research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of four N-(4-halophen­yl)-4-oxo-4H-chromene-3-carboxamides

aFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, and cCIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 30 November 2014; accepted 9 December 2014; online 1 January 2015)

Four N-(4-halophen­yl)-4-oxo-4H-chromene-3-carboxamides (halo = F, Cl, Br and I), N-(4-fluoro­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10FNO3, N-(4-chloro­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10ClNO3, N-(4-bromo­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10BrNO3, N-(4-iodo­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10INO3, have been structurally characterized. The mol­ecules are essentially planar and each exhibits an anti conformation with respect to the C—N rotamer of the amide and a cis geometry with respect to the relative positions of the Carom—Carom bond of the chromone ring and the carbonyl group of the amide. The structures each exhibit an intra­molecular hydrogen-bonding network comprising an N—H⋯O hydrogen bond between the amide N atom and the O atom of the carbonyl group of the pyrone ring, forming an S(6) ring, and a weak Carom—H⋯O inter­action with the O atom of the carbonyl group of the amide as acceptor, which forms another S(6) ring. All four compounds have the same supra­molecular structure, consisting of R22(13) rings that are propagated along the a-axis direction by unit translation. There is ππ stacking involving inversion-related mol­ecules in each structure.

1. Chemical context

Chromones are a group of natural and synthetic oxygen heterocyclic compounds having a high degree of chemical diversity that is frequently linked to a broad array of biological activities (Gaspar et al. 2014[Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960-4992.]). Parkinson's disease (PD) is a degenerative disorder of the central nervous system with an aetiology not yet completely clarified. There is no cure for PD, but medications, surgery and multidisciplinary management can provide relief from the symptoms. PD seems to be associated with a decrease in central levels of dopamine triggered by oxidative stress. These processes, among other factors, are mediated by the isoform B of the mono­amino oxidase (MAO-B). Hence, the search for novel agents that can selectively inhibit MAO-B is of paramount relevance. In this context, the decoration of chromone, a privileged structure for the discovery and development of new chemical entities (NCEs), have led to the preparation of chromone carboxamides and to promising outcomes since preliminary data indicate that chromone-3-carboxamides are selective MAO-B inhibitors (Gaspar, Reis et al., 2011[Gaspar, A., Reis, J., Fonseca, A., Milhazes, N., Viña, D., Uriarte, E. & Borges, F. (2011). Bioorg. Med. Chem. Lett. 21, 707-709.]; Gaspar, Silva et al., 2011[Gaspar, A., Silva, T., Yáñez, M., Vina, D., Orallo, F., Ortuso, F., Uriarte, E., Alcaro, S. & Borges, F. (2011). J. Med. Chem. 54, 5165-5173.]).

Previous results showed that the carbonyl group of the chromone moiety and the amide function play an important role in the establishment of hydrogen inter­actions with the MAO-B active pocket. In addition, the presence of a phenyl substituent attached to the amide seems to play a pivotal role in the potency conveyed by the ligand (Helguera et al., 2013[Helguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. D. S. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75-90.]). In this context, some N-(4-halophen­yl)-4-oxo-4H-chromene-3-carboxamides (1)–(4), shown in the scheme, have been synthesized and structurally characterized in order to rationalize the structural factors that may affect the selectivity and the potency of their inhibitory activities towards MAO-B. These structures are compared with N-(4-phen­yl)-4-oxo-4H-chromene-2-carboxamide and N-(4-bromo­phen­yl)-4-oxo-4H-chromene-2-carboxamide, compounds (5) and (6) (Reis et al., 2013[Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527-1533.]; Gomes et al., 2013[Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294-309.]), which do not show inhibitory activities against human MAO-B.

[Scheme 1]

2. Structural commentary

The structural analysis of (1)–(4) confirmed them to be N-(4-halophen­yl)-4-oxo-4H-chromene-3-carboxamides with halosubstituents F (Fig. 1[link]), Cl (Fig. 2[link]), Br (Fig. 3[link]) and I (Fig. 4[link]), respectively, as depicted in the scheme. Figs. 1[link]–4[link][link][link] show the displacement ellipsoid diagrams with the adopted labelling schemes. All compounds crystallize in the space group P[\overline{1}]. Compounds (1) and (2) are isostructural, as are compounds (3) and (4). The cell lengths are very similar in each pair of compounds.

[Figure 1]
Figure 1
A view of the asymmetric unit of (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 80% probability level. Dashed lines indicate the intra­molecular contacts.
[Figure 2]
Figure 2
A view of the asymmetric unit of (2), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 80% probability level. Dashed lines indicate the intra­molecular contacts.
[Figure 3]
Figure 3
A view of the asymmetric unit of (3), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 80% probability level. Dashed lines indicate the intra­molecular contacts.
[Figure 4]
Figure 4
A view of the asymmetric unit of (4), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 80% probability level. Dashed lines indicate the intra­molecular contacts.

The title compounds display similar structures, which are reflected in the mol­ecular geometries and conformations; the values of the dihedral angles between the mean planes of the chromone ring and the exocyclic phenyl ring of the N-phenyl-4-oxo-4H-chromene-3-carboxamides are close to 2° in the case of the F, Cl pair [2.51 (3) and 1.95 (7)°, respectively,] and close to 5° for the Br, I pair [4.90 (10) and 5.37 (10)°, respectively]. In N-phenyl-4-oxo-4H-chromene-2-carboxamide (5) (Reis et al., 2013[Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527-1533.]), the dihedral angle between the mean planes of the chromone ring and the phenyl ring is 6.57° and in N-(4-bromo­phen­yl)-4-oxo-4H-chromene-2-carboxamide (6), the structural isomer of (3) (Gomes et al., 2013[Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294-309.]), the dihedral angle between the mean planes of the chromone ring and the phenyl ring is 5.0 (2)°. Selected dihedral angles are given in Table 1[link].

Table 1
Selected dihedral angles (°)

θ1 is the dihedral angle between the mean planes of the chromene and phenyl rings and the phenyl ring. θ2 is the dihedral angle between the mean plane of the chromone ring and the plane defined by atoms O2, C31 and N3. θ3 is the dihedral angle between the mean planes of the phenyl ring and the plane defined by atoms O3, C31 and N3.

Compound θ1 θ2 θ3
(1) 2.51 (3) 5.51 (12) 5.05 (13)
(2) 1.95 (7) 5.7 (3) 4.4 (3)
(3) 4.90 (10) 2.0 (4) 2.9 (4)
(4) 5.37 (10) 1.8 (4) 3.6 (4)

In (1) and (2), the maximum deviations from the mean plane of the 10 atoms of the chromone ring plus the three carboxamide atoms O3, C31 and N3, are 0.1220 (8) and 0.1319 (17) Å, respectively, both for atom O3 (r.m.s. deviations of fitted atoms = 0.0519 and 0.0571 Å, respectively). In (3) and (4), the deviations of O3 from the mean plane defined above are 0.0384 (14) and 0.0342 (15) Å, respectively (r.m.s. deviations of fitted atoms = 0.0314 Å in both compounds). In the case of (3) and (4), atom C2 shows the greatest deviation from the mean plane having deviations of 0.0569 (18) and 0.0596 (18) Å, respectively. These values indicate that the carboxamide groups are practically planar with the chromone ring, particularly in the case of the Br and I chromone carboxamide derivatives. This planarity may be related to the inter­nal hydrogen-bond pattern in those mol­ecules, which thus defines the mol­ecular conformations.

The conformational features herein established are probably most relevant for the extrapolation of the inhibitory MAO-B activities of chromone carboxamides as they are related to the inter­molecular forces responsible for enzyme–ligand binding affinity. The data can explain the MAO-B selectivity found for chromone-3-carboxamides (1)–(4), as opposed to the lack of activity presented by chromone-2-carboxamides (5) and (6). As seen in the scheme, (1)–(4) are N-(phen­yl)-4-oxo-4H-chromene-3-carboxamides while (5) and (6) are N-(phen­yl)-4-oxo-4H-chromene-2-carboxamides. As can be seen in Fig. 5[link], an anti conformation is adopted with respect to the C—N rotamer of the amide in all of the compounds. Nevertheless, due to the asymmetry of the chromone residue, the anti conformation can assume a cis (a) or trans (b) geometry with respect to the relative position of the carbonyl O atom of the carboxamide and the C2arom—C3arom bond of the chromone. Compounds (1)–(4) exhibit a cis relation between these bonds, as can be seen in the ellipsoid diagrams, Figs. 1[link]–4[link][link][link]. This mol­ecular conformation permits the formation of two intra­molecular hydrogen bonds, which generate a network that probably enhances their planarity. Details of the intra­molecular hydrogen-bonding inter­actions are given in Tables 2[link][link][link] to 5[link]. Specifically for each mol­ecule, there is an intra­molecular N—H⋯O hydrogen bond between the amide nitro­gen and the oxygen atom of the carbonyl group, O4, of the chromone ring, forming an S(6) ring identified as ring C. In addition, the carbonyl oxygen of the amide, O3, acts as the acceptor for a weak inter­action with an ortho hydrogen of the exocyclic phenyl ring, forming another S(6) ring, B. The corresponding trans structures (top right in Fig. 5[link]) would probably only allow the formation of a weak hydrogen-bonding inter­action with an ortho hydrogen atom of the exocyclic phenyl ring. It is inter­esting to compare the inter­nal hydrogen-bonding network presented by the title compounds with those of the analogous 4-oxo-N-(substituted phen­yl)-4H-chromene-2-carboxamides (Reis et al., 2013[Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527-1533.]) and (Gomes et al., 2013[Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294-309.]), compounds (5) and (6). Previous studies concerning the structures of the chromone-2-carboxamides show that the majority have geometries similar to compound (5), e.g. as in (1)–(4), they assume a cis conformation, but this is not the case for (6), the bromo isomer of (3), as shown in Fig. 5[link] (bottom right). In spite of this, none of this type of derivative displays inhibitory activity towards the MAO-B isoenzyme. When the geometries of the relative positions of rings D and E of the chromone residue with respect to rings A and B are compared, it can be seen that the effect of the 2/3 positional isomerism is to `reflect' their relative positions while the effect of the cis/trans conformations is a `twofold rotation' of the rings around the Camide— Cchromone bond. Those particular differences in conformation may condition the ability for docking when pharmacological activities are considered.

Table 2
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.896 (17) 1.901 (17) 2.7024 (13) 147.9 (15)
C312—H312⋯O3 0.95 2.26 2.8714 (15) 122
C2—H2⋯O4i 0.95 2.45 3.1645 (14) 132
C316—H316⋯O3ii 0.95 2.46 3.3160 (14) 149
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.85 (3) 1.92 (3) 2.680 (3) 148 (3)
C312—H312⋯O3 0.95 2.29 2.892 (3) 121
C2—H2⋯O4i 0.95 2.47 3.194 (3) 133
C316—H316⋯O3ii 0.95 2.45 3.286 (3) 146
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.86 (2) 1.95 (2) 2.695 (2) 145 (2)
C312—H312⋯O3 0.95 2.26 2.877 (2) 129
C2—H2⋯O4i 0.95 2.41 3.167 (2) 137
C316—H316⋯O3ii 0.95 2.47 3.314 (2) 148
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 5
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.92 (2) 1.89 (2) 2.6977 (19) 145 (2)
C2—H2⋯O3 0.95 2.33 2.718 (2) 104
C312—H312⋯O3 0.95 2.27 2.881 (2) 122
C2—H2⋯O4i 0.95 2.44 3.185 (2) 136
C316—H316⋯O3ii 0.95 2.49 3.312 (2) 145
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 5]
Figure 5
Anti-rotamer conformations around the C—N rotamer for the 3-carboxamides (top) and for the 2-carboxamide isomers (bottom), showing the relative positions of the C3arom—C2arom bond of the chromone ring with respect to the carb­oxy­lic group of the amide: cis (right) or trans (left) geometries.

3. Supra­molecular features

Inter­molecular hydrogen-bonding information is given in Table 2[link] to 5. All compounds have the same supra­molecular structure in which the C2—H2⋯O4(x + 1, y, z) and C316—H316⋯O3(x − 1, y, z) form R22(13) ring structures, which are propagated along the a-axis direction by unit translation. Fig. 6[link] shows the Cl compound, (3), as an example.

[Figure 6]
Figure 6
The distorted ladder formed by linked R22(13) rings in compound (3). The chain runs parallel to the a axis. Hydrogen bonds are indicated by blue dashed lines. Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. A similar structure is found for compound (1) and all the halo-substituted compounds. [Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, x.]

There is ππ stacking in each compound, involving inversion-related mol­ecules in all compounds, Table 6[link].

Table 6
π–π stacking (Å, °)

Cg1, Cg2, Cg3 and Cg7 [compound (6)] are the centroids of the rings containing atoms O1, C5, C311 and C211 [compound (6)], respectively. In contacts indicated *, the planes involved are inclined to each other, the perpendicular distance between the planes is an average value and the angle between the planes is given in place of a slippage. Only inter­planar inter­actions with CgCg distances ≤4.0 Å and with angles between the planes of <10° are included.

Compound contact distance perp. dist. angle between planes
(1) Cg1⋯Cg3iii 3.5187 (8) 3.3226* 1.77 (6)*
  Cg1⋯Cg3iv 3.543 (8) 3.3719* 1.77 (6)*
(2) Cg1⋯Cg3v 3.5341 (17) 3.3573* 0.77 (13)*
  Cg2⋯Cg3vi 3.6691 (17) 3.3985* 3.14 (13)*
(3) Cg1⋯Cg3v 3.5464 (11) 3.3342* 4.66 (9)*
(4) Cg1⋯Cg3iii 3.5721 (11) 3.3518* 5.37 (9)
Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y + 2, −z; (v) −x + 1, −y, −z + 1; (vi) −x, −y, −z.

4. Synthesis and crystallization

The title compounds were obtained by synthetic strategies described elsewhere (Cagide et al., 2011[Cagide, F., Reis, J., Gaspar, A. & Borges, F. (2011). Tetrahedron Lett. 52, 6446-6449.]). Chromone-3-carboxamides were synthesized using chromone-3-carb­oxy­lic acid as starting material which, after in situ activation with phospho­rus(V) oxychloride (POCl3) in di­methyl­formamide, react with the different haloanilines. Recrystallization from di­chloro­methane afforded colourless plates whose dimensions are given in Table 7[link].

Table 7
Experimental details

  (1) (2) (3) (4)
Crystal data
Chemical formula C16H10FNO3 C16H10ClNO3 C16H10BrNO3 C16H10INO3
Mr 283.25 299.70 344.16 391.15
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 120 120
a, b, c (Å) 6.6213 (5), 7.0517 (5), 14.0864 (10) 6.6325 (12), 7.0577 (12), 14.671 (3) 6.6505 (5), 9.3580 (7), 11.0060 (8) 6.6750 (5), 9.4166 (7), 11.2673 (8)
α, β, γ (°) 101.957 (7), 90.047 (6), 106.657 (7) 103.536 (7), 89.714 (6), 105.589 (7) 100.280 (6), 90.461 (6), 100.884 (6) 100.974 (6), 90.769 (6), 100.062 (6)
V3) 615.17 (8) 641.9 (2) 661.24 (9) 683.77 (9)
Z 2 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 0.31 3.12 2.35
Crystal size (mm) 0.46 × 0.32 × 0.02 0.17 × 0.17 × 0.04 0.58 × 0.18 × 0.06 0.46 × 0.22 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku AFC12 Rigaku R-AXIS conversion Rigaku R-AXIS conversion
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.949, 0.998 0.950, 0.988 0.265, 0.835 0.411, 0.892
No. of measured, independent and observed [I > 2σ(I)] reflections 8176, 2789, 2393 7435, 2265, 1668 9930, 3017, 2525 10032, 3095, 2819
Rint 0.056 0.078 0.045 0.026
(sin θ/λ)max−1) 0.649 0.598 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.06 0.056, 0.145, 0.99 0.027, 0.058, 0.94 0.018, 0.044, 1.03
No. of reflections 2789 2265 3017 3095
No. of parameters 194 194 194 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.27 0.30, −0.65 0.53, −0.69 0.67, −0.32
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Flipper 25 (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30-309.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30-309.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Amino H atoms were located in difference Fourier maps and were refined isotropically. All other H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å, Uiso= 1.2Ueq(C).

Compounds (1) and (2), reduced cell: [a = 6.6325 (12), b = 0.0577 (12), c = 14.671 (3) Å, α = 76.464 (7), β = 89.714 (6), γ = 74.411 (7)°, V = 641.9 (2) Å3], have different reduced cells in which the x and z coordinates are comparable and the y coordinate of (2) is close to 1 − y of (1). For ease of comparison of the structures of (1) and (2), the refinement reported here was carried out for the non-reduced cell of (2) in which the α and γ angles were given the supplementary values of those of the reduced unit cell. The coordinates of (1) were used as starting values and the transformation matrix for the reduced to non-reduced cell was [\overline{1}] 0 0 0 1 0 0 0 [\overline{1}]. This gave the same final refinement values as those for the refinement with the reduced cell. Compounds (1) and (2) are therefore isostructural.

Supporting information


Computing details top

For all compounds, data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Flipper 25 (Oszlányi & Sütő, 2004); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

(1) N-(4-Fluorophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10FNO3Z = 2
Mr = 283.25F(000) = 292
Triclinic, P1Dx = 1.529 Mg m3
a = 6.6213 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.0517 (5) ÅCell parameters from 7765 reflections
c = 14.0864 (10) Åθ = 3.0–27.5°
α = 101.957 (7)°µ = 0.12 mm1
β = 90.047 (6)°T = 100 K
γ = 106.657 (7)°Plate, colourless
V = 615.17 (8) Å30.46 × 0.32 × 0.02 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2789 independent reflections
Radiation source: Sealed Tube2393 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.056
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = 88
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 89
Tmin = 0.949, Tmax = 0.998l = 1818
8176 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0803P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2789 reflectionsΔρmax = 0.41 e Å3
194 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F3140.11483 (12)0.26388 (12)0.11344 (5)0.0304 (2)
O10.94909 (13)1.09267 (13)0.74817 (6)0.0234 (2)
O30.81282 (13)0.75748 (13)0.47173 (6)0.0253 (2)
O40.32603 (13)0.88444 (13)0.64744 (6)0.0246 (2)
N30.45748 (16)0.72194 (15)0.47646 (7)0.0209 (2)
H30.367 (3)0.754 (2)0.5197 (12)0.041 (4)*
C20.88961 (19)0.98534 (18)0.65678 (8)0.0217 (3)
H20.99780.96100.61610.026*
C30.68710 (18)0.90890 (17)0.61796 (8)0.0202 (3)
C40.51484 (18)0.94372 (17)0.67726 (8)0.0204 (3)
C4A0.58107 (18)1.05466 (18)0.77820 (8)0.0209 (3)
C50.43206 (19)1.09101 (18)0.84541 (9)0.0240 (3)
H50.28581.04480.82560.029*
C60.4975 (2)1.19373 (19)0.94021 (9)0.0274 (3)
H60.39641.21840.98520.033*
C70.7134 (2)1.26148 (19)0.96985 (9)0.0275 (3)
H70.75751.33131.03510.033*
C80.8630 (2)1.22769 (19)0.90507 (9)0.0256 (3)
H81.00911.27370.92500.031*
C8A0.79373 (19)1.12433 (18)0.80975 (8)0.0215 (3)
C3110.38044 (18)0.60437 (17)0.38276 (8)0.0206 (3)
C3120.51109 (19)0.55259 (18)0.30996 (8)0.0224 (3)
H3120.66010.59530.32230.027*
C3130.41972 (19)0.43732 (18)0.21894 (8)0.0243 (3)
H3130.50610.40060.16880.029*
C3140.2034 (2)0.37765 (18)0.20270 (8)0.0240 (3)
C3150.07065 (19)0.42664 (18)0.27332 (9)0.0237 (3)
H3150.07820.38300.26020.028*
C3160.16053 (19)0.54118 (18)0.36382 (8)0.0223 (3)
H3160.07240.57700.41330.027*
C310.66033 (18)0.78951 (17)0.51512 (8)0.0205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F3140.0282 (4)0.0355 (4)0.0231 (4)0.0070 (3)0.0036 (3)0.0000 (3)
O10.0145 (4)0.0289 (5)0.0249 (4)0.0044 (3)0.0012 (3)0.0043 (3)
O30.0164 (4)0.0321 (5)0.0268 (4)0.0067 (3)0.0048 (3)0.0058 (4)
O40.0135 (4)0.0326 (5)0.0258 (4)0.0056 (3)0.0014 (3)0.0037 (3)
N30.0149 (5)0.0252 (5)0.0215 (5)0.0048 (4)0.0027 (4)0.0041 (4)
C20.0180 (6)0.0239 (6)0.0230 (5)0.0055 (5)0.0031 (4)0.0058 (4)
C30.0155 (6)0.0222 (6)0.0236 (6)0.0048 (4)0.0030 (4)0.0076 (4)
C40.0161 (6)0.0217 (6)0.0241 (6)0.0048 (4)0.0027 (4)0.0072 (4)
C4A0.0181 (6)0.0225 (6)0.0223 (6)0.0051 (5)0.0016 (4)0.0069 (4)
C50.0178 (6)0.0285 (6)0.0259 (6)0.0061 (5)0.0022 (4)0.0071 (5)
C60.0247 (6)0.0333 (7)0.0242 (6)0.0086 (5)0.0051 (5)0.0064 (5)
C70.0274 (7)0.0307 (7)0.0221 (6)0.0062 (5)0.0004 (5)0.0038 (5)
C80.0196 (6)0.0284 (6)0.0266 (6)0.0040 (5)0.0021 (5)0.0056 (5)
C8A0.0178 (6)0.0232 (6)0.0242 (6)0.0058 (5)0.0034 (4)0.0072 (5)
C3110.0190 (6)0.0205 (6)0.0222 (5)0.0045 (4)0.0019 (4)0.0065 (4)
C3120.0171 (6)0.0256 (6)0.0242 (6)0.0052 (5)0.0027 (4)0.0063 (5)
C3130.0227 (6)0.0273 (6)0.0237 (6)0.0082 (5)0.0050 (5)0.0062 (5)
C3140.0252 (6)0.0243 (6)0.0211 (6)0.0055 (5)0.0019 (5)0.0047 (4)
C3150.0176 (6)0.0259 (6)0.0270 (6)0.0046 (5)0.0005 (4)0.0073 (5)
C3160.0177 (6)0.0252 (6)0.0255 (6)0.0066 (5)0.0043 (4)0.0080 (5)
C310.0168 (6)0.0214 (6)0.0241 (6)0.0047 (4)0.0038 (4)0.0078 (4)
Geometric parameters (Å, º) top
F314—C3141.3708 (13)C6—C71.4042 (19)
O1—C21.3453 (14)C6—H60.9500
O1—C8A1.3833 (14)C7—C81.3841 (17)
O3—C311.2323 (14)C7—H70.9500
O4—C41.2413 (15)C8—C8A1.3951 (17)
N3—C311.3609 (15)C8—H80.9500
N3—C3111.4116 (15)C311—C3121.4003 (16)
N3—H30.896 (17)C311—C3161.4029 (17)
C2—C31.3601 (16)C312—C3131.3984 (16)
C2—H20.9500C312—H3120.9500
C3—C41.4616 (15)C313—C3141.3769 (18)
C3—C311.4992 (16)C313—H3130.9500
C4—C4A1.4722 (16)C314—C3151.3835 (17)
C4A—C8A1.3905 (17)C315—C3161.3886 (16)
C4A—C51.4076 (16)C315—H3150.9500
C5—C61.3835 (16)C316—H3160.9500
C5—H50.9500
C2—O1—C8A118.36 (9)C7—C8—H8120.8
C31—N3—C311128.07 (10)C8A—C8—H8120.8
C31—N3—H3112.0 (11)O1—C8A—C4A121.60 (10)
C311—N3—H3119.8 (11)O1—C8A—C8116.11 (10)
O1—C2—C3125.29 (10)C4A—C8A—C8122.28 (11)
O1—C2—H2117.4C312—C311—C316119.96 (11)
C3—C2—H2117.4C312—C311—N3123.53 (10)
C2—C3—C4119.54 (11)C316—C311—N3116.51 (10)
C2—C3—C31115.37 (10)C313—C312—C311119.27 (11)
C4—C3—C31125.08 (10)C313—C312—H312120.4
O4—C4—C3124.13 (11)C311—C312—H312120.4
O4—C4—C4A121.21 (10)C314—C313—C312119.34 (11)
C3—C4—C4A114.66 (10)C314—C313—H313120.3
C8A—C4A—C5118.29 (11)C312—C313—H313120.3
C8A—C4A—C4120.46 (10)F314—C314—C313119.02 (11)
C5—C4A—C4121.24 (11)F314—C314—C315118.40 (11)
C6—C5—C4A120.32 (11)C313—C314—C315122.58 (11)
C6—C5—H5119.8C314—C315—C316118.32 (11)
C4A—C5—H5119.8C314—C315—H315120.8
C5—C6—C7119.97 (11)C316—C315—H315120.8
C5—C6—H6120.0C315—C316—C311120.53 (10)
C7—C6—H6120.0C315—C316—H316119.7
C8—C7—C6120.77 (11)C311—C316—H316119.7
C8—C7—H7119.6O3—C31—N3124.54 (11)
C6—C7—H7119.6O3—C31—C3121.15 (10)
C7—C8—C8A118.36 (11)N3—C31—C3114.31 (10)
C8A—O1—C2—C32.09 (17)C4—C4A—C8A—C8179.14 (10)
O1—C2—C3—C40.56 (18)C7—C8—C8A—O1179.38 (10)
O1—C2—C3—C31178.42 (10)C7—C8—C8A—C4A0.09 (19)
C2—C3—C4—O4178.11 (11)C31—N3—C311—C3125.88 (19)
C31—C3—C4—O43.02 (19)C31—N3—C311—C316175.04 (11)
C2—C3—C4—C4A2.70 (16)C316—C311—C312—C3130.21 (18)
C31—C3—C4—C4A176.17 (10)N3—C311—C312—C313179.26 (10)
O4—C4—C4A—C8A178.41 (10)C311—C312—C313—C3140.19 (18)
C3—C4—C4A—C8A2.36 (17)C312—C313—C314—F314179.70 (10)
O4—C4—C4A—C52.34 (18)C312—C313—C314—C3150.21 (19)
C3—C4—C4A—C5176.88 (10)F314—C314—C315—C316179.74 (9)
C8A—C4A—C5—C60.05 (18)C313—C314—C315—C3160.25 (19)
C4—C4A—C5—C6179.31 (10)C314—C315—C316—C3110.26 (18)
C4A—C5—C6—C70.27 (19)C312—C311—C316—C3150.25 (18)
C5—C6—C7—C80.32 (19)N3—C311—C316—C315179.37 (10)
C6—C7—C8—C8A0.13 (19)C311—N3—C31—O30.53 (19)
C2—O1—C8A—C4A2.39 (17)C311—N3—C31—C3179.13 (10)
C2—O1—C8A—C8176.90 (9)C2—C3—C31—O33.00 (17)
C5—C4A—C8A—O1179.39 (10)C4—C3—C31—O3175.91 (10)
C4—C4A—C8A—O10.12 (18)C2—C3—C31—N3177.33 (10)
C5—C4A—C8A—C80.13 (18)C4—C3—C31—N33.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.896 (17)1.901 (17)2.7024 (13)147.9 (15)
C312—H312···O30.952.262.8714 (15)122
C2—H2···O4i0.952.453.1645 (14)132
C316—H316···O3ii0.952.463.3160 (14)149
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(2) N-(4-Chlorophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10ClNO3Z = 2
Mr = 299.70F(000) = 308
Triclinic, P1Dx = 1.551 Mg m3
a = 6.6325 (12) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.0577 (12) ÅCell parameters from 5302 reflections
c = 14.671 (3) Åθ = 3.1–25.1°
α = 103.536 (7)°µ = 0.31 mm1
β = 89.714 (6)°T = 100 K
γ = 105.589 (7)°Plate, colourless
V = 641.9 (2) Å30.17 × 0.17 × 0.04 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
2265 independent reflections
Radiation source: Rotating Anode1668 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.078
profile data from ω–scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
h = 77
Tmin = 0.950, Tmax = 0.988k = 88
7435 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0834P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2265 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = 0.65 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl140.07614 (10)0.21374 (9)0.10359 (4)0.0313 (3)
O10.9406 (3)1.1068 (3)0.73477 (11)0.0274 (5)
O30.8086 (3)0.7526 (3)0.46866 (11)0.0288 (5)
O40.3241 (3)0.8897 (3)0.63834 (11)0.0289 (5)
N30.4567 (4)0.7165 (3)0.47522 (15)0.0244 (5)
H30.370 (5)0.751 (4)0.514 (2)0.034 (8)*
C20.8826 (4)0.9921 (4)0.64698 (16)0.0256 (6)
H20.99080.96430.60780.031*
C30.6843 (4)0.9137 (4)0.61023 (16)0.0240 (6)
C40.5115 (4)0.9506 (4)0.66692 (16)0.0240 (6)
C4A0.5757 (4)1.0672 (4)0.76429 (16)0.0244 (6)
C50.4267 (4)1.1045 (4)0.82901 (17)0.0292 (6)
H50.28161.05640.80990.035*
C60.4897 (5)1.2107 (4)0.92032 (17)0.0325 (7)
H60.38821.23370.96440.039*
C70.7028 (5)1.2844 (4)0.94793 (17)0.0322 (7)
H70.74531.35901.01080.039*
C80.8523 (4)1.2509 (4)0.88568 (17)0.0291 (6)
H80.99731.30110.90470.035*
C8A0.7856 (4)1.1414 (4)0.79395 (17)0.0264 (6)
C3110.3776 (4)0.5942 (4)0.38578 (16)0.0233 (6)
C3120.5027 (4)0.5348 (4)0.31405 (17)0.0268 (6)
H3120.65100.57480.32430.032*
C3130.4084 (4)0.4162 (4)0.22722 (17)0.0272 (6)
H3130.49240.37510.17790.033*
C3140.1937 (4)0.3590 (4)0.21297 (16)0.0253 (6)
C3150.0677 (4)0.4157 (4)0.28384 (16)0.0265 (6)
H3150.08060.37420.27330.032*
C3160.1603 (4)0.5332 (4)0.36990 (16)0.0259 (6)
H3160.07490.57290.41890.031*
C310.6576 (4)0.7865 (4)0.51110 (17)0.0238 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl140.0362 (5)0.0322 (4)0.0226 (4)0.0117 (3)0.0014 (3)0.0019 (3)
O10.0258 (10)0.0280 (9)0.0267 (9)0.0103 (8)0.0035 (7)0.0001 (7)
O30.0242 (10)0.0335 (10)0.0280 (9)0.0129 (8)0.0076 (8)0.0008 (8)
O40.0223 (11)0.0347 (10)0.0272 (9)0.0109 (9)0.0035 (7)0.0007 (7)
N30.0225 (12)0.0270 (12)0.0220 (11)0.0107 (10)0.0052 (9)0.0018 (9)
C20.0285 (15)0.0254 (13)0.0242 (12)0.0128 (12)0.0058 (10)0.0024 (10)
C30.0257 (15)0.0231 (13)0.0247 (13)0.0112 (11)0.0045 (10)0.0032 (10)
C40.0257 (15)0.0203 (13)0.0269 (13)0.0093 (12)0.0053 (11)0.0040 (10)
C4A0.0286 (15)0.0229 (13)0.0243 (13)0.0117 (12)0.0054 (11)0.0052 (10)
C50.0282 (15)0.0330 (15)0.0272 (13)0.0134 (12)0.0059 (11)0.0034 (11)
C60.0379 (17)0.0362 (15)0.0260 (13)0.0182 (13)0.0097 (12)0.0035 (11)
C70.0405 (17)0.0313 (15)0.0247 (13)0.0149 (13)0.0020 (12)0.0006 (11)
C80.0294 (15)0.0263 (14)0.0277 (13)0.0075 (12)0.0029 (11)0.0010 (10)
C8A0.0277 (15)0.0247 (13)0.0294 (13)0.0135 (12)0.0069 (11)0.0046 (11)
C3110.0288 (15)0.0199 (12)0.0217 (12)0.0105 (11)0.0039 (10)0.0019 (10)
C3120.0262 (15)0.0282 (14)0.0269 (13)0.0116 (12)0.0066 (11)0.0036 (10)
C3130.0353 (16)0.0245 (13)0.0249 (13)0.0161 (12)0.0097 (11)0.0027 (10)
C3140.0305 (15)0.0228 (13)0.0222 (12)0.0097 (12)0.0042 (11)0.0021 (10)
C3150.0275 (15)0.0270 (13)0.0259 (13)0.0114 (12)0.0026 (11)0.0036 (10)
C3160.0307 (15)0.0257 (13)0.0229 (13)0.0144 (12)0.0068 (11)0.0016 (10)
C310.0229 (15)0.0226 (13)0.0287 (13)0.0105 (11)0.0067 (11)0.0067 (10)
Geometric parameters (Å, º) top
Cl14—C3141.745 (2)C6—C71.394 (4)
O1—C21.346 (3)C6—H60.9500
O1—C8A1.377 (3)C7—C81.374 (4)
O3—C311.225 (3)C7—H70.9500
O4—C41.241 (3)C8—C8A1.392 (3)
N3—C311.352 (3)C8—H80.9500
N3—C3111.405 (3)C311—C3161.393 (4)
N3—H30.85 (3)C311—C3121.394 (3)
C2—C31.343 (4)C312—C3131.393 (3)
C2—H20.9500C312—H3120.9500
C3—C41.457 (4)C313—C3141.375 (4)
C3—C311.503 (3)C313—H3130.9500
C4—C4A1.472 (3)C314—C3151.384 (4)
C4A—C8A1.382 (4)C315—C3161.380 (3)
C4A—C51.400 (4)C315—H3150.9500
C5—C61.378 (3)C316—H3160.9500
C5—H50.9500
C2—O1—C8A118.2 (2)C7—C8—H8120.9
C31—N3—C311128.7 (2)C8A—C8—H8120.9
C31—N3—H3113.0 (19)O1—C8A—C4A121.7 (2)
C311—N3—H3118 (2)O1—C8A—C8116.3 (2)
C3—C2—O1125.4 (2)C4A—C8A—C8122.0 (2)
C3—C2—H2117.3C316—C311—C312119.6 (2)
O1—C2—H2117.3C316—C311—N3116.3 (2)
C2—C3—C4119.9 (2)C312—C311—N3124.1 (2)
C2—C3—C31115.8 (2)C313—C312—C311119.5 (2)
C4—C3—C31124.3 (2)C313—C312—H312120.3
O4—C4—C3124.6 (2)C311—C312—H312120.3
O4—C4—C4A121.1 (2)C314—C313—C312119.9 (2)
C3—C4—C4A114.4 (2)C314—C313—H313120.0
C8A—C4A—C5118.5 (2)C312—C313—H313120.0
C8A—C4A—C4120.4 (2)C313—C314—C315121.2 (2)
C5—C4A—C4121.1 (2)C313—C314—Cl14119.82 (18)
C6—C5—C4A120.3 (3)C315—C314—Cl14119.0 (2)
C6—C5—H5119.9C316—C315—C314119.1 (2)
C4A—C5—H5119.9C316—C315—H315120.4
C5—C6—C7119.9 (2)C314—C315—H315120.4
C5—C6—H6120.1C315—C316—C311120.7 (2)
C7—C6—H6120.1C315—C316—H316119.6
C8—C7—C6121.1 (2)C311—C316—H316119.6
C8—C7—H7119.5O3—C31—N3124.6 (2)
C6—C7—H7119.5O3—C31—C3121.2 (2)
C7—C8—C8A118.3 (2)N3—C31—C3114.1 (2)
C8A—O1—C2—C32.8 (4)C4—C4A—C8A—C8179.5 (2)
O1—C2—C3—C40.1 (4)C7—C8—C8A—O1178.3 (2)
O1—C2—C3—C31178.7 (2)C7—C8—C8A—C4A0.3 (4)
C2—C3—C4—O4177.8 (3)C31—N3—C311—C316175.7 (2)
C31—C3—C4—O43.8 (4)C31—N3—C311—C3125.0 (4)
C2—C3—C4—C4A2.9 (3)C316—C311—C312—C3130.4 (4)
C31—C3—C4—C4A175.6 (2)N3—C311—C312—C313178.8 (2)
O4—C4—C4A—C8A177.2 (2)C311—C312—C313—C3140.0 (4)
C3—C4—C4A—C8A3.4 (3)C312—C313—C314—C3150.5 (4)
O4—C4—C4A—C53.2 (4)C312—C313—C314—Cl14179.03 (19)
C3—C4—C4A—C5176.1 (2)C313—C314—C315—C3160.6 (4)
C8A—C4A—C5—C60.8 (4)Cl14—C314—C315—C316178.97 (18)
C4—C4A—C5—C6178.8 (2)C314—C315—C316—C3110.1 (4)
C4A—C5—C6—C71.1 (4)C312—C311—C316—C3150.4 (4)
C5—C6—C7—C80.8 (4)N3—C311—C316—C315178.9 (2)
C6—C7—C8—C8A0.1 (4)C311—N3—C31—O30.4 (4)
C2—O1—C8A—C4A2.2 (3)C311—N3—C31—C3179.8 (2)
C2—O1—C8A—C8176.4 (2)C2—C3—C31—O32.3 (4)
C5—C4A—C8A—O1178.6 (2)C4—C3—C31—O3176.3 (2)
C4—C4A—C8A—O11.0 (4)C2—C3—C31—N3177.6 (2)
C5—C4A—C8A—C80.1 (4)C4—C3—C31—N33.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.85 (3)1.92 (3)2.680 (3)148 (3)
C312—H312···O30.952.292.892 (3)121
C2—H2···O4i0.952.473.194 (3)133
C316—H316···O3ii0.952.453.286 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(3) N-(4-Bromophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10BrNO3Z = 2
Mr = 344.16F(000) = 344
Triclinic, P1Dx = 1.729 Mg m3
a = 6.6505 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.3580 (7) ÅCell parameters from 8172 reflections
c = 11.0060 (8) Åθ = 1.9–27.5°
α = 100.280 (6)°µ = 3.12 mm1
β = 90.461 (6)°T = 120 K
γ = 100.884 (6)°Plate, colourless
V = 661.24 (9) Å30.58 × 0.18 × 0.06 mm
Data collection top
Rigaku RAXIS conversion
diffractometer
3017 independent reflections
Radiation source: Sealed Tube2525 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.045
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.3°
profile data from ω–scansh = 88
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
k = 1212
Tmin = 0.265, Tmax = 0.835l = 1414
9930 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0254P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3017 reflectionsΔρmax = 0.53 e Å3
194 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br140.10149 (3)0.28307 (2)0.96928 (2)0.02704 (8)
O10.88599 (18)0.94245 (15)0.35000 (13)0.0205 (3)
O30.78338 (19)0.68329 (16)0.60891 (13)0.0232 (3)
O40.28839 (18)0.79112 (15)0.42189 (13)0.0217 (3)
N30.4338 (2)0.64948 (18)0.58599 (15)0.0164 (3)
H30.341 (4)0.674 (3)0.545 (2)0.032 (6)*
C20.8359 (3)0.8522 (2)0.43099 (18)0.0179 (4)
H20.94500.82260.47010.021*
C30.6440 (3)0.7994 (2)0.46206 (17)0.0157 (4)
C40.4703 (3)0.8354 (2)0.40029 (17)0.0158 (4)
C4A0.5260 (3)0.9313 (2)0.30911 (17)0.0166 (4)
C50.3763 (3)0.9747 (2)0.24089 (18)0.0194 (4)
H50.23520.93940.25160.023*
C60.4330 (3)1.0678 (2)0.15872 (18)0.0231 (4)
H60.33071.09560.11200.028*
C70.6404 (3)1.1223 (2)0.14319 (19)0.0231 (4)
H70.67781.18800.08700.028*
C80.7904 (3)1.0813 (2)0.20869 (19)0.0221 (4)
H80.93131.11840.19890.027*
C8A0.7304 (3)0.9842 (2)0.28949 (17)0.0168 (4)
C3110.3678 (3)0.5624 (2)0.67490 (17)0.0156 (4)
C3120.5008 (3)0.5181 (2)0.75335 (18)0.0181 (4)
H3120.64490.54560.74760.022*
C3130.4212 (3)0.4336 (2)0.83976 (17)0.0201 (4)
H3130.51070.40260.89300.024*
C3140.2110 (3)0.3949 (2)0.84817 (17)0.0189 (4)
C3150.0774 (3)0.4369 (2)0.77019 (18)0.0197 (4)
H3150.06660.40850.77610.024*
C3160.1558 (3)0.5204 (2)0.68385 (18)0.0183 (4)
H3160.06520.54970.63010.022*
C310.6284 (3)0.7053 (2)0.55924 (17)0.0168 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br140.02998 (12)0.03136 (13)0.02276 (11)0.00465 (9)0.00436 (8)0.01411 (9)
O10.0127 (6)0.0238 (8)0.0263 (7)0.0026 (5)0.0014 (5)0.0094 (6)
O30.0147 (6)0.0297 (8)0.0280 (8)0.0058 (6)0.0021 (6)0.0113 (6)
O40.0123 (6)0.0293 (8)0.0266 (8)0.0041 (6)0.0009 (5)0.0133 (6)
N30.0128 (7)0.0191 (9)0.0190 (8)0.0038 (6)0.0008 (6)0.0073 (7)
C20.0156 (9)0.0185 (10)0.0202 (10)0.0045 (7)0.0007 (7)0.0040 (8)
C30.0145 (9)0.0150 (9)0.0173 (9)0.0039 (7)0.0009 (7)0.0013 (8)
C40.0144 (8)0.0159 (10)0.0171 (9)0.0042 (7)0.0003 (7)0.0015 (8)
C4A0.0177 (9)0.0171 (10)0.0151 (9)0.0035 (7)0.0002 (7)0.0026 (8)
C50.0171 (9)0.0228 (11)0.0192 (9)0.0058 (8)0.0010 (8)0.0038 (8)
C60.0260 (10)0.0266 (11)0.0198 (10)0.0094 (9)0.0010 (8)0.0080 (9)
C70.0303 (10)0.0206 (11)0.0199 (10)0.0055 (9)0.0054 (8)0.0071 (8)
C80.0204 (9)0.0211 (11)0.0247 (10)0.0020 (8)0.0062 (8)0.0054 (9)
C8A0.0158 (9)0.0167 (10)0.0181 (9)0.0045 (7)0.0009 (7)0.0025 (8)
C3110.0168 (9)0.0142 (9)0.0162 (9)0.0042 (7)0.0006 (7)0.0024 (8)
C3120.0169 (9)0.0184 (10)0.0190 (9)0.0034 (7)0.0015 (7)0.0033 (8)
C3130.0222 (10)0.0225 (11)0.0168 (9)0.0077 (8)0.0027 (8)0.0038 (8)
C3140.0253 (10)0.0174 (10)0.0143 (9)0.0039 (8)0.0027 (7)0.0039 (8)
C3150.0169 (9)0.0207 (10)0.0215 (10)0.0030 (8)0.0022 (8)0.0040 (8)
C3160.0164 (9)0.0206 (10)0.0196 (10)0.0060 (8)0.0013 (7)0.0053 (8)
C310.0154 (9)0.0170 (10)0.0181 (9)0.0048 (7)0.0002 (7)0.0020 (8)
Geometric parameters (Å, º) top
Br14—C3141.9045 (19)C6—C71.401 (3)
O1—C21.337 (2)C6—H60.9500
O1—C8A1.379 (2)C7—C81.376 (3)
O3—C311.231 (2)C7—H70.9500
O4—C41.242 (2)C8—C8A1.390 (3)
N3—C311.356 (2)C8—H80.9500
N3—C3111.404 (2)C311—C3121.397 (2)
N3—H30.86 (2)C311—C3161.400 (2)
C2—C31.348 (3)C312—C3131.388 (3)
C2—H20.9500C312—H3120.9500
C3—C41.458 (2)C313—C3141.384 (3)
C3—C311.495 (3)C313—H3130.9500
C4—C4A1.467 (3)C314—C3151.386 (3)
C4A—C8A1.388 (3)C315—C3161.380 (3)
C4A—C51.403 (2)C315—H3150.9500
C5—C61.372 (3)C316—H3160.9500
C5—H50.9500
C2—O1—C8A118.38 (14)C7—C8—H8120.9
C31—N3—C311128.47 (15)C8A—C8—H8120.9
C31—N3—H3114.6 (16)O1—C8A—C4A121.24 (16)
C311—N3—H3116.9 (16)O1—C8A—C8116.22 (16)
O1—C2—C3125.75 (16)C4A—C8A—C8122.54 (17)
O1—C2—H2117.1C312—C311—C316119.63 (17)
C3—C2—H2117.1C312—C311—N3123.76 (16)
C2—C3—C4119.38 (17)C316—C311—N3116.61 (15)
C2—C3—C31115.58 (15)C313—C312—C311119.65 (17)
C4—C3—C31125.04 (16)C313—C312—H312120.2
O4—C4—C3124.05 (17)C311—C312—H312120.2
O4—C4—C4A121.35 (16)C314—C313—C312119.81 (17)
C3—C4—C4A114.59 (16)C314—C313—H313120.1
C8A—C4A—C5117.93 (17)C312—C313—H313120.1
C8A—C4A—C4120.55 (16)C313—C314—C315121.13 (18)
C5—C4A—C4121.51 (17)C313—C314—Br14119.89 (14)
C6—C5—C4A120.25 (18)C315—C314—Br14118.97 (15)
C6—C5—H5119.9C316—C315—C314119.26 (17)
C4A—C5—H5119.9C316—C315—H315120.4
C5—C6—C7120.48 (18)C314—C315—H315120.4
C5—C6—H6119.8C315—C316—C311120.50 (16)
C7—C6—H6119.8C315—C316—H316119.7
C8—C7—C6120.48 (19)C311—C316—H316119.7
C8—C7—H7119.8O3—C31—N3124.65 (18)
C6—C7—H7119.8O3—C31—C3120.84 (17)
C7—C8—C8A118.28 (18)N3—C31—C3114.51 (15)
C8A—O1—C2—C31.6 (3)C4—C4A—C8A—C8176.67 (18)
O1—C2—C3—C43.0 (3)C7—C8—C8A—O1177.90 (17)
O1—C2—C3—C31177.47 (17)C7—C8—C8A—C4A2.1 (3)
C2—C3—C4—O4179.41 (19)C31—N3—C311—C3120.1 (3)
C31—C3—C4—O40.0 (3)C31—N3—C311—C316179.50 (18)
C2—C3—C4—C4A1.2 (3)C316—C311—C312—C3130.3 (3)
C31—C3—C4—C4A179.38 (17)N3—C311—C312—C313179.06 (17)
O4—C4—C4A—C8A177.58 (18)C311—C312—C313—C3140.5 (3)
C3—C4—C4A—C8A1.9 (3)C312—C313—C314—C3151.1 (3)
O4—C4—C4A—C51.2 (3)C312—C313—C314—Br14178.50 (15)
C3—C4—C4A—C5179.33 (17)C313—C314—C315—C3160.8 (3)
C8A—C4A—C5—C60.7 (3)Br14—C314—C315—C316178.72 (15)
C4—C4A—C5—C6178.16 (18)C314—C315—C316—C3110.0 (3)
C4A—C5—C6—C70.9 (3)C312—C311—C316—C3150.6 (3)
C5—C6—C7—C81.0 (3)N3—C311—C316—C315178.89 (17)
C6—C7—C8—C8A0.4 (3)C311—N3—C31—O32.3 (3)
C2—O1—C8A—C4A1.7 (3)C311—N3—C31—C3177.52 (17)
C2—O1—C8A—C8178.33 (17)C2—C3—C31—O32.3 (3)
C5—C4A—C8A—O1177.77 (17)C4—C3—C31—O3178.23 (18)
C4—C4A—C8A—O13.4 (3)C2—C3—C31—N3177.91 (17)
C5—C4A—C8A—C82.2 (3)C4—C3—C31—N31.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.86 (2)1.95 (2)2.695 (2)145 (2)
C312—H312···O30.952.262.877 (2)129
C2—H2···O4i0.952.413.167 (2)137
C316—H316···O3ii0.952.473.314 (2)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(4) N-(4-Iodophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10INO3Z = 2
Mr = 391.15F(000) = 380
Triclinic, P1Dx = 1.900 Mg m3
a = 6.6750 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.4166 (7) ÅCell parameters from 9236 reflections
c = 11.2673 (8) Åθ = 1.8–27.5°
α = 100.974 (6)°µ = 2.35 mm1
β = 90.769 (6)°T = 120 K
γ = 100.062 (6)°Plate, colourless
V = 683.77 (9) Å30.46 × 0.22 × 0.05 mm
Data collection top
Rigaku RAXIS conversion
diffractometer
3095 independent reflections
Radiation source: Sealed Tube2819 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.026
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.2°
profile data from ω–scansh = 78
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 20112)
k = 1211
Tmin = 0.411, Tmax = 0.892l = 1414
10032 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3095 reflectionsΔρmax = 0.67 e Å3
194 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I3140.09431 (2)0.28556 (2)0.97093 (2)0.02278 (5)
O10.88205 (19)0.94124 (14)0.35573 (11)0.0188 (3)
O30.7838 (2)0.68549 (15)0.60794 (12)0.0219 (3)
O40.28854 (19)0.79085 (14)0.42255 (11)0.0199 (3)
N30.4362 (2)0.65097 (16)0.58280 (13)0.0152 (3)
H30.337 (3)0.678 (2)0.5384 (19)0.017 (5)*
C20.8340 (3)0.85191 (19)0.43445 (15)0.0166 (3)
H20.94340.82300.47310.020*
C30.6432 (3)0.79929 (17)0.46363 (14)0.0144 (3)
C40.4692 (3)0.83443 (18)0.40253 (14)0.0144 (3)
C4A0.5235 (3)0.92875 (18)0.31366 (14)0.0149 (3)
C50.3733 (3)0.9701 (2)0.24576 (16)0.0193 (4)
H50.23340.93520.25570.023*
C60.4280 (3)1.0611 (2)0.16480 (16)0.0221 (4)
H60.32571.08650.11760.026*
C70.6338 (3)1.1164 (2)0.15168 (16)0.0217 (4)
H70.66961.18110.09710.026*
C80.7853 (3)1.0777 (2)0.21751 (16)0.0211 (4)
H80.92491.11540.20940.025*
C8A0.7265 (3)0.98182 (19)0.29605 (15)0.0167 (3)
C3110.3707 (3)0.56515 (18)0.66915 (14)0.0147 (3)
C3120.5034 (3)0.52301 (19)0.74728 (15)0.0170 (3)
H3120.64660.55010.74260.020*
C3130.4242 (3)0.4409 (2)0.83219 (15)0.0183 (3)
H3130.51340.41190.88570.022*
C3140.2148 (3)0.40150 (18)0.83828 (15)0.0167 (3)
C3150.0823 (3)0.44141 (19)0.75977 (15)0.0178 (3)
H3150.06080.41270.76370.021*
C3160.1603 (3)0.52325 (19)0.67578 (15)0.0171 (3)
H3160.07020.55120.62210.020*
C310.6294 (3)0.70661 (18)0.55846 (15)0.0154 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I3140.02679 (8)0.02415 (7)0.01880 (6)0.00303 (5)0.00371 (4)0.00890 (4)
O10.0120 (6)0.0209 (6)0.0242 (6)0.0014 (5)0.0022 (5)0.0074 (5)
O30.0143 (6)0.0284 (7)0.0258 (7)0.0053 (5)0.0013 (5)0.0108 (5)
O40.0116 (6)0.0256 (7)0.0248 (6)0.0024 (5)0.0016 (5)0.0116 (5)
N30.0136 (7)0.0169 (7)0.0164 (7)0.0040 (6)0.0002 (5)0.0057 (5)
C20.0139 (8)0.0165 (8)0.0192 (8)0.0035 (6)0.0004 (6)0.0027 (6)
C30.0138 (8)0.0129 (8)0.0158 (7)0.0027 (6)0.0005 (6)0.0005 (6)
C40.0132 (8)0.0146 (8)0.0151 (7)0.0027 (6)0.0006 (6)0.0018 (6)
C4A0.0157 (9)0.0141 (8)0.0146 (7)0.0031 (6)0.0021 (6)0.0017 (6)
C50.0169 (9)0.0217 (9)0.0195 (8)0.0036 (7)0.0019 (6)0.0045 (6)
C60.0260 (10)0.0246 (9)0.0186 (8)0.0088 (8)0.0007 (7)0.0078 (7)
C70.0283 (10)0.0197 (9)0.0198 (8)0.0066 (7)0.0080 (7)0.0078 (6)
C80.0202 (10)0.0193 (9)0.0236 (9)0.0024 (7)0.0066 (7)0.0047 (7)
C8A0.0161 (9)0.0155 (8)0.0181 (8)0.0035 (6)0.0026 (6)0.0016 (6)
C3110.0166 (9)0.0127 (8)0.0145 (7)0.0034 (6)0.0011 (6)0.0014 (6)
C3120.0147 (9)0.0183 (8)0.0186 (8)0.0041 (7)0.0002 (6)0.0038 (6)
C3130.0199 (9)0.0198 (8)0.0164 (8)0.0065 (7)0.0023 (6)0.0038 (6)
C3140.0203 (9)0.0148 (8)0.0149 (7)0.0018 (7)0.0026 (6)0.0039 (6)
C3150.0148 (9)0.0199 (9)0.0183 (8)0.0030 (7)0.0018 (6)0.0029 (6)
C3160.0164 (9)0.0171 (8)0.0184 (8)0.0055 (7)0.0014 (6)0.0027 (6)
C310.0161 (9)0.0140 (8)0.0157 (7)0.0036 (6)0.0007 (6)0.0010 (6)
Geometric parameters (Å, º) top
I314—C3142.1023 (17)C6—C71.401 (3)
O1—C21.340 (2)C6—H60.9500
O1—C8A1.376 (2)C7—C81.385 (3)
O3—C311.229 (2)C7—H70.9500
O4—C41.243 (2)C8—C8A1.394 (2)
N3—C311.357 (2)C8—H80.9500
N3—C3111.406 (2)C311—C3121.397 (2)
N3—H30.92 (2)C311—C3161.398 (3)
C2—C31.352 (2)C312—C3131.395 (3)
C2—H20.9500C312—H3120.9500
C3—C41.460 (2)C313—C3141.388 (3)
C3—C311.497 (2)C313—H3130.9500
C4—C4A1.469 (2)C314—C3151.389 (2)
C4A—C8A1.390 (2)C315—C3161.383 (2)
C4A—C51.404 (2)C315—H3150.9500
C5—C61.377 (3)C316—H3160.9500
C5—H50.9500
C2—O1—C8A118.48 (14)C7—C8—H8121.0
C31—N3—C311128.55 (15)C8A—C8—H8121.0
C31—N3—H3114.0 (15)O1—C8A—C4A121.30 (15)
C311—N3—H3117.4 (15)O1—C8A—C8116.04 (16)
O1—C2—C3125.61 (16)C4A—C8A—C8122.66 (17)
O1—C2—H2117.2C312—C311—C316119.80 (16)
C3—C2—H2117.2C312—C311—N3123.60 (16)
C2—C3—C4119.41 (15)C316—C311—N3116.59 (15)
C2—C3—C31115.53 (15)C313—C312—C311119.53 (17)
C4—C3—C31125.07 (15)C313—C312—H312120.2
O4—C4—C3124.22 (16)C311—C312—H312120.2
O4—C4—C4A121.28 (16)C314—C313—C312119.87 (16)
C3—C4—C4A114.49 (15)C314—C313—H313120.1
C8A—C4A—C5118.05 (16)C312—C313—H313120.1
C8A—C4A—C4120.59 (16)C313—C314—C315120.84 (16)
C5—C4A—C4121.35 (16)C313—C314—I314120.05 (13)
C6—C5—C4A120.26 (18)C315—C314—I314119.08 (13)
C6—C5—H5119.9C316—C315—C314119.42 (17)
C4A—C5—H5119.9C316—C315—H315120.3
C5—C6—C7120.37 (18)C314—C315—H315120.3
C5—C6—H6119.8C315—C316—C311120.53 (16)
C7—C6—H6119.8C315—C316—H316119.7
C8—C7—C6120.65 (17)C311—C316—H316119.7
C8—C7—H7119.7O3—C31—N3124.75 (16)
C6—C7—H7119.7O3—C31—C3121.00 (16)
C7—C8—C8A117.95 (17)N3—C31—C3114.25 (15)
C8A—O1—C2—C31.7 (2)C4—C4A—C8A—C8176.55 (16)
O1—C2—C3—C43.0 (3)C7—C8—C8A—O1177.28 (15)
O1—C2—C3—C31177.33 (15)C7—C8—C8A—C4A2.4 (3)
C2—C3—C4—O4179.64 (16)C31—N3—C311—C3120.3 (3)
C31—C3—C4—O40.0 (3)C31—N3—C311—C316179.48 (16)
C2—C3—C4—C4A0.9 (2)C316—C311—C312—C3130.7 (2)
C31—C3—C4—C4A179.46 (15)N3—C311—C312—C313178.37 (16)
O4—C4—C4A—C8A177.21 (15)C311—C312—C313—C3140.1 (3)
C3—C4—C4A—C8A2.3 (2)C312—C313—C314—C3150.8 (3)
O4—C4—C4A—C51.7 (3)C312—C313—C314—I314177.36 (13)
C3—C4—C4A—C5178.81 (15)C313—C314—C315—C3161.0 (3)
C8A—C4A—C5—C60.2 (3)I314—C314—C315—C316177.17 (12)
C4—C4A—C5—C6178.65 (16)C314—C315—C316—C3110.3 (3)
C4A—C5—C6—C71.7 (3)C312—C311—C316—C3150.5 (3)
C5—C6—C7—C81.6 (3)N3—C311—C316—C315178.64 (15)
C6—C7—C8—C8A0.4 (3)C311—N3—C31—O32.5 (3)
C2—O1—C8A—C4A1.8 (2)C311—N3—C31—C3177.41 (15)
C2—O1—C8A—C8178.47 (15)C2—C3—C31—O32.3 (2)
C5—C4A—C8A—O1177.34 (15)C4—C3—C31—O3178.01 (15)
C4—C4A—C8A—O13.7 (2)C2—C3—C31—N3177.74 (14)
C5—C4A—C8A—C82.4 (3)C4—C3—C31—N31.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.92 (2)1.89 (2)2.6977 (19)145 (2)
C2—H2···O30.952.332.718 (2)104
C312—H312···O30.952.272.881 (2)122
C2—H2···O4i0.952.443.185 (2)136
C316—H316···O3ii0.952.493.312 (2)145
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Selected dihedral angles (°) top
θ1 is the dihedral angle between the mean planes of the chromene and phenyl rings and the phenyl ring. θ2 is the dihedral angle between the mean plane of the chromone ring and the plane defined by atoms O2, C31 and N3. θ3 is the dihedral angle between the mean planes of the phenyl ring and the plane defined by atoms O3,C31 and N3.
Compoundθ1θ2θ3
(1)2.51 (3)5.51 (12)5.05 (13)
(2)1.95 (7)5.7 (3)4.4 (3)
(3)4.90 (10)2.0 (4)2.9 (4)
(4)5.37 (10)1.8 (4)3.6 (4)
ππ stacking (Å, °) top
Cg1, Cg2, Cg3 and Cg7 [compound (6)] are the centroids of the rings containing atoms O1, C5, C311 and C211 [compound (6)], respectively. Contacts indicated * are those in which the planes involved are inclined to each other, the perpendicular distance between the planes is an average value and the angle between the planes is given in place of a slippage. Only interplanar interactions with Cg···Cg distances 4.0 Å and with angles between the planes of <10° are included.
Compoundcontactdistanceperp. dist.angle between planes
(1)Cg1···Cg3iii3.5187 (8)3.3226*1.77 (6)*
Cg1···Cg3iv3.543 (8)3.3719*1.77 (6)*
(2)Cg1···Cg3v3.5341 (17)3.3573*0.77 (13)*
Cg2···Cg3vi3.6691 (17)3.3985*3.14 (13)*
(3)Cg1···Cg3v3.5464 (11)3.3342*4.66 (9)*
(4)Cg1···Cg3iii3.5721 (11)3.3518*5.37 (9)
Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 2, -z; (v) -x + 1, -y, -z + 1; (vi) -x, -y, -z.
 

Acknowledgements

The authors thank the National Crystallographic Service, University of Southampton for the data collection, (3a) and (3c), and for their help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]). Thanks are also due the Foundation for Science and Technology (FCT) of Portugal (PEst-C/QUI/UI0081/2013). FC's (SFRH/BPD/74491/2010) grant is also supported by the FCT.

References

First citationCagide, F., Reis, J., Gaspar, A. & Borges, F. (2011). Tetrahedron Lett. 52, 6446–6449.  Web of Science CrossRef CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960–4992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaspar, A., Reis, J., Fonseca, A., Milhazes, N., Viña, D., Uriarte, E. & Borges, F. (2011). Bioorg. Med. Chem. Lett. 21, 707–709.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaspar, A., Silva, T., Yáñez, M., Vina, D., Orallo, F., Ortuso, F., Uriarte, E., Alcaro, S. & Borges, F. (2011). J. Med. Chem. 54, 5165–5173.  CrossRef CAS PubMed Google Scholar
First citationGomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294–309.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHelguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. D. S. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75–90.  CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30–309.  Web of Science CSD CrossRef Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationReis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527–1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds