research communications
cis-bis(μ-β-alanine-κ2O:O′)bis[trichloridorhenium(III)](Re–Re) sesquihydrate
ofaDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, and bDepartment of Inorganic Chemistry, National Taras Shevchenko University of Kyiv, Volodimirska Str. 64, Kyiv 01033, Ukraine
*Correspondence e-mail: golichenko_alex@i.ua
The structure of the title compound, [Re2Cl6(C3H7NO2)2]·1.5H2O, comprises a dinuclear complex cation [Re—Re = 2.2494 (3) Å] involving cis-oriented double carboxylate bridges, four equatorial chloride ions and two weakly bonded chloride ligands in the axial positions at the two rhenium(III) atoms. In the crystal, two complex molecules and two water molecules constitute hydrogen-bonded dimers, while an extensive hydrogen-bonding network involving the groups of the zwitterionic ligand is important for generation of the framework. An additional partially occupied water molecule is disordered over two sets of sites about a symmetry centre with a site-occupancy ratio of 0.3:0.2.
Keywords: crystal structure; rhenium; cluster; β-alanine; zwitterionic ammoniacarboxylato complex; quadruple metal–metal bond.
CCDC reference: 1037487
1. Chemical context
Investigations of complex compounds with multiple metal–metal bonds, which exhibit biological activity, generate great interest at the present stage of development of coordination chemistry (Jung & Lippard, 2007; Shtemenko et al., 2013). Binuclear clusters of rhenium(III) are the classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005; Golichenko & Shtemenko, 2006). In our previous studies, we have shown that these compounds can be used in medical practice as antitumor, antiradical, and hepato- and nephro-protective substances with low toxicity (Dimitrov & Eastland, 1978; Shtemenko et al., 2007, 2008, 2009, 2013). Labile axial ligands and equatorial chloride groups are the reactive centres not only for other substances in vitro, but also in interactions with biological macromolecules, such as proteins, DNA, and others in vivo (Shtemenko et al., 2013). In this context, we present the synthesis and of a new complex compound of dirhenium(III) with β-alanine as biologically active substance, which can exhibit antitumor activity (Shtemenko et al., 2009).
2. Structural commentary
It is well known that β-alanine and other amino acids are able to coordinate to a variety of transition metals (Korp et al., 1981; Shtemenko et al., 2009). The quadruple Re—Re bond [2.2494 (3) Å] is typical of related dicarboxylato clusters (Cotton et al., 2005; Shtemenko et al., 2009). The octahedral coordination environment of each rhenium ion in the title compound (Fig. 1) also comprises two chloride anions and two oxygen atoms of zwitterionic alanine ligands. The distorted octahedral coordination of the metals is completed by weakly bonded chloride ions [Re1—Cl3 = 2.6766 (16) and Re2—Cl6 = 2.7501 (14) Å], in a trans-position to the Re—Re bond. This may be compared with the similar weak binding of N- or O-donors, which is characteristic of dicarboxylatodirhenium compounds (Bera et al., 2003; Shtemenko et al., 2009) and is even more appreciable for cationic tetracarboxylatodirhenium species commonly accommodating a pair of chloride anions at both axial sites (Re–Cl = 2.48–2.52 Å; Shtemenko et al., 2001).
3. Supramolecular features
The title compound displays a three-dimensional structure dominated by weak hydrogen bonds of the O—H⋯Cl, N—H⋯Cl, C—H⋯O and C—H⋯Cl types (Table 1). The primary supramolecular motif consists of centrosymmetric dimers (symmetry code: −x, −y + 1, −z) incorporating two complex moieties and two water molecules (Fig. 2), with a typical hydrogen-bonding geometry [O⋯Cl = 3.342 (6) and 3.360 (6) Å], while an extensive hydrogen-bonding network involving the ammonium groups and chloride acceptors assembles the dimers into a three-dimensional framework. One of these N—H⋯Cl bonds is bifurcated and one is trifurcated (Table 1). It is worth noting that most of the N–H⋯Cl interactions are observed for the Cl3 and Cl6 acceptors. Such selectivity is likely predetermined by the steric accessibility and relative negative charge located at the Cl atoms, since these distal `axial' chloride ligands Cl3 and Cl6 are the most underbonded and highly nucleophilic. The disordered water molecules reside in the framework cages and adopt a series of short contacts, which may be attributed to weak hydrogen bonding [O⋯Cl = 3.07 (2)–3.42 (4) Å].
4. Synthesis and crystallization
1.00 g (1.25 mmol) of [β-AlaH]2Re2Cl8 was dissolved in 20 ml of acetonitrile and the solution was concentrated to half of the initial volume using a rotary evaporator. A new portion (10 ml) of the solvent was added and the solution was evaporated to half of the initial volume. This procedure was repeated five times. The dark-green crystals obtained were filtered, washed with two 5 ml portions of cold acetonitrile and diethyl ether and dried under vacuum at 353 K. The product (0.77 g) was recrystallized from acetone, yielding the title complex in 81% yield.
5. details
Crystal data, data collection and structure . H atoms were refined using a riding model, with O—H = 0.85, N—H = 0.90, C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N,O). One of the solvate water molecules is disordered over two unequal contributions, which are further disordered about an inversion centre. The refined partial occupancies for this oxygen atom (O6A and O6B) are 0.3 and 0.2, respectively. Both sites were refined anisotropically. The H atoms of the partially occupied water molecule could not be located and were omitted from the final refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1037487
https://doi.org/10.1107/S2056989014026620/rz5142sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989014026620/rz5142Isup2.hkl
Data collection: SMART (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Re2Cl6(C3H7NO2)2]·1.5H2O | F(000) = 1452 |
Mr = 790.32 | Dx = 2.872 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2884 (9) Å | Cell parameters from 11029 reflections |
b = 17.4526 (14) Å | θ = 2.6–28.2° |
c = 13.2715 (14) Å | µ = 14.13 mm−1 |
β = 107.838 (3)° | T = 223 K |
V = 1827.5 (3) Å3 | Prism, green |
Z = 4 | 0.25 × 0.22 × 0.14 mm |
Siemens SMART CCD area-detector diffractometer | 4413 independent reflections |
Radiation source: fine-focus sealed tube | 4235 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 28.2°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→11 |
Tmin = 0.139, Tmax = 0.267 | k = −23→14 |
11029 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0324P)2 + 7.030P] where P = (Fo2 + 2Fc2)/3 |
4413 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 1.70 e Å−3 |
0 restraints | Δρmin = −1.62 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. One of the solvate water molecules is disordered over center of inversion. Moreover, judging by the high anisotropy of thermal motion for this oxygen atom, two contributions of the disorder were considered and the refined partial occupancy factors were 0.20 and 0.30. Both of this contributions were refined anisotropically. However, the hydrogen atoms were not added for this disordered molecule. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re1 | 0.33803 (3) | 0.336279 (13) | 0.155287 (17) | 0.01817 (7) | |
Re2 | 0.46372 (3) | 0.229582 (13) | 0.120550 (17) | 0.01690 (7) | |
Cl1 | 0.31703 (18) | 0.31409 (9) | 0.32193 (11) | 0.0244 (3) | |
Cl2 | 0.05470 (17) | 0.30638 (10) | 0.07595 (12) | 0.0279 (3) | |
Cl3 | 0.2389 (2) | 0.47984 (9) | 0.17579 (14) | 0.0334 (3) | |
Cl4 | 0.48355 (18) | 0.15473 (8) | 0.26858 (11) | 0.0234 (3) | |
Cl5 | 0.23913 (18) | 0.15472 (9) | 0.02031 (11) | 0.0245 (3) | |
Cl6 | 0.66636 (18) | 0.12368 (9) | 0.06428 (11) | 0.0241 (3) | |
O1 | 0.5745 (5) | 0.3823 (2) | 0.2274 (3) | 0.0223 (8) | |
O2 | 0.6952 (5) | 0.2750 (2) | 0.1966 (3) | 0.0218 (8) | |
O3 | 0.3516 (5) | 0.3841 (2) | 0.0171 (3) | 0.0235 (8) | |
O4 | 0.4770 (5) | 0.2789 (2) | −0.0169 (3) | 0.0223 (8) | |
N1 | 1.0580 (6) | 0.4837 (3) | 0.3589 (4) | 0.0244 (10) | |
H1N | 1.1055 | 0.4574 | 0.4190 | 0.037* | |
H2N | 1.0596 | 0.5341 | 0.3737 | 0.037* | |
H3N | 1.1168 | 0.4753 | 0.3131 | 0.037* | |
N2 | 0.5515 (7) | 0.3709 (4) | −0.2897 (4) | 0.0314 (12) | |
H4N | 0.4435 | 0.3778 | −0.3302 | 0.047* | |
H5N | 0.6038 | 0.3386 | −0.3225 | 0.047* | |
H6N | 0.6058 | 0.4162 | −0.2791 | 0.047* | |
C1 | 0.7059 (7) | 0.3423 (3) | 0.2338 (4) | 0.0176 (10) | |
C2 | 0.8792 (7) | 0.3729 (3) | 0.2871 (5) | 0.0202 (11) | |
H2A | 0.9507 | 0.3637 | 0.2416 | 0.024* | |
H2B | 0.9287 | 0.3451 | 0.3535 | 0.024* | |
C3 | 0.8795 (7) | 0.4581 (3) | 0.3108 (5) | 0.0245 (12) | |
H3A | 0.8269 | 0.4866 | 0.2454 | 0.029* | |
H3B | 0.8143 | 0.4678 | 0.3599 | 0.029* | |
C4 | 0.4226 (7) | 0.3459 (4) | −0.0408 (5) | 0.0209 (11) | |
C5 | 0.4335 (7) | 0.3820 (4) | −0.1409 (4) | 0.0204 (11) | |
H5A | 0.4735 | 0.4349 | −0.1266 | 0.025* | |
H5B | 0.3206 | 0.3832 | −0.1932 | 0.025* | |
C6 | 0.5537 (8) | 0.3375 (4) | −0.1853 (5) | 0.0281 (13) | |
H6A | 0.6688 | 0.3399 | −0.1357 | 0.034* | |
H6B | 0.5191 | 0.2836 | −0.1945 | 0.034* | |
O5 | 0.7596 (7) | 0.4427 (4) | 0.0542 (4) | 0.0549 (16) | |
H1W | 0.8330 | 0.4072 | 0.0644 | 0.082* | |
H2W | 0.7539 | 0.4649 | −0.0038 | 0.082* | |
O6B | 0.464 (7) | 0.497 (3) | 0.458 (3) | 0.072 (15) | 0.20 |
O6A | 0.472 (3) | 0.4887 (13) | 0.4049 (19) | 0.051 (6) | 0.30 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01700 (11) | 0.01642 (12) | 0.02398 (12) | 0.00109 (8) | 0.01056 (8) | 0.00113 (8) |
Re2 | 0.01678 (11) | 0.01375 (12) | 0.02137 (11) | −0.00057 (8) | 0.00761 (8) | 0.00023 (8) |
Cl1 | 0.0256 (6) | 0.0265 (7) | 0.0241 (6) | −0.0002 (6) | 0.0121 (5) | 0.0022 (6) |
Cl2 | 0.0179 (6) | 0.0335 (8) | 0.0326 (7) | 0.0021 (6) | 0.0080 (5) | −0.0022 (6) |
Cl3 | 0.0406 (8) | 0.0206 (7) | 0.0484 (9) | 0.0069 (7) | 0.0273 (7) | 0.0041 (7) |
Cl4 | 0.0268 (7) | 0.0198 (7) | 0.0249 (6) | 0.0005 (5) | 0.0097 (5) | 0.0040 (5) |
Cl5 | 0.0212 (6) | 0.0259 (7) | 0.0257 (6) | −0.0053 (5) | 0.0059 (5) | −0.0044 (6) |
Cl6 | 0.0268 (6) | 0.0206 (7) | 0.0254 (6) | 0.0031 (6) | 0.0089 (5) | −0.0005 (5) |
O1 | 0.0208 (18) | 0.020 (2) | 0.029 (2) | −0.0041 (16) | 0.0123 (16) | −0.0047 (17) |
O2 | 0.0180 (18) | 0.018 (2) | 0.028 (2) | 0.0003 (16) | 0.0055 (16) | −0.0019 (16) |
O3 | 0.0242 (19) | 0.021 (2) | 0.030 (2) | 0.0042 (17) | 0.0158 (17) | 0.0039 (17) |
O4 | 0.0220 (19) | 0.021 (2) | 0.026 (2) | −0.0003 (17) | 0.0108 (16) | 0.0018 (17) |
N1 | 0.029 (2) | 0.020 (3) | 0.026 (2) | −0.009 (2) | 0.010 (2) | −0.001 (2) |
N2 | 0.028 (3) | 0.044 (4) | 0.028 (3) | 0.001 (3) | 0.017 (2) | 0.000 (2) |
C1 | 0.020 (2) | 0.016 (3) | 0.019 (2) | −0.003 (2) | 0.009 (2) | −0.003 (2) |
C2 | 0.015 (2) | 0.019 (3) | 0.026 (3) | 0.001 (2) | 0.006 (2) | −0.002 (2) |
C3 | 0.024 (3) | 0.013 (3) | 0.035 (3) | 0.001 (2) | 0.007 (2) | −0.004 (2) |
C4 | 0.019 (2) | 0.023 (3) | 0.026 (3) | −0.004 (2) | 0.015 (2) | −0.002 (2) |
C5 | 0.021 (2) | 0.023 (3) | 0.022 (3) | 0.002 (2) | 0.013 (2) | 0.007 (2) |
C6 | 0.033 (3) | 0.026 (3) | 0.030 (3) | 0.006 (3) | 0.016 (3) | 0.004 (3) |
O5 | 0.051 (3) | 0.074 (5) | 0.044 (3) | 0.020 (3) | 0.023 (3) | 0.025 (3) |
O6B | 0.10 (4) | 0.05 (2) | 0.08 (3) | 0.03 (2) | 0.05 (4) | −0.01 (3) |
O6A | 0.064 (15) | 0.023 (10) | 0.057 (14) | 0.003 (10) | 0.003 (12) | 0.003 (11) |
Re1—O3 | 2.049 (4) | N2—C6 | 1.498 (8) |
Re1—O1 | 2.063 (4) | N2—H4N | 0.9000 |
Re1—Re2 | 2.2494 (3) | N2—H5N | 0.9000 |
Re1—Cl1 | 2.3037 (14) | N2—H6N | 0.9000 |
Re1—Cl2 | 2.3197 (14) | C1—C2 | 1.492 (7) |
Re1—Cl3 | 2.6766 (16) | C2—C3 | 1.519 (8) |
Re2—O2 | 2.035 (4) | C2—H2A | 0.9800 |
Re2—O4 | 2.050 (4) | C2—H2B | 0.9800 |
Re2—Cl4 | 2.3227 (14) | C3—H3A | 0.9800 |
Re2—Cl5 | 2.3291 (14) | C3—H3B | 0.9800 |
Re2—Cl6 | 2.7501 (14) | C4—C5 | 1.498 (7) |
O1—C1 | 1.273 (7) | C5—C6 | 1.518 (8) |
O2—C1 | 1.267 (7) | C5—H5A | 0.9800 |
O3—C4 | 1.288 (7) | C5—H5B | 0.9800 |
O4—C4 | 1.258 (7) | C6—H6A | 0.9800 |
N1—C3 | 1.490 (7) | C6—H6B | 0.9800 |
N1—H1N | 0.9000 | O5—H1W | 0.8500 |
N1—H2N | 0.9000 | O5—H2W | 0.8500 |
N1—H3N | 0.9000 | ||
O3—Re1—O1 | 87.24 (17) | H2N—N1—H3N | 109.5 |
O3—Re1—Re2 | 89.88 (12) | C6—N2—H4N | 109.5 |
O1—Re1—Re2 | 89.05 (12) | C6—N2—H5N | 109.5 |
O3—Re1—Cl1 | 165.62 (13) | H4N—N2—H5N | 109.5 |
O1—Re1—Cl1 | 87.73 (12) | C6—N2—H6N | 109.5 |
Re2—Re1—Cl1 | 103.50 (4) | H4N—N2—H6N | 109.5 |
O3—Re1—Cl2 | 90.63 (13) | H5N—N2—H6N | 109.5 |
O1—Re1—Cl2 | 169.84 (13) | O2—C1—O1 | 121.7 (5) |
Re2—Re1—Cl2 | 100.88 (4) | O2—C1—C2 | 117.3 (5) |
Cl1—Re1—Cl2 | 91.96 (5) | O1—C1—C2 | 121.0 (5) |
O3—Re1—Cl3 | 79.19 (12) | C1—C2—C3 | 112.9 (5) |
O1—Re1—Cl3 | 82.31 (12) | C1—C2—H2A | 109.0 |
Re2—Re1—Cl3 | 166.33 (4) | C3—C2—H2A | 109.0 |
Cl1—Re1—Cl3 | 86.79 (5) | C1—C2—H2B | 109.0 |
Cl2—Re1—Cl3 | 87.54 (6) | C3—C2—H2B | 109.0 |
O2—Re2—O4 | 88.74 (17) | H2A—C2—H2B | 107.8 |
O2—Re2—Re1 | 90.07 (11) | N1—C3—C2 | 108.8 (5) |
O4—Re2—Re1 | 89.38 (12) | N1—C3—H3A | 109.9 |
O2—Re2—Cl4 | 89.33 (12) | C2—C3—H3A | 109.9 |
O4—Re2—Cl4 | 168.37 (12) | N1—C3—H3B | 109.9 |
Re1—Re2—Cl4 | 102.09 (4) | C2—C3—H3B | 109.9 |
O2—Re2—Cl5 | 165.67 (12) | H3A—C3—H3B | 108.3 |
O4—Re2—Cl5 | 88.78 (12) | O4—C4—O3 | 121.6 (5) |
Re1—Re2—Cl5 | 104.01 (4) | O4—C4—C5 | 120.0 (5) |
Cl4—Re2—Cl5 | 90.27 (5) | O3—C4—C5 | 118.3 (5) |
O2—Re2—Cl6 | 80.51 (12) | C4—C5—C6 | 110.8 (5) |
O4—Re2—Cl6 | 80.62 (12) | C4—C5—H5A | 109.5 |
Re1—Re2—Cl6 | 166.35 (3) | C6—C5—H5A | 109.5 |
Cl4—Re2—Cl6 | 87.75 (5) | C4—C5—H5B | 109.5 |
Cl5—Re2—Cl6 | 85.16 (5) | C6—C5—H5B | 109.5 |
C1—O1—Re1 | 119.3 (4) | H5A—C5—H5B | 108.1 |
C1—O2—Re2 | 119.8 (4) | N2—C6—C5 | 109.7 (5) |
C4—O3—Re1 | 118.9 (4) | N2—C6—H6A | 109.7 |
C4—O4—Re2 | 120.1 (4) | C5—C6—H6A | 109.7 |
C3—N1—H1N | 109.5 | N2—C6—H6B | 109.7 |
C3—N1—H2N | 109.5 | C5—C6—H6B | 109.7 |
H1N—N1—H2N | 109.5 | H6A—C6—H6B | 108.2 |
C3—N1—H3N | 109.5 | H1W—O5—H2W | 108.4 |
H1N—N1—H3N | 109.5 | ||
O3—Re1—Re2—O2 | 89.01 (17) | O4—Re2—O2—C1 | 86.9 (4) |
O1—Re1—Re2—O2 | 1.77 (16) | Re1—Re2—O2—C1 | −2.5 (4) |
Cl1—Re1—Re2—O2 | −85.66 (12) | Cl4—Re2—O2—C1 | −104.6 (4) |
Cl2—Re1—Re2—O2 | 179.63 (13) | Cl5—Re2—O2—C1 | 166.9 (4) |
Cl3—Re1—Re2—O2 | 52.4 (2) | Cl6—Re2—O2—C1 | 167.6 (4) |
O3—Re1—Re2—O4 | 0.28 (16) | O1—Re1—O3—C4 | 87.3 (4) |
O1—Re1—Re2—O4 | −86.96 (16) | Re2—Re1—O3—C4 | −1.7 (4) |
Cl1—Re1—Re2—O4 | −174.40 (12) | Cl1—Re1—O3—C4 | 157.0 (4) |
Cl2—Re1—Re2—O4 | 90.90 (12) | Cl2—Re1—O3—C4 | −102.6 (4) |
Cl3—Re1—Re2—O4 | −36.4 (2) | Cl3—Re1—O3—C4 | 170.0 (4) |
O3—Re1—Re2—Cl4 | 178.34 (13) | O2—Re2—O4—C4 | −89.0 (4) |
O1—Re1—Re2—Cl4 | 91.10 (12) | Re1—Re2—O4—C4 | 1.1 (4) |
Cl1—Re1—Re2—Cl4 | 3.67 (5) | Cl4—Re2—O4—C4 | −169.5 (5) |
Cl2—Re1—Re2—Cl4 | −91.04 (6) | Cl5—Re2—O4—C4 | 105.2 (4) |
Cl3—Re1—Re2—Cl4 | 141.70 (18) | Cl6—Re2—O4—C4 | −169.6 (4) |
O3—Re1—Re2—Cl5 | −88.31 (13) | Re2—O2—C1—O1 | 1.8 (7) |
O1—Re1—Re2—Cl5 | −175.54 (12) | Re2—O2—C1—C2 | −179.0 (4) |
Cl1—Re1—Re2—Cl5 | 97.02 (5) | Re1—O1—C1—O2 | 0.3 (7) |
Cl2—Re1—Re2—Cl5 | 2.31 (6) | Re1—O1—C1—C2 | −178.9 (4) |
Cl3—Re1—Re2—Cl5 | −124.95 (18) | O2—C1—C2—C3 | 169.6 (5) |
O3—Re1—Re2—Cl6 | 42.93 (18) | O1—C1—C2—C3 | −11.2 (8) |
O1—Re1—Re2—Cl6 | −44.31 (18) | C1—C2—C3—N1 | −177.3 (5) |
Cl1—Re1—Re2—Cl6 | −131.75 (14) | Re2—O4—C4—O3 | −2.8 (7) |
Cl2—Re1—Re2—Cl6 | 133.55 (14) | Re2—O4—C4—C5 | 179.6 (4) |
Cl3—Re1—Re2—Cl6 | 6.3 (2) | Re1—O3—C4—O4 | 3.1 (7) |
O3—Re1—O1—C1 | −91.7 (4) | Re1—O3—C4—C5 | −179.3 (4) |
Re2—Re1—O1—C1 | −1.8 (4) | O4—C4—C5—C6 | −15.0 (8) |
Cl1—Re1—O1—C1 | 101.8 (4) | O3—C4—C5—C6 | 167.2 (5) |
Cl2—Re1—O1—C1 | −169.8 (5) | C4—C5—C6—N2 | 175.4 (5) |
Cl3—Re1—O1—C1 | −171.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1W···Cl2i | 0.85 | 2.51 | 3.360 (6) | 174 |
O5—H2W···Cl3ii | 0.85 | 2.50 | 3.342 (6) | 174 |
N1—H1N···Cl6iii | 0.90 | 2.32 | 3.202 (5) | 167 |
N1—H2N···Cl4iv | 0.90 | 2.78 | 3.396 (6) | 127 |
N1—H2N···Cl5iv | 0.90 | 2.78 | 3.557 (5) | 145 |
N1—H2N···Cl6iv | 0.90 | 2.75 | 3.410 (6) | 131 |
N1—H3N···Cl3i | 0.90 | 2.34 | 3.223 (5) | 167 |
N2—H4N···Cl6v | 0.90 | 2.30 | 3.188 (6) | 172 |
N2—H5N···Cl2vi | 0.90 | 2.84 | 3.575 (6) | 140 |
N2—H5N···Cl5vi | 0.90 | 2.66 | 3.373 (5) | 137 |
N2—H6N···Cl3ii | 0.90 | 2.40 | 3.238 (7) | 156 |
C3—H3A···O5 | 0.98 | 2.54 | 3.253 (9) | 129 |
C2—H2A···Cl2i | 0.98 | 2.78 | 3.717 (6) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by a grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study.
References
Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009–3014. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc. Google Scholar
Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Golichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242–249. Web of Science CrossRef CAS Google Scholar
Jung, Y. & Lippard, S. J. (2007). Chem. Rev. 107, 1387–1407. Web of Science CrossRef PubMed CAS Google Scholar
Korp, J. D., Bernal, I. & Bear, J. L. (1981). Inorg. Chim. Acta, 51, 1–7. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134. Web of Science CSD CrossRef CAS PubMed Google Scholar
Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487–2492. Web of Science PubMed CAS Google Scholar
Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132–5136. Web of Science CSD CrossRef Google Scholar
Shtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381–385. CAS Google Scholar
Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.