research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-{[(cyano­imino)(methyl­sulfanyl)meth­yl]amino}-1,5-di­methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, bGreen Chemistry Department, National Research Center, Dokki, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by S. Parkin, University of Kentucky, USA (Received 15 December 2014; accepted 18 December 2014; online 1 January 2015)

In the title compound, C14H15N5OS, the tautomer present in the solid state is that in which the immediately exocyclic N atom bears the H atom. The central five-membered ring is almost planar (r.m.s. deviation = 0.025 Å), but both its N atoms are significantly pyramidalized. A classical hydrogen bond from the N—H group to the cyanide N atom forms inversion-symmetric dimers, which are further linked by C—H⋯O inter­actions.

1. Chemical context

The pyrazolone 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (`4-amino­anti­pyrine') and its derivatives represent some of the most important compounds used as analgesic, anti­pyretic and anti-inflammatory drugs (Santos et al., 2010[Santos, P. M. P., Antunes, A. M. M., Noronha, J., Fernandes, E. & Vieira, A. J. S. C. (2010). Eur. J. Med. Chem. 45, 2258-2264.]). The biological activity of these compounds has been attributed to their scavenging activity against reactive oxygen and nitro­gen species in biochemical reactions (Costa et al., 2006[Costa, D., Vieira, A. & Fernandes, E. (2006). Redox Rep. 11, 136-142.]). Continu­ing our inter­est in the synthesis of azoles and of fused azoles as both potential CNS regulants and anti­metabolites in purine biochemical reactions (Elgemeie et al., 1997[Elgemeie, G. H., Elghandour, A. H., Elzanate, A. M. & Ahmed, S. A. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3285-3289.], 2004a[Elgemeie, G. H., Ali, H. A., Elghandour, A. H. & Hussein, A. M. (2004a). Synth. Commun. 34, 3293-3302.],b[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2004b). Synth. Commun. 34, 3281-3291.], 2005[Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2005). Nucleosides Nucleotides Nucleic Acids, 24, 1227-1247.], 2007[Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827-2834.], 2008[Elgemeie, G. H., Zaghary, W. A., Nasr, T. M. & Amin, K. M. (2008). J. Carbohydr. Chem. 27, 345-356.]), our current work deals with the synthesis and structure of methyl N-cyano-N-imido­thio­carbamate derivatives of 4-amino­anti­pyrine derived from two-component reactions. The title compound (1) was synthesized by the condensation of 4-amino­anti­pyrine and N-cyano­imido-S,S-di­methyl­dithio­carbonate in a simple one-step reaction. Compound (1) can exist in two tautomeric forms: (1a) and (1b). The 1H and 13C NMR spectra cannot differentiate between the two structures. The X-ray structure determination was undertaken to establish the exact nature of the product.

[Scheme 1]

2. Structural commentary

The mol­ecule of (1) is shown in Fig. 1[link]. The location and free refinement of the NH hydrogen atom confirm the existence of the tautomer (1b) in the solid state. The central five-membered ring is effectively planar (r.m.s. deviation 0.025 Å), but both its nitro­gen atoms are significantly pyramidalized, with C6 lying 0.635 (2) and C11 0.271 (2) Å out of the plane in opposite directions. The imido­thio­carbamate group is also roughly planar (r.m.s.d. 0.05 Å) and almost perpendicular to the central ring [inter­planar angle 83.38 (3)°]; the inter­planar phen­yl/di­hydro­pyrazole angle is 44.82 (5)°.

[Figure 1]
Figure 1
The mol­ecule of the title compound in the crystal, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The main inter­molecular inter­action is the classical hydrogen bond from the NH function N3—H03 to the cyanide nitro­gen atom N5, forming inversion-symmetric dimers. These dimers are further linked in the a-axis direction by a pair of weak C—H⋯O hydrogen bonds to the same acceptor atom (C6—H6C⋯O1 and C16—H16⋯O1), forming a layer structure parallel to the ab plane (Fig. 2[link]). See Table 1[link]. The interaction C13—H13⋯N5 links the layers in the third dimension.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H03⋯N5i 0.861 (16) 2.125 (16) 2.9386 (13) 157.3 (14)
C6—H6C⋯O1ii 0.98 2.30 3.2233 (13) 156
C16—H16⋯O1iii 0.95 2.42 3.2318 (13) 143
C13—H13⋯N5iv 0.95 2.57 3.3189 (15) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound. The view direction is rotated slightly from the vector perpendicular to the ab plane. Hydrogen bonds (one classical and two `weak', the first three entries in Table 1[link]) are drawn as thick dashed lines.

4. Database survey

The 1,5-dimethyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one ring system with a nitro­gen substituent at the 4-position has been thoroughly investigated. A search of the Cambridge database (Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 223 hits with 242 individual mol­ecules, mean bond lengths N1—N2 1.405, N2—C3 1.394, C3—C4 1.439, C4—C5 1.364, N1—C5 1.372 Å; all of these values agree closely with the bond lengths observed in the title compound.

5. Synthesis and crystallization

A solution of N-cyano­imido-S,S-di­methyl­dithio­carbonate (0.01 mol) in ethanol (20 ml) was added to a solution of 4-amino­anti­pyrine (0.01 mol) in ethanol (30 ml) containing catalytic amounts of piperidine (0.5 ml). The reaction mixture was heated at reflux for 30 min and then evaporated under reduced pressure. The yellow solid product was collected by filtration and recrystallized from ethanol, yield 85%, m.p. 489–491 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH hydrogen atom was refined freely. Methyls were refined as idealized rigid groups that were allowed to rotate but not tip. Other H atoms were included using a riding model starting from calculated positions.

Table 2
Experimental details

Crystal data
Chemical formula C14H15N5OS
Mr 301.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.3620 (2), 11.9369 (4), 16.6755 (5)
β (°) 100.191 (3)
V3) 1442.30 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.40 × 0.35 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.913, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 37668, 4359, 3829
Rint 0.033
(sin θ/λ)max−1) 0.724
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.08
No. of reflections 4359
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.28
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

4-{[(Cyanoimino)(methylsulfanyl)methyl]amino}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C14H15N5OSF(000) = 632
Mr = 301.37Dx = 1.388 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11166 reflections
a = 7.3620 (2) Åθ = 2.9–30.8°
b = 11.9369 (4) ŵ = 0.23 mm1
c = 16.6755 (5) ÅT = 100 K
β = 100.191 (3)°Tablet, yellow
V = 1442.30 (8) Å30.40 × 0.35 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4359 independent reflections
Radiation source: Enhance (Mo) X-ray Source3829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1419 pixels mm-1θmax = 31.0°, θmin = 2.5°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1617
Tmin = 0.913, Tmax = 0.973l = 2324
37668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.584P]
where P = (Fo2 + 2Fc2)/3
4359 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.7083 (0.0022) x + 6.9435 (0.0045) y + 1.7473 (0.0075) z = 5.2871 (0.0030)

* 0.0075 (0.0007) C11 * -0.0046 (0.0008) C12 * -0.0024 (0.0008) C13 * 0.0067 (0.0008) C14 * -0.0038 (0.0008) C15 * -0.0032 (0.0008) C16

Rms deviation of fitted atoms = 0.0050

1.8491 (0.0035) x + 6.5323 (0.0049) y + 12.3627 (0.0056) z = 8.2341 (0.0008)

Angle to previous plane (with approximate e.s.d.) = 44.82 (0.05)

* -0.0339 (0.0006) N1 * 0.0321 (0.0006) N2 * -0.0180 (0.0006) C3 * -0.0029 (0.0006) C4 * 0.0226 (0.0006) C5 0.6346 (0.0017) C6 - 0.2707 (0.0016) C11 - 0.0906 (0.0015) O1 - 0.1072 (0.0016) N3 0.0915 (0.0018) C7

Rms deviation of fitted atoms = 0.0246

5.0497 (0.0013) x - 8.5455 (0.0018) y + 0.1177 (0.0066) z = 0.2502 (0.0039)

Angle to previous plane (with approximate e.s.d.) = 83.38 (0.03)

* -0.0121 (0.0005) N3 * 0.0218 (0.0008) C8 * 0.1054 (0.0008) N4 * 0.0159 (0.0008) C9 * -0.0687 (0.0007) N5 * -0.0211 (0.0005) S1 * -0.0412 (0.0005) C10

Rms deviation of fitted atoms = 0.0519

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The NH hydrogen was refined freely. Methyls were refined as idealized rigid groups allowed to rotate but not tip. Other H were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46361 (4)0.25628 (2)0.663545 (16)0.01610 (7)
O10.05702 (10)0.34546 (7)0.46766 (5)0.01656 (16)
N10.48581 (11)0.34600 (7)0.40783 (5)0.01156 (16)
N20.31507 (11)0.39592 (7)0.41232 (5)0.01173 (16)
N30.28997 (12)0.15084 (7)0.53431 (5)0.01269 (17)
H030.205 (2)0.1073 (13)0.5091 (9)0.025 (4)*
N40.21528 (12)0.09469 (7)0.66041 (5)0.01476 (17)
N50.03210 (14)0.03206 (8)0.59200 (6)0.01949 (19)
C30.21686 (13)0.32907 (8)0.45828 (6)0.01160 (18)
C40.34313 (14)0.24011 (8)0.48763 (6)0.01152 (18)
C50.50320 (14)0.25429 (8)0.45825 (6)0.01172 (18)
C60.63812 (14)0.42144 (9)0.39925 (7)0.0161 (2)
H6A0.64300.48290.43850.024*
H6B0.61860.45200.34380.024*
H6C0.75470.37990.40970.024*
C70.67468 (15)0.18602 (9)0.47425 (7)0.0190 (2)
H7A0.65390.11930.50560.029*
H7B0.77490.23060.50530.029*
H7C0.70830.16320.42240.029*
C80.30606 (14)0.15750 (8)0.61605 (6)0.01240 (18)
C90.08493 (14)0.02760 (9)0.62107 (6)0.01450 (19)
C100.43222 (16)0.24152 (10)0.76777 (6)0.0194 (2)
H10A0.30710.26510.77260.029*
H10B0.52230.28840.80300.029*
H10C0.45020.16300.78450.029*
C110.23608 (13)0.47889 (8)0.35581 (6)0.01204 (18)
C120.26102 (14)0.47700 (9)0.27495 (6)0.0150 (2)
H120.33400.42030.25630.018*
C130.17747 (15)0.55933 (10)0.22197 (7)0.0192 (2)
H130.19380.55910.16670.023*
C140.07053 (16)0.64172 (10)0.24912 (7)0.0215 (2)
H140.01520.69830.21270.026*
C150.04415 (15)0.64168 (10)0.32949 (7)0.0197 (2)
H150.03080.69760.34770.024*
C160.12666 (14)0.56035 (9)0.38346 (6)0.0153 (2)
H160.10870.56030.43850.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01678 (13)0.01752 (13)0.01357 (12)0.00532 (9)0.00148 (9)0.00014 (9)
O10.0108 (3)0.0214 (4)0.0189 (4)0.0022 (3)0.0065 (3)0.0028 (3)
N10.0086 (4)0.0125 (4)0.0142 (4)0.0021 (3)0.0038 (3)0.0015 (3)
N20.0089 (4)0.0146 (4)0.0126 (4)0.0034 (3)0.0042 (3)0.0026 (3)
N30.0138 (4)0.0112 (4)0.0131 (4)0.0028 (3)0.0023 (3)0.0005 (3)
N40.0149 (4)0.0149 (4)0.0147 (4)0.0015 (3)0.0033 (3)0.0018 (3)
N50.0216 (5)0.0204 (5)0.0179 (4)0.0058 (4)0.0072 (4)0.0003 (3)
C30.0116 (4)0.0131 (4)0.0102 (4)0.0005 (3)0.0024 (3)0.0003 (3)
C40.0119 (4)0.0112 (4)0.0116 (4)0.0002 (3)0.0024 (3)0.0003 (3)
C50.0115 (4)0.0114 (4)0.0123 (4)0.0010 (3)0.0019 (3)0.0008 (3)
C60.0107 (4)0.0164 (5)0.0213 (5)0.0020 (4)0.0029 (4)0.0030 (4)
C70.0140 (5)0.0173 (5)0.0263 (5)0.0054 (4)0.0052 (4)0.0054 (4)
C80.0112 (4)0.0111 (4)0.0148 (4)0.0017 (3)0.0021 (3)0.0009 (3)
C90.0168 (5)0.0143 (4)0.0141 (4)0.0009 (4)0.0072 (4)0.0028 (3)
C100.0200 (5)0.0251 (6)0.0125 (5)0.0010 (4)0.0015 (4)0.0013 (4)
C110.0099 (4)0.0133 (4)0.0127 (4)0.0003 (3)0.0014 (3)0.0021 (3)
C120.0119 (4)0.0197 (5)0.0140 (4)0.0006 (4)0.0038 (4)0.0008 (4)
C130.0156 (5)0.0285 (6)0.0137 (5)0.0001 (4)0.0027 (4)0.0060 (4)
C140.0164 (5)0.0252 (6)0.0226 (5)0.0040 (4)0.0024 (4)0.0118 (4)
C150.0171 (5)0.0181 (5)0.0245 (6)0.0067 (4)0.0051 (4)0.0047 (4)
C160.0149 (5)0.0165 (5)0.0151 (5)0.0032 (4)0.0043 (4)0.0014 (4)
Geometric parameters (Å, º) top
S1—C81.7430 (10)C13—C141.3850 (17)
S1—C101.8021 (11)C14—C151.3878 (16)
O1—C31.2298 (12)C15—C161.3884 (14)
N1—C51.3725 (13)N3—H030.861 (16)
N1—N21.4051 (11)C6—H6A0.9800
N1—C61.4647 (13)C6—H6B0.9800
N2—C31.3938 (12)C6—H6C0.9800
N2—C111.4189 (12)C7—H7A0.9800
N3—C81.3495 (13)C7—H7B0.9800
N3—C41.4150 (13)C7—H7C0.9800
N4—C81.3157 (13)C10—H10A0.9800
N4—C91.3303 (14)C10—H10B0.9800
N5—C91.1562 (14)C10—H10C0.9800
C3—C41.4389 (14)C12—H120.9500
C4—C51.3644 (14)C13—H130.9500
C5—C71.4866 (14)C14—H140.9500
C11—C161.3923 (14)C15—H150.9500
C11—C121.3928 (14)C16—H160.9500
C12—C131.3901 (15)
C8—S1—C10100.58 (5)C8—N3—H03117.0 (10)
C5—N1—N2107.03 (8)C4—N3—H03115.6 (10)
C5—N1—C6124.07 (8)N1—C6—H6A109.5
N2—N1—C6116.87 (8)N1—C6—H6B109.5
C3—N2—N1110.03 (8)H6A—C6—H6B109.5
C3—N2—C11124.98 (8)N1—C6—H6C109.5
N1—N2—C11121.73 (8)H6A—C6—H6C109.5
C8—N3—C4121.86 (9)H6B—C6—H6C109.5
C8—N4—C9117.37 (9)C5—C7—H7A109.5
O1—C3—N2125.45 (9)C5—C7—H7B109.5
O1—C3—C4130.48 (9)H7A—C7—H7B109.5
N2—C3—C4104.05 (8)C5—C7—H7C109.5
C5—C4—N3129.16 (9)H7A—C7—H7C109.5
C5—C4—C3109.47 (9)H7B—C7—H7C109.5
N3—C4—C3121.20 (9)S1—C10—H10A109.5
C4—C5—N1109.03 (9)S1—C10—H10B109.5
C4—C5—C7128.87 (9)H10A—C10—H10B109.5
N1—C5—C7122.10 (9)S1—C10—H10C109.5
N4—C8—N3124.87 (9)H10A—C10—H10C109.5
N4—C8—S1119.57 (8)H10B—C10—H10C109.5
N3—C8—S1115.55 (8)C13—C12—H12120.5
N5—C9—N4175.27 (11)C11—C12—H12120.5
C16—C11—C12121.00 (9)C14—C13—H13119.8
C16—C11—N2117.43 (9)C12—C13—H13119.8
C12—C11—N2121.53 (9)C13—C14—H14120.0
C13—C12—C11118.98 (10)C15—C14—H14120.0
C14—C13—C12120.50 (10)C14—C15—H15119.8
C13—C14—C15120.01 (10)C16—C15—H15119.8
C14—C15—C16120.42 (10)C15—C16—H16120.5
C15—C16—C11119.08 (10)C11—C16—H16120.5
C5—N1—N2—C36.47 (11)N2—N1—C5—C7174.80 (9)
C6—N1—N2—C3150.77 (9)C6—N1—C5—C733.74 (15)
C5—N1—N2—C11167.02 (9)C9—N4—C8—N37.03 (15)
C6—N1—N2—C1148.68 (12)C9—N4—C8—S1174.19 (8)
N1—N2—C3—O1173.69 (9)C4—N3—C8—N4159.83 (10)
C11—N2—C3—O113.92 (16)C4—N3—C8—S121.35 (13)
N1—N2—C3—C44.76 (10)C10—S1—C8—N43.77 (9)
C11—N2—C3—C4164.53 (9)C10—S1—C8—N3177.34 (8)
C8—N3—C4—C598.29 (13)C3—N2—C11—C1653.45 (14)
C8—N3—C4—C387.05 (12)N1—N2—C11—C16149.00 (9)
O1—C3—C4—C5176.99 (11)C3—N2—C11—C12124.26 (11)
N2—C3—C4—C51.35 (11)N1—N2—C11—C1233.28 (14)
O1—C3—C4—N31.38 (17)C16—C11—C12—C131.19 (16)
N2—C3—C4—N3176.97 (9)N2—C11—C12—C13178.82 (10)
N3—C4—C5—N1172.55 (9)C11—C12—C13—C140.23 (17)
C3—C4—C5—N12.60 (11)C12—C13—C14—C150.84 (18)
N3—C4—C5—C77.13 (18)C13—C14—C15—C160.97 (18)
C3—C4—C5—C7177.71 (10)C14—C15—C16—C110.03 (17)
N2—N1—C5—C45.49 (11)C12—C11—C16—C151.06 (16)
C6—N1—C5—C4146.55 (9)N2—C11—C16—C15178.78 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H03···N5i0.861 (16)2.125 (16)2.9386 (13)157.3 (14)
C6—H6C···O1ii0.982.303.2233 (13)156
C16—H16···O1iii0.952.423.2318 (13)143
C13—H13···N5iv0.952.573.3189 (15)136
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1/2, y+1/2, z1/2.
 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCosta, D., Vieira, A. & Fernandes, E. (2006). Redox Rep. 11, 136–142.  CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H., Ali, H. A., Elghandour, A. H. & Hussein, A. M. (2004a). Synth. Commun. 34, 3293–3302.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2004b). Synth. Commun. 34, 3281–3291.  CSD CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827–2834.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Elghandour, A. H., Elzanate, A. M. & Ahmed, S. A. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3285–3289.  CrossRef Web of Science Google Scholar
First citationElgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2005). Nucleosides Nucleotides Nucleic Acids, 24, 1227–1247.  CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H., Zaghary, W. A., Nasr, T. M. & Amin, K. M. (2008). J. Carbohydr. Chem. 27, 345–356.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantos, P. M. P., Antunes, A. M. M., Noronha, J., Fernandes, E. & Vieira, A. J. S. C. (2010). Eur. J. Med. Chem. 45, 2258–2264.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds