metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the one-dimensional metal–organic polymer catena-poly[[tris­(μ-2,4,6-tri­methyl­benzoato-κ2O:O′)dizinc]-μ-2,4,6-tri­methyl­benzoato-κ2O:O′]

aGraduate School of Pure and Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571, Japan
*Correspondence e-mail: nabesima@chem.tsukuba.ac.jp

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 11 November 2014; accepted 16 December 2014; online 1 January 2015)

The title complex, [Zn2(C10H11O2)4]n, has a one-dimensional polymeric structure. The asymmetric unit consists of two zinc atoms bridged by three 2,4,6-tri­methyl­benzoate anions and one bidentate bridging 2,4,6-trimethylbenzoate anion. The [Zn2(C9H11CO2)3] cluster units are inter­molecularly linked to form a one-dimensional polymer, which propagates in the direction of the crystallographic b axis. The Zn atoms adopt a tetra­hedral geometry. The Zn—O bond lengths in the intra­molecular bridges are slightly shorter than those in the inter­molecular bridges.

1. Related literature

For related polymeric complexes based on zinc benzoate, see: Clark & Kao (1948[Clark, G. L. & Kao, H. (1948). J. Am. Chem. Soc. 70, 2151-2154.]); Guseinov et al. (1984[Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.]); Bijini et al. (2012[Bijini, B. R., Prasanna, S., Deepa, M., Nair, C. M. K. & Babu, K. R. (2012). Spectrochim. Acta Part A, 97, 1002-1006.]); on zinc 2-chloro­benzoate, see: Clegg et al. (1990[Clegg, W., Harbron, D. R., Hunt, P. A., Little, I. R. & Straughan, B. P. (1990). Acta Cryst. C46, 750-753.]); and on zinc 2,3,5,6-tetra­methyl-1,4-benzene­dicarboxyl­ate, see: Braun et al. (2001[Braun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532-2533.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn2(C10H11O2)4]

  • Mr = 783.49

  • Monoclinic, P 21 /c

  • a = 12.0578 (12) Å

  • b = 14.5824 (15) Å

  • c = 22.275 (2) Å

  • β = 102.360 (1)°

  • V = 3825.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.937

  • 21404 measured reflections

  • 8867 independent reflections

  • 7157 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.080

  • S = 1.01

  • 8867 reflections

  • 463 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9361 (16)
Zn1—O8 1.9382 (15)
Zn1—O4 1.9436 (15)
Zn1—O6i 1.9532 (15)
Zn2—O7 1.9258 (16)
Zn2—O2 1.9363 (16)
Zn2—O3 1.9492 (16)
Zn2—O5 1.9532 (15)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Coordination polymers composed of zinc carboxyl­ates have emerged as tremendously inter­esting crystalline materials because of their application in catalysis, gas storage, and sensing. Although there are a large number of reports of coordination polymers composed of zinc carboxyl­ates, there are only 21 examples having zinc dinuclear part bridged by three carboxyl­ate ligands in CCDC database. The title complex, zinc 2,4,6-tri­methyl­benzoate, (Fig. 1), crystallizes in a monoclinic unit cell with a single dinuclear-zinc-complex pair in the asymmetric unit, which are bridged by three µ-2,4,6-tri­methyl­benzoate anions. The zinc dinuclear parts are inter­molecularly linked by the other 2,4,6-tri­methyl­benzoate anion to form one-dimensional polymer (Fig. 2) which propagates in the direction of the crystallographic b axis. Zinc benzoate (Clark et al. (1948); Guseinov et al. (1984); Bijini et al. (2012)) and zinc 2-chloro­benzoate (Clegg et al. (1990)) exhibited the same polymeric structure. The Zn—O bond lengths in intra­molecular bridges, Zn1—O1, Zn1—O4, Zn1—O8, Zn2—O2, Zn2—O3, and Zn2—O7 are slightly shorter than those in inter­molecular bridges, Zn1—O6i and Zn2—O5.

Synthesis and crystallization top

To an ether solution (20 mL) of 2,4,6-tri­methyl­benzoic acid (1.0 g, 6.1 mmol) was added an Et2Zn/hexane solution (1.0 M, 3.0 mL, 3.0 mmol) slowly. The white precipitate was washed with ether, and then reprecipitation from chloro­form/methanol gave a colorless powder of zinc 2,4,6-tri­methyl­benzoate (1.1 g, 93%). Single crystals were obtained by slow evaporation of methanol/chloro­form solution of the title complex. Anal. Calcd for C40H44O8Zn2: C, 61.31; H, 5.66. Found: C, 61.14; H, 5.66. 1H NMR (400 MHz, DMSO-d6) 2.20 (s, 3H), 2.22 (s, 6H), 6.77 (s, 2H). 13C (100 MHz, DMSO-d6) 19.64 (CH3), 20.67 (CH3), 127.43 (CH), 132.81 (C), 135.56 (C), 137.06 (C), 175.76 (C).

Refinement top

All of the positional parameters and thermal parameters of non-hydrogen atoms were anisotropically refined on F2 by the full-matrix least-squares method. Hydrogen atoms were placed at the calculated positions ((C—H = 0.95 Å (phenyl) or 0.98 Å (methyl)) and refined as riding on their corresponding carbon atoms with Uiso(H) = 1.5 times Ueq(C) for methyl H atoms and = 1.2 times Ueq(C) for other H atoms.

Related literature top

For related polymeric complexes based on zinc benzoate, see: Clark & Kao (1948); Guseinov et al. (1984); Bijini et al. (2012); on zinc 2-chlorobenzoate, see: Clegg et al. (1990); and on zinc 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate, see: Braun et al. (2001).

Structure description top

Coordination polymers composed of zinc carboxyl­ates have emerged as tremendously inter­esting crystalline materials because of their application in catalysis, gas storage, and sensing. Although there are a large number of reports of coordination polymers composed of zinc carboxyl­ates, there are only 21 examples having zinc dinuclear part bridged by three carboxyl­ate ligands in CCDC database. The title complex, zinc 2,4,6-tri­methyl­benzoate, (Fig. 1), crystallizes in a monoclinic unit cell with a single dinuclear-zinc-complex pair in the asymmetric unit, which are bridged by three µ-2,4,6-tri­methyl­benzoate anions. The zinc dinuclear parts are inter­molecularly linked by the other 2,4,6-tri­methyl­benzoate anion to form one-dimensional polymer (Fig. 2) which propagates in the direction of the crystallographic b axis. Zinc benzoate (Clark et al. (1948); Guseinov et al. (1984); Bijini et al. (2012)) and zinc 2-chloro­benzoate (Clegg et al. (1990)) exhibited the same polymeric structure. The Zn—O bond lengths in intra­molecular bridges, Zn1—O1, Zn1—O4, Zn1—O8, Zn2—O2, Zn2—O3, and Zn2—O7 are slightly shorter than those in inter­molecular bridges, Zn1—O6i and Zn2—O5.

For related polymeric complexes based on zinc benzoate, see: Clark & Kao (1948); Guseinov et al. (1984); Bijini et al. (2012); on zinc 2-chlorobenzoate, see: Clegg et al. (1990); and on zinc 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate, see: Braun et al. (2001).

Synthesis and crystallization top

To an ether solution (20 mL) of 2,4,6-tri­methyl­benzoic acid (1.0 g, 6.1 mmol) was added an Et2Zn/hexane solution (1.0 M, 3.0 mL, 3.0 mmol) slowly. The white precipitate was washed with ether, and then reprecipitation from chloro­form/methanol gave a colorless powder of zinc 2,4,6-tri­methyl­benzoate (1.1 g, 93%). Single crystals were obtained by slow evaporation of methanol/chloro­form solution of the title complex. Anal. Calcd for C40H44O8Zn2: C, 61.31; H, 5.66. Found: C, 61.14; H, 5.66. 1H NMR (400 MHz, DMSO-d6) 2.20 (s, 3H), 2.22 (s, 6H), 6.77 (s, 2H). 13C (100 MHz, DMSO-d6) 19.64 (CH3), 20.67 (CH3), 127.43 (CH), 132.81 (C), 135.56 (C), 137.06 (C), 175.76 (C).

Refinement details top

All of the positional parameters and thermal parameters of non-hydrogen atoms were anisotropically refined on F2 by the full-matrix least-squares method. Hydrogen atoms were placed at the calculated positions ((C—H = 0.95 Å (phenyl) or 0.98 Å (methyl)) and refined as riding on their corresponding carbon atoms with Uiso(H) = 1.5 times Ueq(C) for methyl H atoms and = 1.2 times Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, y - 1/2, -z + 1/2.
[Figure 2] Fig. 2. The one-dimensional polymeric chain in the crystal structure of the title compound in a view along the a axis.
catena-Poly[[tris(µ-2,4,6-trimethylbenzoato-κ2O:O')dizinc]-µ-2,4,6-trimethylbenzoato-κ2O:O'] top
Crystal data top
[Zn2(C10H11O2)4]F(000) = 1632
Mr = 783.49Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.0578 (12) ÅCell parameters from 1351 reflections
b = 14.5824 (15) Åθ = 2.7–27.5°
c = 22.275 (2) ŵ = 1.30 mm1
β = 102.360 (1)°T = 120 K
V = 3825.9 (7) Å3Block, pale yellow
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
8867 independent reflections
Radiation source: fine-focus sealed tube7157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.855, Tmax = 0.937k = 1916
21404 measured reflectionsl = 2928
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.020P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
8867 reflectionsΔρmax = 0.78 e Å3
463 parametersΔρmin = 0.39 e Å3
Crystal data top
[Zn2(C10H11O2)4]V = 3825.9 (7) Å3
Mr = 783.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0578 (12) ŵ = 1.30 mm1
b = 14.5824 (15) ÅT = 120 K
c = 22.275 (2) Å0.20 × 0.10 × 0.05 mm
β = 102.360 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7157 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.937Rint = 0.026
21404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.78 e Å3
8867 reflectionsΔρmin = 0.39 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.01963 (2)0.09027 (2)0.23624 (2)0.02038 (7)
Zn20.03822 (2)0.10799 (2)0.18232 (2)0.02097 (7)
O10.06415 (15)0.02033 (12)0.30507 (7)0.0356 (4)
O20.13211 (15)0.10089 (12)0.26440 (8)0.0350 (4)
O30.07929 (15)0.01158 (11)0.13049 (8)0.0333 (4)
O40.07284 (14)0.12268 (11)0.17787 (7)0.0282 (4)
O50.09977 (13)0.21646 (10)0.14961 (7)0.0229 (3)
O60.04628 (12)0.29611 (10)0.22260 (7)0.0228 (3)
O70.12449 (13)0.10862 (11)0.17198 (8)0.0286 (4)
O80.16060 (13)0.03770 (11)0.19109 (7)0.0276 (3)
C10.12488 (19)0.04947 (16)0.30840 (10)0.0242 (5)
C20.19581 (19)0.07447 (16)0.36990 (10)0.0256 (5)
C30.15013 (19)0.13166 (16)0.40868 (10)0.0267 (5)
C40.0311 (2)0.16725 (19)0.38925 (12)0.0380 (6)
H4A0.00530.19020.42530.057*
H4B0.01910.11760.37020.057*
H4C0.02930.21720.35960.057*
C50.2184 (2)0.15481 (17)0.46520 (11)0.0305 (5)
H50.18810.19280.49240.037*
C60.3292 (2)0.12416 (18)0.48299 (11)0.0332 (5)
C70.4023 (2)0.1525 (2)0.54398 (12)0.0455 (7)
H7A0.47070.11420.55300.068*
H7B0.35960.14460.57640.068*
H7C0.42410.21700.54210.068*
C80.3712 (2)0.0667 (2)0.44354 (12)0.0409 (6)
H80.44670.04440.45560.049*
C90.3057 (2)0.0407 (2)0.38663 (11)0.0368 (6)
C100.3514 (3)0.0230 (3)0.34406 (14)0.0597 (10)
H10A0.30710.07980.33870.090*
H10B0.43120.03710.36180.090*
H10C0.34560.00680.30410.090*
C110.09609 (17)0.07343 (15)0.13581 (9)0.0208 (4)
C120.14756 (18)0.11860 (14)0.08808 (10)0.0214 (4)
C130.26351 (19)0.13914 (16)0.10146 (11)0.0270 (5)
C140.3086 (2)0.18030 (17)0.05554 (12)0.0340 (6)
H140.38730.19450.06380.041*
C150.2426 (2)0.20120 (17)0.00179 (12)0.0343 (6)
C160.1284 (2)0.17891 (16)0.01349 (11)0.0295 (5)
H160.08250.19240.05270.035*
C170.07876 (19)0.13739 (15)0.03051 (10)0.0232 (4)
C180.04636 (19)0.11609 (17)0.01647 (11)0.0293 (5)
H18A0.08090.13800.02490.044*
H18B0.05730.04970.01860.044*
H18C0.08220.14670.04660.044*
C190.2929 (3)0.2497 (2)0.04983 (14)0.0524 (8)
H19A0.30470.31460.03890.079*
H19B0.36580.22140.05180.079*
H19C0.24080.24450.09000.079*
C200.3372 (2)0.11762 (19)0.16336 (12)0.0372 (6)
H20A0.41020.14930.16770.056*
H20B0.29930.13820.19570.056*
H20C0.35020.05130.16700.056*
C210.10079 (17)0.28918 (14)0.18022 (9)0.0193 (4)
C220.17023 (19)0.36796 (15)0.16578 (10)0.0228 (4)
C230.2758 (2)0.38501 (16)0.20402 (11)0.0283 (5)
C240.3370 (2)0.46119 (19)0.19157 (13)0.0400 (6)
H240.40820.47440.21780.048*
C250.2967 (3)0.51814 (19)0.14191 (15)0.0460 (7)
C260.1934 (3)0.49777 (18)0.10388 (13)0.0434 (7)
H260.16590.53590.06930.052*
C270.1280 (2)0.42316 (16)0.11443 (11)0.0311 (5)
C280.0159 (2)0.40370 (19)0.07240 (11)0.0394 (6)
H28A0.01060.45860.04820.059*
H28B0.03950.38650.09680.059*
H28C0.02450.35320.04470.059*
C290.3633 (4)0.6017 (2)0.1296 (2)0.0733 (12)
H29A0.43070.60870.16270.110*
H29B0.31550.65640.12760.110*
H29C0.38680.59390.09040.110*
C300.3245 (2)0.32251 (19)0.25705 (12)0.0350 (6)
H30A0.26250.29510.27310.053*
H30B0.37370.35790.28960.053*
H30C0.36890.27390.24290.053*
C310.19067 (18)0.04227 (16)0.17330 (10)0.0235 (4)
C320.31529 (19)0.06039 (16)0.15257 (11)0.0259 (5)
C330.3641 (2)0.13265 (18)0.17911 (12)0.0345 (6)
C340.2952 (3)0.1926 (2)0.22803 (14)0.0510 (8)
H34A0.24650.15430.25900.077*
H34B0.34630.22880.24750.077*
H34C0.24790.23400.20950.077*
C350.4808 (2)0.14777 (19)0.15916 (13)0.0421 (7)
H350.51510.19570.17770.051*
C360.5479 (2)0.09607 (19)0.11378 (14)0.0404 (7)
C370.6736 (2)0.1147 (2)0.09255 (18)0.0588 (9)
H37A0.68700.14970.05410.088*
H37B0.70050.15010.12400.088*
H37C0.71480.05640.08570.088*
C380.4969 (2)0.02634 (18)0.08789 (13)0.0378 (6)
H380.54180.00940.05610.045*
C390.38183 (19)0.00636 (17)0.10665 (11)0.0298 (5)
C400.3316 (2)0.07034 (19)0.07582 (12)0.0392 (6)
H40A0.39010.09600.04270.059*
H40B0.30320.11830.10600.059*
H40C0.26890.04660.05880.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02529 (13)0.01865 (13)0.01827 (12)0.00039 (10)0.00701 (10)0.00168 (9)
Zn20.02660 (13)0.01742 (13)0.01969 (12)0.00098 (10)0.00674 (10)0.00089 (9)
O10.0473 (11)0.0369 (10)0.0214 (8)0.0171 (8)0.0048 (7)0.0021 (7)
O20.0414 (10)0.0307 (10)0.0271 (9)0.0078 (8)0.0054 (7)0.0072 (7)
O30.0543 (11)0.0195 (9)0.0321 (9)0.0012 (7)0.0223 (8)0.0009 (7)
O40.0386 (9)0.0244 (8)0.0254 (8)0.0040 (7)0.0155 (7)0.0034 (6)
O50.0344 (8)0.0176 (8)0.0196 (7)0.0015 (6)0.0119 (6)0.0009 (6)
O60.0301 (8)0.0190 (8)0.0222 (7)0.0010 (6)0.0117 (6)0.0020 (6)
O70.0262 (8)0.0233 (9)0.0357 (9)0.0012 (6)0.0051 (7)0.0013 (7)
O80.0258 (8)0.0250 (9)0.0318 (9)0.0017 (6)0.0056 (7)0.0064 (7)
C10.0262 (11)0.0235 (12)0.0228 (11)0.0036 (9)0.0052 (9)0.0019 (9)
C20.0293 (12)0.0247 (12)0.0218 (11)0.0018 (9)0.0030 (9)0.0020 (9)
C30.0294 (12)0.0234 (12)0.0265 (11)0.0015 (9)0.0040 (9)0.0003 (9)
C40.0370 (14)0.0353 (15)0.0398 (15)0.0079 (11)0.0037 (11)0.0109 (11)
C50.0404 (14)0.0255 (12)0.0259 (12)0.0017 (10)0.0078 (10)0.0043 (9)
C60.0367 (13)0.0331 (14)0.0276 (12)0.0026 (10)0.0018 (10)0.0030 (10)
C70.0469 (16)0.0494 (18)0.0343 (14)0.0001 (13)0.0044 (12)0.0113 (13)
C80.0309 (13)0.0546 (18)0.0334 (14)0.0087 (12)0.0014 (11)0.0059 (13)
C90.0346 (14)0.0457 (16)0.0285 (13)0.0063 (11)0.0036 (10)0.0073 (11)
C100.0433 (17)0.090 (3)0.0418 (17)0.0257 (17)0.0007 (13)0.0247 (17)
C110.0209 (10)0.0231 (11)0.0185 (10)0.0018 (8)0.0040 (8)0.0004 (8)
C120.0271 (11)0.0164 (10)0.0231 (10)0.0006 (8)0.0105 (9)0.0017 (8)
C130.0273 (11)0.0237 (12)0.0309 (12)0.0009 (9)0.0084 (9)0.0074 (10)
C140.0296 (12)0.0308 (13)0.0469 (15)0.0094 (10)0.0200 (11)0.0111 (11)
C150.0497 (15)0.0261 (13)0.0344 (13)0.0074 (11)0.0249 (12)0.0047 (10)
C160.0428 (14)0.0248 (12)0.0233 (11)0.0012 (10)0.0127 (10)0.0007 (9)
C170.0292 (11)0.0188 (11)0.0236 (11)0.0008 (9)0.0099 (9)0.0031 (9)
C180.0289 (12)0.0314 (13)0.0270 (12)0.0014 (10)0.0047 (10)0.0021 (10)
C190.074 (2)0.0479 (18)0.0473 (17)0.0219 (16)0.0398 (16)0.0048 (14)
C200.0307 (13)0.0427 (16)0.0354 (14)0.0011 (11)0.0011 (11)0.0102 (12)
C210.0233 (10)0.0176 (10)0.0165 (10)0.0018 (8)0.0030 (8)0.0021 (8)
C220.0323 (12)0.0169 (10)0.0231 (10)0.0000 (9)0.0147 (9)0.0005 (8)
C230.0311 (12)0.0251 (12)0.0328 (12)0.0030 (9)0.0162 (10)0.0060 (10)
C240.0401 (15)0.0350 (15)0.0519 (17)0.0132 (12)0.0252 (13)0.0122 (13)
C250.0620 (19)0.0264 (14)0.0623 (19)0.0104 (13)0.0412 (16)0.0030 (13)
C260.068 (2)0.0270 (14)0.0449 (16)0.0043 (13)0.0328 (15)0.0103 (12)
C270.0475 (15)0.0213 (12)0.0290 (12)0.0037 (10)0.0183 (11)0.0037 (9)
C280.0595 (17)0.0349 (15)0.0248 (12)0.0085 (12)0.0111 (12)0.0088 (11)
C290.098 (3)0.0382 (19)0.103 (3)0.0248 (18)0.064 (2)0.0000 (19)
C300.0263 (12)0.0432 (16)0.0347 (13)0.0017 (11)0.0044 (10)0.0050 (11)
C310.0275 (11)0.0250 (12)0.0186 (10)0.0016 (9)0.0067 (9)0.0011 (9)
C320.0250 (11)0.0247 (12)0.0307 (12)0.0031 (9)0.0119 (9)0.0062 (9)
C330.0409 (14)0.0282 (13)0.0396 (14)0.0054 (11)0.0200 (11)0.0050 (11)
C340.0606 (19)0.0425 (17)0.0541 (18)0.0074 (14)0.0214 (15)0.0155 (14)
C350.0457 (16)0.0355 (15)0.0542 (17)0.0160 (12)0.0306 (14)0.0129 (13)
C360.0262 (12)0.0380 (15)0.0604 (18)0.0035 (11)0.0167 (12)0.0193 (13)
C370.0294 (14)0.052 (2)0.099 (3)0.0091 (13)0.0207 (16)0.0269 (19)
C380.0275 (13)0.0332 (14)0.0512 (16)0.0012 (11)0.0050 (11)0.0125 (12)
C390.0252 (11)0.0280 (13)0.0363 (13)0.0009 (9)0.0069 (10)0.0069 (10)
C400.0344 (14)0.0392 (15)0.0392 (15)0.0040 (11)0.0024 (11)0.0083 (12)
Geometric parameters (Å, º) top
Zn1—O11.9361 (16)C18—H18B0.9800
Zn1—O81.9382 (15)C18—H18C0.9800
Zn1—O41.9436 (15)C19—H19A0.9800
Zn1—O6i1.9532 (15)C19—H19B0.9800
Zn2—O71.9258 (16)C19—H19C0.9800
Zn2—O21.9363 (16)C20—H20A0.9800
Zn2—O31.9492 (16)C20—H20B0.9800
Zn2—O51.9532 (15)C20—H20C0.9800
O1—C11.247 (3)C21—C221.497 (3)
O2—C11.252 (3)C22—C231.394 (3)
O3—C111.258 (3)C22—C271.402 (3)
O4—C111.259 (3)C23—C241.394 (3)
O5—C211.259 (2)C23—C301.508 (3)
O6—C211.265 (2)C24—C251.385 (4)
O6—Zn1ii1.9532 (15)C24—H240.9500
O7—C311.259 (3)C25—C261.381 (4)
O8—C311.260 (3)C25—C291.517 (4)
C1—C21.497 (3)C26—C271.393 (4)
C2—C91.387 (3)C26—H260.9500
C2—C31.396 (3)C27—C281.497 (4)
C3—C51.391 (3)C28—H28A0.9800
C3—C41.500 (3)C28—H28B0.9800
C4—H4A0.9800C28—H28C0.9800
C4—H4B0.9800C29—H29A0.9800
C4—H4C0.9800C29—H29B0.9800
C5—C61.384 (3)C29—H29C0.9800
C5—H50.9500C30—H30A0.9800
C6—C81.386 (4)C30—H30B0.9800
C6—C71.510 (3)C30—H30C0.9800
C7—H7A0.9800C31—C321.498 (3)
C7—H7B0.9800C32—C331.398 (3)
C7—H7C0.9800C32—C391.400 (3)
C8—C91.395 (4)C33—C351.400 (4)
C8—H80.9500C33—C341.501 (4)
C9—C101.513 (4)C34—H34A0.9800
C10—H10A0.9800C34—H34B0.9800
C10—H10B0.9800C34—H34C0.9800
C10—H10C0.9800C35—C361.377 (4)
C11—C121.494 (3)C35—H350.9500
C12—C171.397 (3)C36—C381.378 (4)
C12—C131.398 (3)C36—C371.512 (4)
C13—C141.393 (3)C37—H37A0.9800
C13—C201.505 (3)C37—H37B0.9800
C14—C151.386 (4)C37—H37C0.9800
C14—H140.9500C38—C391.391 (3)
C15—C161.384 (3)C38—H380.9500
C15—C191.514 (3)C39—C401.506 (3)
C16—C171.391 (3)C40—H40A0.9800
C16—H160.9500C40—H40B0.9800
C17—C181.506 (3)C40—H40C0.9800
C18—H18A0.9800
O1—Zn1—O8116.97 (8)H19A—C19—H19B109.5
O1—Zn1—O4112.40 (7)C15—C19—H19C109.5
O8—Zn1—O4108.30 (7)H19A—C19—H19C109.5
O1—Zn1—O6i100.69 (7)H19B—C19—H19C109.5
O8—Zn1—O6i111.41 (6)C13—C20—H20A109.5
O4—Zn1—O6i106.46 (6)C13—C20—H20B109.5
O7—Zn2—O2119.20 (7)H20A—C20—H20B109.5
O7—Zn2—O3108.31 (7)C13—C20—H20C109.5
O2—Zn2—O3110.45 (8)H20A—C20—H20C109.5
O7—Zn2—O5114.23 (7)H20B—C20—H20C109.5
O2—Zn2—O5101.74 (7)O5—C21—O6121.68 (19)
O3—Zn2—O5101.43 (6)O5—C21—C22118.11 (18)
C1—O1—Zn1132.64 (15)O6—C21—C22120.21 (18)
C1—O2—Zn2130.29 (15)C23—C22—C27121.4 (2)
C11—O3—Zn2135.35 (15)C23—C22—C21119.0 (2)
C11—O4—Zn1127.61 (15)C27—C22—C21119.6 (2)
C21—O5—Zn2116.12 (13)C24—C23—C22118.3 (2)
C21—O6—Zn1ii125.61 (14)C24—C23—C30120.3 (2)
C31—O7—Zn2128.93 (15)C22—C23—C30121.5 (2)
C31—O8—Zn1133.69 (15)C25—C24—C23121.8 (3)
O1—C1—O2125.5 (2)C25—C24—H24119.1
O1—C1—C2117.8 (2)C23—C24—H24119.1
O2—C1—C2116.7 (2)C26—C25—C24118.5 (2)
C9—C2—C3121.8 (2)C26—C25—C29120.3 (3)
C9—C2—C1119.0 (2)C24—C25—C29121.2 (3)
C3—C2—C1119.2 (2)C25—C26—C27122.3 (3)
C5—C3—C2118.0 (2)C25—C26—H26118.9
C5—C3—C4121.5 (2)C27—C26—H26118.9
C2—C3—C4120.5 (2)C26—C27—C22117.8 (2)
C3—C4—H4A109.5C26—C27—C28120.7 (2)
C3—C4—H4B109.5C22—C27—C28121.5 (2)
H4A—C4—H4B109.5C27—C28—H28A109.5
C3—C4—H4C109.5C27—C28—H28B109.5
H4A—C4—H4C109.5H28A—C28—H28B109.5
H4B—C4—H4C109.5C27—C28—H28C109.5
C6—C5—C3122.0 (2)H28A—C28—H28C109.5
C6—C5—H5119.0H28B—C28—H28C109.5
C3—C5—H5119.0C25—C29—H29A109.5
C5—C6—C8118.4 (2)C25—C29—H29B109.5
C5—C6—C7120.7 (2)H29A—C29—H29B109.5
C8—C6—C7120.9 (2)C25—C29—H29C109.5
C6—C7—H7A109.5H29A—C29—H29C109.5
C6—C7—H7B109.5H29B—C29—H29C109.5
H7A—C7—H7B109.5C23—C30—H30A109.5
C6—C7—H7C109.5C23—C30—H30B109.5
H7A—C7—H7C109.5H30A—C30—H30B109.5
H7B—C7—H7C109.5C23—C30—H30C109.5
C6—C8—C9121.8 (2)H30A—C30—H30C109.5
C6—C8—H8119.1H30B—C30—H30C109.5
C9—C8—H8119.1O7—C31—O8125.3 (2)
C2—C9—C8118.1 (2)O7—C31—C32117.2 (2)
C2—C9—C10120.3 (2)O8—C31—C32117.5 (2)
C8—C9—C10121.6 (2)C33—C32—C39120.4 (2)
C9—C10—H10A109.5C33—C32—C31119.2 (2)
C9—C10—H10B109.5C39—C32—C31120.4 (2)
H10A—C10—H10B109.5C32—C33—C35118.0 (3)
C9—C10—H10C109.5C32—C33—C34121.9 (2)
H10A—C10—H10C109.5C35—C33—C34120.1 (2)
H10B—C10—H10C109.5C33—C34—H34A109.5
O3—C11—O4125.1 (2)C33—C34—H34B109.5
O3—C11—C12116.79 (18)H34A—C34—H34B109.5
O4—C11—C12118.08 (19)C33—C34—H34C109.5
C17—C12—C13121.6 (2)H34A—C34—H34C109.5
C17—C12—C11118.95 (19)H34B—C34—H34C109.5
C13—C12—C11119.4 (2)C36—C35—C33122.7 (2)
C14—C13—C12117.7 (2)C36—C35—H35118.7
C14—C13—C20121.1 (2)C33—C35—H35118.7
C12—C13—C20121.2 (2)C35—C36—C38117.8 (2)
C15—C14—C13122.3 (2)C35—C36—C37121.6 (3)
C15—C14—H14118.9C38—C36—C37120.6 (3)
C13—C14—H14118.9C36—C37—H37A109.5
C16—C15—C14118.3 (2)C36—C37—H37B109.5
C16—C15—C19120.6 (3)H37A—C37—H37B109.5
C14—C15—C19121.1 (2)C36—C37—H37C109.5
C15—C16—C17122.0 (2)H37A—C37—H37C109.5
C15—C16—H16119.0H37B—C37—H37C109.5
C17—C16—H16119.0C36—C38—C39122.4 (3)
C16—C17—C12118.1 (2)C36—C38—H38118.8
C16—C17—C18120.4 (2)C39—C38—H38118.8
C12—C17—C18121.44 (19)C38—C39—C32118.7 (2)
C17—C18—H18A109.5C38—C39—C40119.4 (2)
C17—C18—H18B109.5C32—C39—C40121.9 (2)
H18A—C18—H18B109.5C39—C40—H40A109.5
C17—C18—H18C109.5C39—C40—H40B109.5
H18A—C18—H18C109.5H40A—C40—H40B109.5
H18B—C18—H18C109.5C39—C40—H40C109.5
C15—C19—H19A109.5H40A—C40—H40C109.5
C15—C19—H19B109.5H40B—C40—H40C109.5
Zn1—O1—C1—O211.9 (4)Zn2—O5—C21—O612.9 (3)
Zn1—O1—C1—C2167.94 (16)Zn2—O5—C21—C22166.21 (14)
Zn2—O2—C1—O112.8 (4)Zn1ii—O6—C21—O5168.98 (14)
Zn2—O2—C1—C2167.40 (16)Zn1ii—O6—C21—C2211.9 (3)
O1—C1—C2—C991.1 (3)O5—C21—C22—C23101.5 (2)
O2—C1—C2—C988.7 (3)O6—C21—C22—C2377.6 (3)
O1—C1—C2—C389.4 (3)O5—C21—C22—C2778.7 (3)
O2—C1—C2—C390.8 (3)O6—C21—C22—C27102.2 (2)
C9—C2—C3—C50.3 (4)C27—C22—C23—C242.8 (3)
C1—C2—C3—C5179.1 (2)C21—C22—C23—C24177.0 (2)
C9—C2—C3—C4179.9 (2)C27—C22—C23—C30176.3 (2)
C1—C2—C3—C40.4 (3)C21—C22—C23—C303.9 (3)
C2—C3—C5—C61.1 (4)C22—C23—C24—C251.5 (4)
C4—C3—C5—C6178.4 (2)C30—C23—C24—C25177.6 (2)
C3—C5—C6—C81.8 (4)C23—C24—C25—C260.4 (4)
C3—C5—C6—C7178.4 (2)C23—C24—C25—C29179.0 (3)
C5—C6—C8—C91.1 (4)C24—C25—C26—C271.1 (4)
C7—C6—C8—C9179.1 (3)C29—C25—C26—C27178.3 (3)
C3—C2—C9—C81.0 (4)C25—C26—C27—C220.1 (4)
C1—C2—C9—C8178.5 (2)C25—C26—C27—C28179.5 (2)
C3—C2—C9—C10178.5 (3)C23—C22—C27—C262.1 (3)
C1—C2—C9—C102.0 (4)C21—C22—C27—C26177.7 (2)
C6—C8—C9—C20.3 (4)C23—C22—C27—C28178.5 (2)
C6—C8—C9—C10179.2 (3)C21—C22—C27—C281.7 (3)
Zn2—O3—C11—O411.1 (4)Zn2—O7—C31—O811.4 (3)
Zn2—O3—C11—C12169.00 (16)Zn2—O7—C31—C32169.20 (15)
Zn1—O4—C11—O312.8 (3)Zn1—O8—C31—O713.8 (3)
Zn1—O4—C11—C12167.06 (14)Zn1—O8—C31—C32165.51 (15)
O3—C11—C12—C1777.9 (3)O7—C31—C32—C3353.1 (3)
O4—C11—C12—C17102.0 (2)O8—C31—C32—C33126.3 (2)
O3—C11—C12—C13100.6 (2)O7—C31—C32—C39126.1 (2)
O4—C11—C12—C1379.5 (3)O8—C31—C32—C3954.5 (3)
C17—C12—C13—C140.8 (3)C39—C32—C33—C351.1 (3)
C11—C12—C13—C14179.3 (2)C31—C32—C33—C35179.6 (2)
C17—C12—C13—C20179.3 (2)C39—C32—C33—C34179.4 (2)
C11—C12—C13—C200.8 (3)C31—C32—C33—C340.2 (4)
C12—C13—C14—C150.2 (4)C32—C33—C35—C361.7 (4)
C20—C13—C14—C15179.7 (2)C34—C33—C35—C36178.9 (3)
C13—C14—C15—C160.9 (4)C33—C35—C36—C380.6 (4)
C13—C14—C15—C19177.3 (2)C33—C35—C36—C37179.2 (3)
C14—C15—C16—C170.6 (4)C35—C36—C38—C390.9 (4)
C19—C15—C16—C17177.6 (2)C37—C36—C38—C39179.2 (2)
C15—C16—C17—C120.3 (3)C36—C38—C39—C321.4 (4)
C15—C16—C17—C18178.7 (2)C36—C38—C39—C40179.4 (2)
C13—C12—C17—C161.1 (3)C33—C32—C39—C380.3 (3)
C11—C12—C17—C16179.6 (2)C31—C32—C39—C38178.9 (2)
C13—C12—C17—C18179.4 (2)C33—C32—C39—C40178.3 (2)
C11—C12—C17—C182.1 (3)C31—C32—C39—C400.9 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Zn1—O11.9361 (16)Zn2—O71.9258 (16)
Zn1—O81.9382 (15)Zn2—O21.9363 (16)
Zn1—O41.9436 (15)Zn2—O31.9492 (16)
Zn1—O6i1.9532 (15)Zn2—O51.9532 (15)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This research was supported financially by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

First citationBijini, B. R., Prasanna, S., Deepa, M., Nair, C. M. K. & Babu, K. R. (2012). Spectrochim. Acta Part A, 97, 1002–1006.  CSD CrossRef CAS Google Scholar
First citationBraun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532–2533.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. L. & Kao, H. (1948). J. Am. Chem. Soc. 70, 2151–2154.  CSD CrossRef CAS Google Scholar
First citationClegg, W., Harbron, D. R., Hunt, P. A., Little, I. R. & Straughan, B. P. (1990). Acta Cryst. C46, 750–753.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds