research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-bis­­(μ-β-alanine-κ2O:O′)bis­[tri­chlorido­rhenium(III)](ReRe) sesquihydrate

aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, and bDepartment of Inorganic Chemistry, National Taras Shevchenko University of Kyiv, Volodimirska Str. 64, Kyiv 01033, Ukraine
*Correspondence e-mail: golichenko_alex@i.ua

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 24 November 2014; accepted 3 December 2014; online 1 January 2015)

The structure of the title compound, [Re2Cl6(C3H7NO2)2]·1.5H2O, comprises a dinuclear complex cation [Re—Re = 2.2494 (3) Å] involving cis-oriented double carboxyl­ate bridges, four equatorial chloride ions and two weakly bonded chloride ligands in the axial positions at the two rhenium(III) atoms. In the crystal, two complex mol­ecules and two water mol­ecules constitute hydrogen-bonded dimers, while an extensive hydrogen-bonding network involving the groups of the zwitterionic ligand is important for generation of the framework. An additional partially occupied water molecule is disordered over two sets of sites about a symmetry centre with a site-occupancy ratio of 0.3:0.2.

1. Chemical context

Investigations of complex compounds with multiple metal–metal bonds, which exhibit biological activity, generate great inter­est at the present stage of development of coordination chemistry (Jung & Lippard, 2007[Jung, Y. & Lippard, S. J. (2007). Chem. Rev. 107, 1387-1407.]; Shtemenko et al., 2013[Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.]). Binuclear clusters of rhenium(III) are the classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271-376. New York: Springer Science and Business Media Inc.]; Golichenko & Shtemenko, 2006[Golichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242-249.]). In our previous studies, we have shown that these compounds can be used in medical practice as anti­tumor, anti­radical, and hepato- and nephro-protective substances with low toxicity (Dimitrov & Eastland, 1978[Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319-1321. Washington, DC: American Society for Microbiology Publishing.]; Shtemenko et al., 2007[Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487-2492.], 2008[Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229-234. Paris: John Libbey Eurotext.], 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.], 2013[Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.]). Labile axial ligands and equatorial chloride groups are the reactive centres not only for other substances in vitro, but also in inter­actions with biological macromolecules, such as proteins, DNA, and others in vivo (Shtemenko et al., 2013[Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.]). In this context, we present the synthesis and crystal structure of a new complex compound of dirhenium(III) with β-alanine as biologically active substance, which can exhibit anti­tumor activity (Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.]).

[Scheme 1]

2. Structural commentary

It is well known that β-alanine and other amino acids are able to coordinate to a variety of transition metals (Korp et al., 1981[Korp, J. D., Bernal, I. & Bear, J. L. (1981). Inorg. Chim. Acta, 51, 1-7.]; Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.]). The quadruple Re—Re bond [2.2494 (3) Å] is typical of related di­carboxyl­ato clusters (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271-376. New York: Springer Science and Business Media Inc.]; Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.]). The octahedral coordination environment of each rhenium ion in the title compound (Fig. 1[link]) also comprises two chloride anions and two oxygen atoms of zwitterionic alanine ligands. The distorted octa­hedral coordination of the metals is completed by weakly bonded chloride ions [Re1—Cl3 = 2.6766 (16) and Re2—Cl6 = 2.7501 (14) Å], in a trans-position to the Re—Re bond. This may be compared with the similar weak binding of N- or O-donors, which is characteristic of di­carboxyl­atodirhenium compounds (Bera et al., 2003[Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009-3014.]; Shtemenko et al., 2009[Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132-5136.]) and is even more appreciable for cationic tetra­carboxyl­atodirhenium species commonly accommodating a pair of chloride anions at both axial sites (Re–Cl = 2.48–2.52 Å; Shtemenko et al., 2001[Shtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381-385.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level. Solvent water mol­ecules have been omitted for clarity.

3. Supra­molecular features

The title compound displays a three-dimensional structure dominated by weak hydrogen bonds of the O—H⋯Cl, N—H⋯Cl, C—H⋯O and C—H⋯Cl types (Table 1[link]). The primary supra­molecular motif consists of centrosymmetric dimers (symmetry code: −x, −y + 1, −z) incorporating two complex moieties and two water mol­ecules (Fig. 2[link]), with a typical hydrogen-bonding geometry [O⋯Cl = 3.342 (6) and 3.360 (6) Å], while an extensive hydrogen-bonding network involving the ammonium groups and chloride acceptors assembles the dimers into a three-dimensional framework. One of these N—H⋯Cl bonds is bifurcated and one is trifurcated (Table 1[link]). It is worth noting that most of the N–H⋯Cl inter­actions are observed for the Cl3 and Cl6 acceptors. Such selectivity is likely predetermined by the steric accessibility and relative negative charge located at the Cl atoms, since these distal `axial' chloride ligands Cl3 and Cl6 are the most underbonded and highly nucleophilic. The disordered water mol­ecules reside in the framework cages and adopt a series of short contacts, which may be attributed to weak hydrogen bonding [O⋯Cl = 3.07 (2)–3.42 (4) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯Cl2i 0.85 2.51 3.360 (6) 174
O5—H2W⋯Cl3ii 0.85 2.50 3.342 (6) 174
N1—H1N⋯Cl6iii 0.90 2.32 3.202 (5) 167
N1—H2N⋯Cl4iv 0.90 2.78 3.396 (6) 127
N1—H2N⋯Cl5iv 0.90 2.78 3.557 (5) 145
N1—H2N⋯Cl6iv 0.90 2.75 3.410 (6) 131
N1—H3N⋯Cl3i 0.90 2.34 3.223 (5) 167
N2—H4N⋯Cl6v 0.90 2.30 3.188 (6) 172
N2—H5N⋯Cl2vi 0.90 2.84 3.575 (6) 140
N2—H5N⋯Cl5vi 0.90 2.66 3.373 (5) 137
N2—H6N⋯Cl3ii 0.90 2.40 3.238 (7) 156
C3—H3A⋯O5 0.98 2.54 3.253 (9) 129
C2—H2A⋯Cl2i 0.98 2.78 3.717 (6) 160
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of the title complex viewed down the a axis, with the C—H hydrogens and disordered water mol­ecules omitted for clarity. Dotted lines indicate hydrogen bonds involving the OH and NH groups. Note the assembly of the hydrogen-bonded dimers constituted by two complex mol­ecules and two water mol­ecules. [Symmetry codes: (ii) −x + 1, −y + 1, −z; (iii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (viii) −x, −y + 1, −z; (ix) −x + 1, −y + 1, −z + 1.]

4. Synthesis and crystallization

1.00 g (1.25 mmol) of [β-AlaH]2Re2Cl8 was dissolved in 20 ml of aceto­nitrile and the solution was concentrated to half of the initial volume using a rotary evaporator. A new portion (10 ml) of the solvent was added and the solution was evaporated to half of the initial volume. This procedure was repeated five times. The dark-green crystals obtained were filtered, washed with two 5 ml portions of cold aceto­nitrile and diethyl ether and dried under vacuum at 353 K. The product (0.77 g) was recrystallized from acetone, yielding the title complex in 81% yield.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were refined using a riding model, with O—H = 0.85, N—H = 0.90, C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N,O). One of the solvate water mol­ecules is disordered over two unequal contributions, which are further disordered about an inversion centre. The refined partial occupancies for this oxygen atom (O6A and O6B) are 0.3 and 0.2, respectively. Both sites were refined anisotropically. The H atoms of the partially occupied water mol­ecule could not be located and were omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Re2Cl6(C3H7NO2)2]·1.5H2O
Mr 790.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 223
a, b, c (Å) 8.2884 (9), 17.4526 (14), 13.2715 (14)
β (°) 107.838 (3)
V3) 1827.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.13
Crystal size (mm) 0.25 × 0.22 × 0.14
 
Data collection
Diffractometer Siemens SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.139, 0.267
No. of measured, independent and observed [I > 2σ(I)] reflections 11029, 4413, 4235
Rint 0.027
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.26
No. of reflections 4413
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.70, −1.62
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

cis-Bis(µ-β-alanine-κ2O:O')bis[trichloridorhenium(III)](ReRe) sesquihydrate top
Crystal data top
[Re2Cl6(C3H7NO2)2]·1.5H2OF(000) = 1452
Mr = 790.32Dx = 2.872 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2884 (9) ÅCell parameters from 11029 reflections
b = 17.4526 (14) Åθ = 2.6–28.2°
c = 13.2715 (14) ŵ = 14.13 mm1
β = 107.838 (3)°T = 223 K
V = 1827.5 (3) Å3Prism, green
Z = 40.25 × 0.22 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4413 independent reflections
Radiation source: fine-focus sealed tube4235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1011
Tmin = 0.139, Tmax = 0.267k = 2314
11029 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0324P)2 + 7.030P]
where P = (Fo2 + 2Fc2)/3
4413 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 1.70 e Å3
0 restraintsΔρmin = 1.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

One of the solvate water molecules is disordered over center of inversion. Moreover, judging by the high anisotropy of thermal motion for this oxygen atom, two contributions of the disorder were considered and the refined partial occupancy factors were 0.20 and 0.30. Both of this contributions were refined anisotropically. However, the hydrogen atoms were not added for this disordered molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.33803 (3)0.336279 (13)0.155287 (17)0.01817 (7)
Re20.46372 (3)0.229582 (13)0.120550 (17)0.01690 (7)
Cl10.31703 (18)0.31409 (9)0.32193 (11)0.0244 (3)
Cl20.05470 (17)0.30638 (10)0.07595 (12)0.0279 (3)
Cl30.2389 (2)0.47984 (9)0.17579 (14)0.0334 (3)
Cl40.48355 (18)0.15473 (8)0.26858 (11)0.0234 (3)
Cl50.23913 (18)0.15472 (9)0.02031 (11)0.0245 (3)
Cl60.66636 (18)0.12368 (9)0.06428 (11)0.0241 (3)
O10.5745 (5)0.3823 (2)0.2274 (3)0.0223 (8)
O20.6952 (5)0.2750 (2)0.1966 (3)0.0218 (8)
O30.3516 (5)0.3841 (2)0.0171 (3)0.0235 (8)
O40.4770 (5)0.2789 (2)0.0169 (3)0.0223 (8)
N11.0580 (6)0.4837 (3)0.3589 (4)0.0244 (10)
H1N1.10550.45740.41900.037*
H2N1.05960.53410.37370.037*
H3N1.11680.47530.31310.037*
N20.5515 (7)0.3709 (4)0.2897 (4)0.0314 (12)
H4N0.44350.37780.33020.047*
H5N0.60380.33860.32250.047*
H6N0.60580.41620.27910.047*
C10.7059 (7)0.3423 (3)0.2338 (4)0.0176 (10)
C20.8792 (7)0.3729 (3)0.2871 (5)0.0202 (11)
H2A0.95070.36370.24160.024*
H2B0.92870.34510.35350.024*
C30.8795 (7)0.4581 (3)0.3108 (5)0.0245 (12)
H3A0.82690.48660.24540.029*
H3B0.81430.46780.35990.029*
C40.4226 (7)0.3459 (4)0.0408 (5)0.0209 (11)
C50.4335 (7)0.3820 (4)0.1409 (4)0.0204 (11)
H5A0.47350.43490.12660.025*
H5B0.32060.38320.19320.025*
C60.5537 (8)0.3375 (4)0.1853 (5)0.0281 (13)
H6A0.66880.33990.13570.034*
H6B0.51910.28360.19450.034*
O50.7596 (7)0.4427 (4)0.0542 (4)0.0549 (16)
H1W0.83300.40720.06440.082*
H2W0.75390.46490.00380.082*
O6B0.464 (7)0.497 (3)0.458 (3)0.072 (15)0.20
O6A0.472 (3)0.4887 (13)0.4049 (19)0.051 (6)0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01700 (11)0.01642 (12)0.02398 (12)0.00109 (8)0.01056 (8)0.00113 (8)
Re20.01678 (11)0.01375 (12)0.02137 (11)0.00057 (8)0.00761 (8)0.00023 (8)
Cl10.0256 (6)0.0265 (7)0.0241 (6)0.0002 (6)0.0121 (5)0.0022 (6)
Cl20.0179 (6)0.0335 (8)0.0326 (7)0.0021 (6)0.0080 (5)0.0022 (6)
Cl30.0406 (8)0.0206 (7)0.0484 (9)0.0069 (7)0.0273 (7)0.0041 (7)
Cl40.0268 (7)0.0198 (7)0.0249 (6)0.0005 (5)0.0097 (5)0.0040 (5)
Cl50.0212 (6)0.0259 (7)0.0257 (6)0.0053 (5)0.0059 (5)0.0044 (6)
Cl60.0268 (6)0.0206 (7)0.0254 (6)0.0031 (6)0.0089 (5)0.0005 (5)
O10.0208 (18)0.020 (2)0.029 (2)0.0041 (16)0.0123 (16)0.0047 (17)
O20.0180 (18)0.018 (2)0.028 (2)0.0003 (16)0.0055 (16)0.0019 (16)
O30.0242 (19)0.021 (2)0.030 (2)0.0042 (17)0.0158 (17)0.0039 (17)
O40.0220 (19)0.021 (2)0.026 (2)0.0003 (17)0.0108 (16)0.0018 (17)
N10.029 (2)0.020 (3)0.026 (2)0.009 (2)0.010 (2)0.001 (2)
N20.028 (3)0.044 (4)0.028 (3)0.001 (3)0.017 (2)0.000 (2)
C10.020 (2)0.016 (3)0.019 (2)0.003 (2)0.009 (2)0.003 (2)
C20.015 (2)0.019 (3)0.026 (3)0.001 (2)0.006 (2)0.002 (2)
C30.024 (3)0.013 (3)0.035 (3)0.001 (2)0.007 (2)0.004 (2)
C40.019 (2)0.023 (3)0.026 (3)0.004 (2)0.015 (2)0.002 (2)
C50.021 (2)0.023 (3)0.022 (3)0.002 (2)0.013 (2)0.007 (2)
C60.033 (3)0.026 (3)0.030 (3)0.006 (3)0.016 (3)0.004 (3)
O50.051 (3)0.074 (5)0.044 (3)0.020 (3)0.023 (3)0.025 (3)
O6B0.10 (4)0.05 (2)0.08 (3)0.03 (2)0.05 (4)0.01 (3)
O6A0.064 (15)0.023 (10)0.057 (14)0.003 (10)0.003 (12)0.003 (11)
Geometric parameters (Å, º) top
Re1—O32.049 (4)N2—C61.498 (8)
Re1—O12.063 (4)N2—H4N0.9000
Re1—Re22.2494 (3)N2—H5N0.9000
Re1—Cl12.3037 (14)N2—H6N0.9000
Re1—Cl22.3197 (14)C1—C21.492 (7)
Re1—Cl32.6766 (16)C2—C31.519 (8)
Re2—O22.035 (4)C2—H2A0.9800
Re2—O42.050 (4)C2—H2B0.9800
Re2—Cl42.3227 (14)C3—H3A0.9800
Re2—Cl52.3291 (14)C3—H3B0.9800
Re2—Cl62.7501 (14)C4—C51.498 (7)
O1—C11.273 (7)C5—C61.518 (8)
O2—C11.267 (7)C5—H5A0.9800
O3—C41.288 (7)C5—H5B0.9800
O4—C41.258 (7)C6—H6A0.9800
N1—C31.490 (7)C6—H6B0.9800
N1—H1N0.9000O5—H1W0.8500
N1—H2N0.9000O5—H2W0.8500
N1—H3N0.9000
O3—Re1—O187.24 (17)H2N—N1—H3N109.5
O3—Re1—Re289.88 (12)C6—N2—H4N109.5
O1—Re1—Re289.05 (12)C6—N2—H5N109.5
O3—Re1—Cl1165.62 (13)H4N—N2—H5N109.5
O1—Re1—Cl187.73 (12)C6—N2—H6N109.5
Re2—Re1—Cl1103.50 (4)H4N—N2—H6N109.5
O3—Re1—Cl290.63 (13)H5N—N2—H6N109.5
O1—Re1—Cl2169.84 (13)O2—C1—O1121.7 (5)
Re2—Re1—Cl2100.88 (4)O2—C1—C2117.3 (5)
Cl1—Re1—Cl291.96 (5)O1—C1—C2121.0 (5)
O3—Re1—Cl379.19 (12)C1—C2—C3112.9 (5)
O1—Re1—Cl382.31 (12)C1—C2—H2A109.0
Re2—Re1—Cl3166.33 (4)C3—C2—H2A109.0
Cl1—Re1—Cl386.79 (5)C1—C2—H2B109.0
Cl2—Re1—Cl387.54 (6)C3—C2—H2B109.0
O2—Re2—O488.74 (17)H2A—C2—H2B107.8
O2—Re2—Re190.07 (11)N1—C3—C2108.8 (5)
O4—Re2—Re189.38 (12)N1—C3—H3A109.9
O2—Re2—Cl489.33 (12)C2—C3—H3A109.9
O4—Re2—Cl4168.37 (12)N1—C3—H3B109.9
Re1—Re2—Cl4102.09 (4)C2—C3—H3B109.9
O2—Re2—Cl5165.67 (12)H3A—C3—H3B108.3
O4—Re2—Cl588.78 (12)O4—C4—O3121.6 (5)
Re1—Re2—Cl5104.01 (4)O4—C4—C5120.0 (5)
Cl4—Re2—Cl590.27 (5)O3—C4—C5118.3 (5)
O2—Re2—Cl680.51 (12)C4—C5—C6110.8 (5)
O4—Re2—Cl680.62 (12)C4—C5—H5A109.5
Re1—Re2—Cl6166.35 (3)C6—C5—H5A109.5
Cl4—Re2—Cl687.75 (5)C4—C5—H5B109.5
Cl5—Re2—Cl685.16 (5)C6—C5—H5B109.5
C1—O1—Re1119.3 (4)H5A—C5—H5B108.1
C1—O2—Re2119.8 (4)N2—C6—C5109.7 (5)
C4—O3—Re1118.9 (4)N2—C6—H6A109.7
C4—O4—Re2120.1 (4)C5—C6—H6A109.7
C3—N1—H1N109.5N2—C6—H6B109.7
C3—N1—H2N109.5C5—C6—H6B109.7
H1N—N1—H2N109.5H6A—C6—H6B108.2
C3—N1—H3N109.5H1W—O5—H2W108.4
H1N—N1—H3N109.5
O3—Re1—Re2—O289.01 (17)O4—Re2—O2—C186.9 (4)
O1—Re1—Re2—O21.77 (16)Re1—Re2—O2—C12.5 (4)
Cl1—Re1—Re2—O285.66 (12)Cl4—Re2—O2—C1104.6 (4)
Cl2—Re1—Re2—O2179.63 (13)Cl5—Re2—O2—C1166.9 (4)
Cl3—Re1—Re2—O252.4 (2)Cl6—Re2—O2—C1167.6 (4)
O3—Re1—Re2—O40.28 (16)O1—Re1—O3—C487.3 (4)
O1—Re1—Re2—O486.96 (16)Re2—Re1—O3—C41.7 (4)
Cl1—Re1—Re2—O4174.40 (12)Cl1—Re1—O3—C4157.0 (4)
Cl2—Re1—Re2—O490.90 (12)Cl2—Re1—O3—C4102.6 (4)
Cl3—Re1—Re2—O436.4 (2)Cl3—Re1—O3—C4170.0 (4)
O3—Re1—Re2—Cl4178.34 (13)O2—Re2—O4—C489.0 (4)
O1—Re1—Re2—Cl491.10 (12)Re1—Re2—O4—C41.1 (4)
Cl1—Re1—Re2—Cl43.67 (5)Cl4—Re2—O4—C4169.5 (5)
Cl2—Re1—Re2—Cl491.04 (6)Cl5—Re2—O4—C4105.2 (4)
Cl3—Re1—Re2—Cl4141.70 (18)Cl6—Re2—O4—C4169.6 (4)
O3—Re1—Re2—Cl588.31 (13)Re2—O2—C1—O11.8 (7)
O1—Re1—Re2—Cl5175.54 (12)Re2—O2—C1—C2179.0 (4)
Cl1—Re1—Re2—Cl597.02 (5)Re1—O1—C1—O20.3 (7)
Cl2—Re1—Re2—Cl52.31 (6)Re1—O1—C1—C2178.9 (4)
Cl3—Re1—Re2—Cl5124.95 (18)O2—C1—C2—C3169.6 (5)
O3—Re1—Re2—Cl642.93 (18)O1—C1—C2—C311.2 (8)
O1—Re1—Re2—Cl644.31 (18)C1—C2—C3—N1177.3 (5)
Cl1—Re1—Re2—Cl6131.75 (14)Re2—O4—C4—O32.8 (7)
Cl2—Re1—Re2—Cl6133.55 (14)Re2—O4—C4—C5179.6 (4)
Cl3—Re1—Re2—Cl66.3 (2)Re1—O3—C4—O43.1 (7)
O3—Re1—O1—C191.7 (4)Re1—O3—C4—C5179.3 (4)
Re2—Re1—O1—C11.8 (4)O4—C4—C5—C615.0 (8)
Cl1—Re1—O1—C1101.8 (4)O3—C4—C5—C6167.2 (5)
Cl2—Re1—O1—C1169.8 (5)C4—C5—C6—N2175.4 (5)
Cl3—Re1—O1—C1171.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···Cl2i0.852.513.360 (6)174
O5—H2W···Cl3ii0.852.503.342 (6)174
N1—H1N···Cl6iii0.902.323.202 (5)167
N1—H2N···Cl4iv0.902.783.396 (6)127
N1—H2N···Cl5iv0.902.783.557 (5)145
N1—H2N···Cl6iv0.902.753.410 (6)131
N1—H3N···Cl3i0.902.343.223 (5)167
N2—H4N···Cl6v0.902.303.188 (6)172
N2—H5N···Cl2vi0.902.843.575 (6)140
N2—H5N···Cl5vi0.902.663.373 (5)137
N2—H6N···Cl3ii0.902.403.238 (7)156
C3—H3A···O50.982.543.253 (9)129
C2—H2A···Cl2i0.982.783.717 (6)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study.

References

First citationBera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009–3014.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.  Google Scholar
First citationDimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242–249.  Web of Science CrossRef CAS Google Scholar
First citationJung, Y. & Lippard, S. J. (2007). Chem. Rev. 107, 1387–1407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorp, J. D., Bernal, I. & Bear, J. L. (1981). Inorg. Chim. Acta, 51, 1–7.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487–2492.  Web of Science PubMed CAS Google Scholar
First citationShtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132–5136.  Web of Science CSD CrossRef Google Scholar
First citationShtemenko, A. V., Golichenko, A. A. & Domasevitch, K. V. (2001). Z. Naturforsch. Teil B, 56, 381–385.  CAS Google Scholar
First citationShtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds