4)0.8813 (7)0.07282 (13)0.0216 (7)
C20.4981 (3)0.7477 (7)0.12150 (13)0.0221 (7)
H20.61070.79200.12740.026*
C30.4334 (3)0.5501 (7)0.16131 (13)0.0203 (7)
C40.2654 (3)0.4736 (7)0.15549 (12)0.0190 (7)
C50.1679 (3)0.6141 (7)0.10623 (13)0.0210 (7)
C60.2309 (4)0.8108 (7)0.06593 (13)0.0222 (7)
H60.16040.89690.03380.027*
C70.4705 (4)1.0862 (8)0.02740 (14)0.0279 (7)
H7A0.56331.19360.04930.034*
H7B0.38751.23060.01130.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02849 (19)0.0311 (3)0.02914 (19)0.00445 (14)0.00444 (13)0.00097 (14)
Br20.02079 (19)0.0507 (3)0.0385 (2)0.00335 (15)0.00032 (14)0.00005 (17)
N10.0284 (14)0.0220 (17)0.0237 (13)0.0027 (12)0.0073 (11)0.0028 (13)
C10.0308 (16)0.0158 (18)0.0196 (14)0.0001 (13)0.0095 (12)0.0052 (13)
C20.0205 (14)0.0208 (18)0.0264 (15)0.0016 (13)0.0089 (12)0.0068 (15)
C30.0232 (15)0.0212 (19)0.0171 (13)0.0019 (13)0.0044 (12)0.0044 (13)
C40.0234 (15)0.0183 (18)0.0165 (13)0.0006 (13)0.0070 (12)0.0056 (13)
C50.0198 (14)0.0220 (19)0.0218 (14)0.0003 (12)0.0051 (11)0.0061 (14)
C60.0311 (16)0.0189 (19)0.0172 (13)0.0041 (13)0.0050 (12)0.0015 (13)
C70.0422 (19)0.0171 (19)0.0273 (16)0.0008 (15)0.0159 (14)0.0017 (14)
Geometric parameters (Å, º) top
Br1—C31.898 (3)C2—H20.9300
Br2—C51.905 (3)C3—C41.398 (4)
N1—C41.380 (4)C4—C51.398 (4)
N1—H1A0.877 (10)C5—C61.378 (4)
N1—H1B0.879 (10)C6—H60.9300
C1—C61.381 (4)C7—C7i1.535 (6)
C1—C21.388 (4)C7—H7A0.9700
C1—C71.514 (4)C7—H7B0.9700
C2—C31.381 (4)
C4—N1—H1A119.6 (19)C3—C4—C5114.7 (3)
C4—N1—H1B113 (2)C6—C5—C4123.3 (3)
H1A—N1—H1B108 (3)C6—C5—Br2118.6 (2)
C6—C1—C2117.7 (3)C4—C5—Br2118.1 (2)
C6—C1—C7121.5 (3)C5—C6—C1120.7 (3)
C2—C1—C7120.7 (3)C5—C6—H6119.7
C3—C2—C1120.9 (3)C1—C6—H6119.7
C3—C2—H2119.5C1—C7—C7i111.7 (4)
C1—C2—H2119.5C1—C7—H7A109.3
C2—C3—C4122.8 (3)C7i—C7—H7A109.3
C2—C3—Br1118.5 (2)C1—C7—H7B109.3
C4—C3—Br1118.8 (2)C7i—C7—H7B109.3
N1—C4—C3122.0 (3)H7A—C7—H7B107.9
N1—C4—C5123.2 (3)
C6—C1—C2—C30.4 (4)C3—C4—C5—C60.5 (4)
C7—C1—C2—C3177.0 (3)N1—C4—C5—Br24.4 (4)
C1—C2—C3—C40.2 (5)C3—C4—C5—Br2179.9 (2)
C1—C2—C3—Br1178.3 (2)C4—C5—C6—C10.4 (5)
C2—C3—C4—N1175.7 (3)Br2—C5—C6—C1180.0 (2)
Br1—C3—C4—N15.8 (4)C2—C1—C6—C50.1 (4)
C2—C3—C4—C50.2 (4)C7—C1—C6—C5177.3 (3)
Br1—C3—C4—C5178.7 (2)C6—C1—C7—C7i89.9 (4)
N1—C4—C5—C6176.0 (3)C2—C1—C7—C7i87.4 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1ii0.88 (2)2.45 (3)3.206 (4)145 (2)
N1—H1B···Br1ii0.88 (2)3.03 (3)3.521 (4)117 (2)
Symmetry code: (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the priority program `Porous Metal-Organic Frameworks' (DFG-Project SPP 1362).

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerger, R., Beckmann, R. & Reichelt, H. (1998). Ger. Offen. DE 19643769 A1 19980430.  Google Scholar
First citationBraga, D. & Crepioni, F. (2004). In Encyclopedia of Supramolecular Chemistry, pp. 357–363. Boca Raton: CRC Press.  Google Scholar
First citationBruker (2007). APEX 2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.  Google Scholar
First citationElemans, J. A. A. W., Lei, S. & De Feyter, S. (2009). Angew. Chem. Int. Ed. 48, 7298–7332.  Web of Science CrossRef CAS Google Scholar
First citationEl-Kaderi, H. M., Hunt, J. R., Mendoza-Cortés, J. L., Côté, A. P., Taylor, R. E., O'Keeffe, M. & Yaghi, O. M. (2007). Science, 316, 268–272.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarada, J. & Ogawa, K. (2001). Struct. Chem. 12, 243–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationKahr, B., Mitchell, C. A., Chance, J. M., Clark, R. V., Gantzel, P., Baldridge, K. K. & Siegel, J. S. (1995). J. Am. Chem. Soc. 117, 4479–4482.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacGillivray, L. R. (2010). Editor. Metal–Organic Frameworks. Hoboken: Wiley.  Google Scholar
First citationMetrangolo, P. & Resnati, G. (2008). In Halogen Bonding – Structure and Bonding, Vol. 126. Berlin-Heidelberg: Springer.  Google Scholar
First citationMoorthy, J. N., Natarajan, R. & Venugopalan, R. (2005). J. Mol. Struct. 741, 107–114.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Chichester: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds