organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-{(Hexane-1,6-di­yl)bis­­[(aza­niumylyl­­idene)methanylyl­­idene]}bis­­(naphthalen-2-olate)

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Sétif-1, 19000 Sétif, Algeria, and bService de Radiocristallographie, Institut de Chimie de Strasbourg, UMR 7177, CNRS–Unistra, 1 rue Blaise Pascal, Strasbourg 67008, France
*Correspondence e-mail: k_ouari@yahoo.fr

Edited by J. T. Mague, Tulane University, USA (Received 11 November 2014; accepted 12 December 2014; online 1 January 2015)

The whole molecule of the title Schiff base compound, C28H28N2O2, is generated by inversion symmetry. It is formed from two units of ortho-hy­droxy­naphthaldehyde bridged with 1,6-di­amino­hexane. The N atoms are protonated and, thus, the structure is a bis-zwitterionic compound in the solid state. The zwitterion shows strong intra­molecular N—H⋯O hydrogen bonds between the iminium N and the naphthaleno­late O atoms.

1. Related literature

For the synthesis of similar compounds, see: Ramos Silva et al. (2009[Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2009). Acta Cryst. E65, o1255.]); Li et al. (2007[Li, J., Liang, Z.-P. & Wu, Q. (2007). Acta Cryst. E63, o1086-o1087.]); Zhu et al. (2006[Zhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603-o4605.]); Sampath Kumar et al. (2010[Sampath Kumar, H. C., Ramachandra Bhat, B., Rudresha, B. J., Ravindra, R. & Philip, R. (2010). Chem. Phys. Lett. 494, 95-99.]); Bhattacharjee et al. (2012[Bhattacharjee, C. R., Goswami, P. & Mondal, P. (2012). Inorg. Chim. Acta, 387, 86-92.]). For their applications, see: Ourari et al. (2006[Ourari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169-175.], 2008[Ourari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846-3859.]); Ouari et al. (2010[Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831-836.], 2015[Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015). Spectrochim. Acta Part A, 135, 624-631.]). For related crystal structures, see: Yuan & Li (2013[Yuan, M. & Li, Z. (2013). J. Mol. Struct. 1031, 263-268.]); Paul & Kubicki (2009[Paul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238-244.]). For the biological activity of Schiff bases, see: Zayed et al. (2015[Zayed, E. M., Zayed, M. A. & El-Desawy, M. (2015). Spectrochim. Acta Part A, 134, 155-164.]); Abou-Hussein & Linert (2014[Abou-Hussein, A. A. & Linert, W. (2014). Spectrochim. Acta Part A, 117, 763-771.]); Sadeek et al. (2013[Sadeek, S. A., El-Attar, M. S. & Abd El-Hamid, S. M. (2013). J. Mol. Struct. 1051, 30-40.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H28N2O2

  • Mr = 424.52

  • Orthorhombic, P b c n

  • a = 23.722 (1) Å

  • b = 8.8117 (3) Å

  • c = 10.3903 (5) Å

  • V = 2171.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.36 × 0.16 × 0.08 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 17177 measured reflections

  • 2500 independent reflections

  • 1285 reflections with I > 2σ(I)

  • Rint = 0.082

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 0.99

  • 2500 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.99 (3) 1.74 (3) 2.587 (2) 141 (2)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 200); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Experimental top

The Schiff base ligand was prepared in 67% yield by condensation between 58 mg (0.5 mmole) of 1,6-di­amino­hexane and 172 mg (1 mmole) of 2-hy­droxy-1-naphthaldehyde in methanol (12 mL). The mixture was refluxed and stirred under a nitro­gen atmosphere for 3 hours. The precipitate obtained was filtered, washed with methanol and di­ethyl ether and dried in vacuum overnight. The product was recrystallized from di­methyl sulfoxide at room temperature over a period of a week. The yellow, single crystals of C28H28O2N2 obtained were of X-ray quality. Elemental analysis: calculated for C28H28O2N2: C 79.20, H 6.65, N 6.60%; found: C 78.84, H 6.63, N 6.78%.

Refinement top

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq(C—Haromatics). .

Results and discussion top

The synthesis of the Schiff base is similar to those described in the literature (Ramos Silva et al., 2009; Li et al., 2007; Zhu et al., 2006; Sampath Kumar et al., 2010; Bhattacharjee et al., 2012). These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Ouari et al., 2015; Ouari et al., 2010; Ourari et al., 2008; Ourari et al., 2006). Compounds of the type of the title molecule possess diverse biological properties such as anti-anxiety, anti-depressant (Zayed et al., 2015) and anti-tumor activities as well as anti­bacterial and fungicidal properties (Abou-Hussein et al., 2014; Sadeek et al., 2013). We report here the synthesis of title compound and its crystal structure.

A perspective view of the title molecule, which has crystallographically- imposed centrosymmetry, is shown in Fig. 1. The intra­molecular N1—H1N···O1 hydrogen bond forces the O1–C1–C10–C11–N1 unit into near planarity (rms deviation 0.005 Å) with the consequence that the naphthalene portion is nearly co-planar with it (dihedral angle 1.20 (8)°).

Related literature top

For the synthesis of similar compounds, see: Ramos Silva et al. (2009); Li et al. (2007); Zhu et al. (2006); Sampath Kumar et al. (2010); Bhattacharjee et al. (2012). For their applications, see: Ourari et al. (2006, 2008); Ouari et al. (2010, 2015). For related crystal structures, see: Yuan & Li (2013); Paul & Kubicki (2009). For the biological activity of Schiff bases, see: Zayed et al. (2015); Abou-Hussein & Linert (2014); Sadeek et al. (2013).

Structure description top

The Schiff base ligand was prepared in 67% yield by condensation between 58 mg (0.5 mmole) of 1,6-di­amino­hexane and 172 mg (1 mmole) of 2-hy­droxy-1-naphthaldehyde in methanol (12 mL). The mixture was refluxed and stirred under a nitro­gen atmosphere for 3 hours. The precipitate obtained was filtered, washed with methanol and di­ethyl ether and dried in vacuum overnight. The product was recrystallized from di­methyl sulfoxide at room temperature over a period of a week. The yellow, single crystals of C28H28O2N2 obtained were of X-ray quality. Elemental analysis: calculated for C28H28O2N2: C 79.20, H 6.65, N 6.60%; found: C 78.84, H 6.63, N 6.78%.

The synthesis of the Schiff base is similar to those described in the literature (Ramos Silva et al., 2009; Li et al., 2007; Zhu et al., 2006; Sampath Kumar et al., 2010; Bhattacharjee et al., 2012). These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Ouari et al., 2015; Ouari et al., 2010; Ourari et al., 2008; Ourari et al., 2006). Compounds of the type of the title molecule possess diverse biological properties such as anti-anxiety, anti-depressant (Zayed et al., 2015) and anti-tumor activities as well as anti­bacterial and fungicidal properties (Abou-Hussein et al., 2014; Sadeek et al., 2013). We report here the synthesis of title compound and its crystal structure.

A perspective view of the title molecule, which has crystallographically- imposed centrosymmetry, is shown in Fig. 1. The intra­molecular N1—H1N···O1 hydrogen bond forces the O1–C1–C10–C11–N1 unit into near planarity (rms deviation 0.005 Å) with the consequence that the naphthalene portion is nearly co-planar with it (dihedral angle 1.20 (8)°).

For the synthesis of similar compounds, see: Ramos Silva et al. (2009); Li et al. (2007); Zhu et al. (2006); Sampath Kumar et al. (2010); Bhattacharjee et al. (2012). For their applications, see: Ourari et al. (2006, 2008); Ouari et al. (2010, 2015). For related crystal structures, see: Yuan & Li (2013); Paul & Kubicki (2009). For the biological activity of Schiff bases, see: Zayed et al. (2015); Abou-Hussein & Linert (2014); Sadeek et al. (2013).

Refinement details top

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq(C—Haromatics). .

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 200); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular geometry of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Only the non-H atoms of the asymmetric unit are labelled.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis.
1,1'-{(Hexane-1,6-diyl)bis[(azaniumylylidene)methanylylidene]}bis(naphthalen-2-olate) top
Crystal data top
C28H28N2O2Dx = 1.298 Mg m3
Mr = 424.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 8957 reflections
a = 23.722 (1) Åθ = 1.0–27.5°
b = 8.8117 (3) ŵ = 0.08 mm1
c = 10.3903 (5) ÅT = 173 K
V = 2171.90 (16) Å3Prism, yellow
Z = 40.36 × 0.16 × 0.08 mm
F(000) = 904
Data collection top
Nonius KappaCCD
diffractometer
1285 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.082
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
phi and ω scansh = 2530
17177 measured reflectionsk = 1011
2500 independent reflectionsl = 1312
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.23 e Å3
2500 reflectionsΔρmin = 0.28 e Å3
150 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0047 (14)
Crystal data top
C28H28N2O2V = 2171.90 (16) Å3
Mr = 424.52Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 23.722 (1) ŵ = 0.08 mm1
b = 8.8117 (3) ÅT = 173 K
c = 10.3903 (5) Å0.36 × 0.16 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1285 reflections with I > 2σ(I)
17177 measured reflectionsRint = 0.082
2500 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.23 e Å3
2500 reflectionsΔρmin = 0.28 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42177 (9)0.1531 (2)0.9435 (2)0.0314 (5)
C20.42703 (9)0.1083 (2)1.0765 (2)0.0336 (5)
H20.45750.04511.10160.040*
C30.38971 (9)0.1541 (2)1.1655 (2)0.0351 (5)
H30.39510.12361.25240.042*
C40.34205 (8)0.2473 (2)1.1344 (2)0.0319 (5)
C50.30246 (9)0.2899 (2)1.2282 (2)0.0389 (6)
H50.30800.25831.31470.047*
C60.25612 (9)0.3759 (2)1.1985 (2)0.0411 (6)
H60.22970.40321.26310.049*
C70.24870 (9)0.4224 (2)1.0717 (2)0.0416 (6)
H70.21670.48201.04970.050*
C80.28662 (9)0.3839 (2)0.9781 (2)0.0359 (5)
H80.28060.41820.89260.043*
C90.33434 (8)0.2945 (2)1.0054 (2)0.0294 (5)
C100.37521 (8)0.24816 (18)0.90863 (19)0.0283 (5)
C110.36924 (9)0.2932 (2)0.7794 (2)0.0311 (5)
H110.33820.35700.75870.037*
C120.39177 (9)0.2937 (2)0.55205 (19)0.0372 (6)
H12A0.36400.37750.54960.045*
H12B0.37470.20510.50840.045*
C130.44381 (9)0.3416 (2)0.4786 (2)0.0369 (5)
H13A0.43240.37500.39140.044*
H13B0.46890.25260.46870.044*
C140.47653 (8)0.4686 (2)0.54272 (19)0.0370 (6)
H14A0.49320.43030.62380.044*
H14B0.45020.55180.56500.044*
N10.40291 (8)0.25438 (18)0.68565 (17)0.0333 (5)
O10.45832 (6)0.10907 (16)0.86112 (13)0.0403 (4)
H1N0.4349 (11)0.195 (2)0.720 (2)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0307 (12)0.0318 (11)0.0318 (13)0.0016 (8)0.0006 (10)0.0004 (9)
C20.0348 (12)0.0326 (10)0.0335 (13)0.0006 (9)0.0050 (10)0.0047 (9)
C30.0394 (14)0.0371 (11)0.0289 (12)0.0057 (9)0.0019 (10)0.0040 (9)
C40.0311 (12)0.0321 (10)0.0325 (13)0.0056 (8)0.0003 (10)0.0021 (9)
C50.0399 (14)0.0449 (13)0.0319 (13)0.0090 (10)0.0026 (11)0.0056 (9)
C60.0307 (13)0.0495 (13)0.0431 (15)0.0056 (10)0.0073 (11)0.0162 (10)
C70.0332 (13)0.0438 (12)0.0479 (15)0.0008 (9)0.0003 (11)0.0105 (11)
C80.0347 (13)0.0363 (11)0.0367 (13)0.0009 (9)0.0002 (10)0.0019 (9)
C90.0290 (12)0.0284 (10)0.0308 (12)0.0039 (8)0.0008 (9)0.0017 (8)
C100.0277 (11)0.0299 (10)0.0275 (12)0.0009 (8)0.0026 (9)0.0014 (8)
C110.0289 (12)0.0301 (10)0.0342 (13)0.0002 (8)0.0012 (10)0.0004 (9)
C120.0397 (13)0.0426 (12)0.0293 (13)0.0013 (9)0.0026 (10)0.0060 (9)
C130.0398 (13)0.0430 (12)0.0281 (12)0.0014 (10)0.0010 (10)0.0041 (9)
C140.0413 (13)0.0409 (11)0.0288 (13)0.0008 (10)0.0005 (10)0.0027 (9)
N10.0349 (10)0.0380 (10)0.0271 (11)0.0018 (8)0.0010 (9)0.0042 (7)
O10.0383 (9)0.0474 (8)0.0352 (9)0.0120 (7)0.0035 (7)0.0006 (7)
Geometric parameters (Å, º) top
C1—O11.279 (2)C8—H80.9500
C1—C101.433 (3)C9—C101.455 (3)
C1—C21.442 (3)C10—C111.408 (3)
C2—C31.343 (3)C11—N11.305 (2)
C2—H20.9500C11—H110.9500
C3—C41.434 (3)C12—N11.455 (2)
C3—H30.9500C12—C131.511 (3)
C4—C51.405 (3)C12—H12A0.9900
C4—C91.416 (3)C12—H12B0.9900
C5—C61.370 (3)C13—C141.516 (3)
C5—H50.9500C13—H13A0.9900
C6—C71.391 (3)C13—H13B0.9900
C6—H60.9500C14—C14i1.528 (4)
C7—C81.367 (3)C14—H14A0.9900
C7—H70.9500C14—H14B0.9900
C8—C91.408 (3)N1—H1N0.99 (3)
O1—C1—C10122.03 (18)C11—C10—C1118.94 (18)
O1—C1—C2119.99 (18)C11—C10—C9120.86 (18)
C10—C1—C2117.97 (19)C1—C10—C9120.19 (18)
C3—C2—C1121.40 (19)N1—C11—C10125.19 (19)
C3—C2—H2119.3N1—C11—H11117.4
C1—C2—H2119.3C10—C11—H11117.4
C2—C3—C4122.44 (19)N1—C12—C13113.56 (17)
C2—C3—H3118.8N1—C12—H12A108.9
C4—C3—H3118.8C13—C12—H12A108.9
C5—C4—C9119.48 (19)N1—C12—H12B108.9
C5—C4—C3121.6 (2)C13—C12—H12B108.9
C9—C4—C3118.92 (18)H12A—C12—H12B107.7
C6—C5—C4121.9 (2)C12—C13—C14113.75 (18)
C6—C5—H5119.1C12—C13—H13A108.8
C4—C5—H5119.1C14—C13—H13A108.8
C5—C6—C7118.5 (2)C12—C13—H13B108.8
C5—C6—H6120.7C14—C13—H13B108.8
C7—C6—H6120.7H13A—C13—H13B107.7
C8—C7—C6121.1 (2)C13—C14—C14i112.7 (2)
C8—C7—H7119.4C13—C14—H14A109.1
C6—C7—H7119.4C14i—C14—H14A109.1
C7—C8—C9121.7 (2)C13—C14—H14B109.1
C7—C8—H8119.2C14i—C14—H14B109.1
C9—C8—H8119.2H14A—C14—H14B107.8
C8—C9—C4117.29 (18)C11—N1—C12122.55 (19)
C8—C9—C10123.64 (18)C11—N1—H1N109.7 (14)
C4—C9—C10119.06 (17)C12—N1—H1N127.7 (14)
O1—C1—C2—C3179.21 (17)C3—C4—C9—C100.5 (3)
C10—C1—C2—C30.1 (3)O1—C1—C10—C110.7 (3)
C1—C2—C3—C41.1 (3)C2—C1—C10—C11180.00 (16)
C2—C3—C4—C5177.89 (18)O1—C1—C10—C9179.50 (17)
C2—C3—C4—C90.8 (3)C2—C1—C10—C91.2 (3)
C9—C4—C5—C60.3 (3)C8—C9—C10—C110.8 (3)
C3—C4—C5—C6178.41 (18)C4—C9—C10—C11179.71 (16)
C4—C5—C6—C70.4 (3)C8—C9—C10—C1178.02 (17)
C5—C6—C7—C80.1 (3)C4—C9—C10—C11.5 (3)
C6—C7—C8—C90.7 (3)C1—C10—C11—N10.5 (3)
C7—C8—C9—C40.8 (3)C9—C10—C11—N1178.29 (17)
C7—C8—C9—C10178.74 (17)N1—C12—C13—C1453.7 (2)
C5—C4—C9—C80.3 (3)C12—C13—C14—C14i171.2 (2)
C3—C4—C9—C8179.01 (16)C10—C11—N1—C12174.49 (16)
C5—C4—C9—C10179.23 (16)C13—C12—N1—C11139.58 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.99 (3)1.74 (3)2.587 (2)141 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.99 (3)1.74 (3)2.587 (2)141 (2)
 

Acknowledgements

The authors gratefully acknowledge financial support from the Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean Weiss (CLAC) at the University of Strasbourg, France.

References

First citationAbou-Hussein, A. A. & Linert, W. (2014). Spectrochim. Acta Part A, 117, 763–771.  CAS Google Scholar
First citationBhattacharjee, C. R., Goswami, P. & Mondal, P. (2012). Inorg. Chim. Acta, 387, 86–92.  Web of Science CrossRef CAS Google Scholar
First citationLi, J., Liang, Z.-P. & Wu, Q. (2007). Acta Cryst. E63, o1086–o1087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOuari, K., Bendia, S., Weiss, J. & Bailly, C. (2015). Spectrochim. Acta Part A, 135, 624–631.  Web of Science CrossRef CAS Google Scholar
First citationOuari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationOurari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846–3859.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Ouari, K., Moumeni, W., Sibous, L., Bouet, G. & Khan, M. A. (2006). Transition Met. Chem. 31, 169–175.  Web of Science CrossRef CAS Google Scholar
First citationPaul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2009). Acta Cryst. E65, o1255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSadeek, S. A., El-Attar, M. S. & Abd El-Hamid, S. M. (2013). J. Mol. Struct. 1051, 30–40.  Web of Science CrossRef CAS Google Scholar
First citationSampath Kumar, H. C., Ramachandra Bhat, B., Rudresha, B. J., Ravindra, R. & Philip, R. (2010). Chem. Phys. Lett. 494, 95–99.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, M. & Li, Z. (2013). J. Mol. Struct. 1031, 263–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationZayed, E. M., Zayed, M. A. & El-Desawy, M. (2015). Spectrochim. Acta Part A, 134, 155–164.  Web of Science CrossRef CAS Google Scholar
First citationZhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603–o4605.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds