research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2R,4S)-1-[(morpholin-4-yl)meth­yl]-4-(prop-1-en-2-yl)cyclo­hexane-1,2-diol

aLaboratoire de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: elfirdoussi@uca.ma

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 27 November 2014; accepted 11 December 2014; online 1 January 2015)

The asymmetric unit of the title compound, C14H25NO3, contains two independent mol­ecules with similar geometry. The morpholine and cyclo­hexane rings of both mol­ecules adopt a chair conformation. Intra­molecular O—H⋯N hydrogen bonds are observed. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into chains parallel to the [101] direction. The chains are further connected through C—H⋯O hydrogen bonds forming undulating layers parallel to the (-101) plane. The absolute configuration was assigned by reference to an unchanging chiral centre in the synthetic procedure.

1. Chemical context

1,2-Amino­alcohols are important building blocks in the synthesis of natural products, pharmaceuticals and other materials (Möller, 1957[Möller, F. (1957). Methoden der Organischen Chemie (Houben-Weyl), Vol. XI/1, edited by E. Müller, pp. 311-326. Stuttgart: Georg Thieme.]). The classical synthetic approach towards amino­alcohols involves amino­lysis of epoxides with an excess of amines. There are some limitations to this classical approach, such as the requirement of elevated reaction temperatures in the case of less reactive amines, lower reactivity for sterically crowded amines/epoxides, and poor regioselectivity of the epoxide ring opening (Sello et al., 2006[Sello, G., Orsini, F., Bernasconi, S. & Di Gennaro, P. (2006). Tetrahedron Asymmetry, 17, 372-376.]). To obviate these problems, various methodologies to undertake epoxide opening under milder conditions have been developed (Surendra et al., 2005[Surendra, K., Krishnaveni, N. S. & Rao, K. R. (2005). Synlett, 3, 506-510.]), but there are still many limitations, such as the formation of bis­alkyl­ated products, longer reaction times, stoichiometric amounts of catalysts and harsh reaction conditions.

Recently, we have shown that calcium(II) compounds are very useful, environmentally friendly catalysts for several acid-catalysed reactions (Harrad et al., 2010[Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442-446.]). Moreover, calcium triflate works under almost neutral conditions. In a continuation of our ongoing program on the amino­lysis of 1,2-epoxides using a mild, practical and efficient method under solvent-free conditions (Outouch, Boualy, Ali et al., 2011[Outouch, R., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o195-o196.]; Outouch, Boualy, El Firdoussi et al., 2011[Outouch, R., Boualy, B., El Firdoussi, L., Ait Ali, M., Rizzoli, C. & Spannenberg, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 279-280.]; Outouch et al., 2014[Outouch, R., Rauchdi, M., Boualy, B., El Firdoussi, L., Roucoux, A. & Ait Ali, M. (2014). Acta Chim. Slov. 61, 67-72.]), we report herein the synthesis and crystal structure of a new amino­diol from ep­oxy­perillyl alcohol, which can be used as a chiral ligand for catalytic enanti­oselective transformations. The title compound was prepared by condensation of ep­oxy­perillyl alcohol with morpholine using a catalytic amount of Ca(CF3COO)2 under solvent-free conditions according to the procedure described previously (Outouch, Boualy, Ali et al., 2011[Outouch, R., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o195-o196.]; Outouch, Boualy, El Firdoussi et al., 2011[Outouch, R., Boualy, B., El Firdoussi, L., Ait Ali, M., Rizzoli, C. & Spannenberg, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 279-280.]).

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], there are two mol­ecules in the asymmetric unit of the title compound. In both mol­ecules, the cyclo­hexane rings adopt a chair conformation, with atoms C1/C4 and C15/C18 as flaps. The hydroxyl groups are all in axial positions. A chair conformation is also observed for the morpholine rings, with the N and O atoms as flaps. The mol­ecular conformation is enforced by an intra­molecular O—H⋯N hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.86 (2) 1.91 (2) 2.7118 (19) 154 (2)
O5—H5A⋯N2 0.83 (3) 1.90 (3) 2.6697 (18) 155 (3)
O1—H1A⋯O5i 0.84 (3) 1.95 (3) 2.7595 (18) 164 (3)
O4—H4A⋯O2 0.84 (3) 2.00 (3) 2.8249 (17) 167 (2)
C9—H9B⋯O6ii 0.99 2.35 3.269 (2) 155
C24—H24A⋯O3iii 0.99 2.45 3.344 (2) 150
Symmetry codes: (i) x+1, y, z+1; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds (Table 1[link]) involving the hydroxyl groups into chains running parallel to the [101] direction (Fig. 2[link]). Moreover, the chains are further connected via C—H⋯O hydrogen bonds, forming undulating layers parallel to the ([\overline{1}]01) plane.

[Figure 2]
Figure 2
A packing diagram of the title compound showing hydrogen bonds as dashed lines (see Table 1[link] for details).

4. Database survey

The structures of related 1,4-substituted cyclo­hexane-1,2-diols have been reported recently by Byrne et al. (2004[Byrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. (2004). J. Am. Chem. Soc. 126, 11404-11405.]), Blair et al. (2007[Blair, M., Andrews, P. C., Fraser, B. H., Forsyth, C. M., Junk, P. C., Massi, M. & Tuck, K. L. (2007). Synthesis, pp. 1523-1527.], 2010[Blair, M., Forsyth, C. M. & Tuck, K. L. (2010). Tetrahedron Lett. 51, 4808-4811.]), Dams et al. (2004[Dams, I., Bialonska, A., Ciunik, Z. & Wawrzencyk, C. (2004). Eur. J. Org. Chem. pp. 2662-2668.]), Outouch, Boualy, Ali et al. (2011[Outouch, R., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o195-o196.]) and Outouch, Boualy, El Firdoussi et al. (2011[Outouch, R., Boualy, B., El Firdoussi, L., Ait Ali, M., Rizzoli, C. & Spannenberg, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 279-280.]). As found for the title compound, the cyclo­hexane-1,2-diol rings of these compounds adopt a chair conformation.

5. Synthesis and crystallization

A mixture of morpholine (5.1 mmol) and ep­oxy­perillyl alcohol (5 mmol), prepared by epoxidation of (S)-(−) perillyl alcohol, was added to 5 mol% of Ca(CF3CO2)2 under solvent-free conditions. The mixture was stirred at 313 K for 72 h. After the reaction had finished, the mixture was extracted with ethyl acetate (3 × 10 ml), dried over Na2SO4 and the solvent was removed at reduced pressure. The title compound was purified by column chromatography on silica gel using hexa­ne/ethyl acetate (1:1 v/v) as eluent (yield 49%). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvents.

1H NMR (CDCl3): δ [p.p.m.] 1.8 (s, 3H), 2.3 (m, 1H), 2.59 (m, 2H), 2.66 (s, 2H), 3.31 (m, 1H), 3.67 (m, 4H), 4.68 (s, 2H); 13CNMR (CDCl3) δ [p.p.m.] 16.9, 21.4, 27.1, 29.4, 32, 51, 62.5, 63.4, 65.9, 67.9, 104.6, 144.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms attached to oxygen could be found in a difference Fourier map and were freely refined. All other H atoms were placed in idealized positions with d(C—H) = 0.95–0.99 Å and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating model was adopted for the methyl groups. The absolute configuration was not established by anomalous scattering effects, the enanti­omer was assigned by reference to an unchanging chiral center in the synthetic procedure.

Table 2
Experimental details

Crystal data
Chemical formula C14H25NO3
Mr 255.35
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 6.3300 (1), 22.0241 (5), 10.1179 (2)
β (°) 95.2083 (12)
V3) 1404.74 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.44 × 0.42 × 0.28
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.92, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 42775, 6792, 6514
Rint 0.027
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.06
No. of reflections 6792
No. of parameters 343
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.15
Absolute structure Flack x determined using 3097 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.21 (19)
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL2014 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1S,2R,4S)-1-[(Morpholin-4-yl)methyl]-4-(prop-1-en-2-yl)cyclohexane-1,2-diol top
Crystal data top
C14H25NO3F(000) = 560
Mr = 255.35Dx = 1.207 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.3300 (1) ÅCell parameters from 9947 reflections
b = 22.0241 (5) Åθ = 2.7–28.8°
c = 10.1179 (2) ŵ = 0.08 mm1
β = 95.2083 (12)°T = 150 K
V = 1404.74 (5) Å3Prism, colourless
Z = 40.44 × 0.42 × 0.28 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6792 independent reflections
Radiation source: fine-focus sealed tube6514 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 28.0°, θmin = 1.9°
φ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2929
Tmin = 0.92, Tmax = 0.98l = 1313
42775 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.1776P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.24 e Å3
6792 reflectionsΔρmin = 0.15 e Å3
343 parametersAbsolute structure: Flack x determined using 3097 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.21 (19)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7333 (2)0.28883 (8)0.90710 (15)0.0222 (3)
C20.7379 (2)0.25014 (8)0.78061 (15)0.0212 (3)
H2B0.88890.24530.76090.025*
C30.6442 (3)0.18737 (8)0.79751 (16)0.0231 (3)
H3A0.73980.16400.86160.028*
H3B0.63690.16580.71130.028*
C40.4205 (3)0.18895 (8)0.84677 (16)0.0228 (3)
H4B0.32480.21050.77800.027*
C50.4259 (3)0.22604 (8)0.97478 (17)0.0258 (3)
H5B0.28130.22851.00440.031*
H5C0.51870.20571.04540.031*
C60.5091 (3)0.28994 (8)0.95188 (17)0.0249 (3)
H6A0.50960.31361.03520.030*
H6B0.41280.31060.88350.030*
C70.8332 (3)0.35171 (8)0.88857 (18)0.0268 (4)
H7A0.82640.37500.97180.032*
H7B0.98500.34580.87560.032*
C80.5642 (3)0.42779 (8)0.8175 (2)0.0333 (4)
H8A0.62010.45550.88950.040*
H8B0.45250.40230.85170.040*
C90.4707 (3)0.46446 (8)0.7005 (2)0.0359 (4)
H9A0.41200.43670.62960.043*
H9B0.35310.48980.72800.043*
C100.7961 (3)0.46608 (8)0.61057 (19)0.0291 (4)
H10A0.90520.49260.57660.035*
H10B0.74090.43900.53740.035*
C110.8970 (3)0.42814 (8)0.72373 (18)0.0267 (3)
H11A1.01090.40270.69180.032*
H11B0.96150.45510.79460.032*
C120.3362 (3)0.12475 (8)0.85890 (19)0.0278 (3)
C130.2009 (4)0.10122 (10)0.7415 (3)0.0477 (6)
H13A0.16000.05920.75800.072*
H13B0.28080.10270.66290.072*
H13C0.07330.12640.72630.072*
C140.3850 (4)0.08997 (9)0.9646 (2)0.0404 (5)
H14A0.33360.04950.96620.048*
H14B0.47120.10561.03860.048*
C150.1605 (2)0.29160 (7)0.44014 (15)0.0190 (3)
C160.0367 (2)0.32633 (7)0.37967 (15)0.0188 (3)
H160.14370.32790.44650.023*
C170.0177 (2)0.39080 (7)0.34182 (16)0.0219 (3)
H17A0.06150.41410.42350.026*
H17B0.11060.41040.29780.026*
C180.1962 (2)0.39340 (7)0.24867 (16)0.0216 (3)
H180.14670.37080.16590.026*
C190.3920 (2)0.36029 (7)0.31378 (17)0.0221 (3)
H19A0.50570.36060.25270.026*
H19B0.44530.38180.39600.026*
C200.3380 (2)0.29471 (7)0.34709 (16)0.0213 (3)
H20A0.46620.27450.38970.026*
H20B0.29320.27260.26410.026*
C210.1026 (3)0.22662 (7)0.48039 (16)0.0233 (3)
H21A0.23510.20510.51150.028*
H21B0.01500.22930.55640.028*
C220.1256 (3)0.14898 (8)0.30774 (19)0.0280 (4)
H22A0.19390.11950.37200.034*
H22B0.23850.17280.27030.034*
C230.0033 (3)0.11532 (9)0.1975 (2)0.0344 (4)
H23A0.06490.14480.13090.041*
H23B0.09070.08760.15280.041*
C240.3040 (3)0.12046 (8)0.3148 (2)0.0295 (4)
H24A0.41850.09630.34980.035*
H24B0.37060.15030.25070.035*
C250.1826 (3)0.15376 (8)0.42746 (17)0.0245 (3)
H25A0.27960.18080.47150.029*
H25B0.12060.12430.49390.029*
C260.2417 (3)0.45830 (8)0.20956 (19)0.0277 (4)
C270.3227 (4)0.50158 (9)0.3166 (2)0.0448 (5)
H27A0.34130.54180.27800.067*
H27B0.45920.48700.35820.067*
H27C0.22060.50420.38360.067*
C280.2082 (4)0.47606 (11)0.0848 (2)0.0479 (6)
H28A0.23560.51690.06160.057*
H28B0.15680.44800.01820.057*
N10.7366 (2)0.38889 (7)0.77770 (14)0.0231 (3)
N20.0127 (2)0.18982 (6)0.37589 (13)0.0201 (3)
O10.8751 (2)0.25829 (6)1.00335 (13)0.0293 (3)
O20.62372 (19)0.27966 (6)0.66952 (11)0.0238 (2)
O30.6273 (2)0.50262 (6)0.65029 (16)0.0343 (3)
O40.2236 (2)0.32243 (6)0.56239 (12)0.0256 (3)
O50.12856 (18)0.29577 (6)0.26338 (11)0.0218 (2)
O60.1697 (2)0.08119 (6)0.24837 (15)0.0340 (3)
H1A0.876 (4)0.2765 (12)1.076 (3)0.041 (7)*
H2A0.657 (4)0.3175 (11)0.678 (2)0.028 (5)*
H4A0.334 (4)0.3044 (11)0.593 (3)0.037 (6)*
H5A0.121 (4)0.2593 (14)0.282 (3)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (7)0.0277 (8)0.0183 (7)0.0030 (6)0.0002 (5)0.0015 (6)
C20.0194 (7)0.0260 (8)0.0185 (7)0.0024 (6)0.0031 (6)0.0000 (6)
C30.0257 (7)0.0241 (8)0.0201 (7)0.0035 (6)0.0052 (6)0.0001 (6)
C40.0222 (7)0.0243 (8)0.0222 (7)0.0020 (6)0.0031 (6)0.0032 (6)
C50.0256 (8)0.0288 (8)0.0243 (8)0.0026 (6)0.0089 (6)0.0011 (6)
C60.0251 (7)0.0272 (8)0.0233 (7)0.0033 (6)0.0067 (6)0.0032 (6)
C70.0244 (8)0.0298 (9)0.0255 (8)0.0022 (6)0.0018 (6)0.0032 (6)
C80.0315 (9)0.0240 (8)0.0468 (11)0.0021 (7)0.0166 (8)0.0044 (8)
C90.0263 (9)0.0216 (8)0.0612 (13)0.0044 (7)0.0115 (8)0.0018 (8)
C100.0266 (8)0.0264 (8)0.0351 (9)0.0023 (6)0.0082 (7)0.0019 (7)
C110.0207 (7)0.0285 (8)0.0311 (9)0.0024 (6)0.0030 (6)0.0033 (7)
C120.0259 (8)0.0263 (8)0.0318 (9)0.0007 (6)0.0061 (7)0.0037 (7)
C130.0461 (12)0.0315 (10)0.0621 (15)0.0090 (9)0.0141 (11)0.0070 (10)
C140.0572 (13)0.0283 (9)0.0367 (10)0.0008 (9)0.0094 (9)0.0068 (8)
C150.0187 (6)0.0196 (7)0.0183 (7)0.0005 (6)0.0005 (5)0.0021 (6)
C160.0162 (6)0.0213 (7)0.0191 (7)0.0008 (5)0.0020 (5)0.0009 (5)
C170.0182 (7)0.0202 (7)0.0273 (8)0.0024 (6)0.0017 (6)0.0007 (6)
C180.0203 (7)0.0213 (7)0.0229 (7)0.0022 (6)0.0005 (6)0.0007 (6)
C190.0160 (6)0.0225 (7)0.0280 (8)0.0013 (5)0.0033 (6)0.0021 (6)
C200.0167 (7)0.0206 (7)0.0267 (8)0.0020 (6)0.0023 (5)0.0030 (6)
C210.0260 (8)0.0226 (8)0.0209 (8)0.0003 (6)0.0006 (6)0.0029 (6)
C220.0224 (7)0.0227 (8)0.0406 (10)0.0017 (6)0.0127 (7)0.0030 (7)
C230.0385 (10)0.0277 (9)0.0397 (10)0.0078 (7)0.0172 (8)0.0096 (8)
C240.0216 (7)0.0253 (8)0.0421 (10)0.0036 (6)0.0052 (7)0.0026 (7)
C250.0225 (7)0.0229 (7)0.0291 (8)0.0008 (6)0.0083 (6)0.0027 (6)
C260.0241 (8)0.0252 (8)0.0334 (9)0.0041 (6)0.0008 (7)0.0035 (7)
C270.0647 (15)0.0237 (9)0.0440 (12)0.0115 (9)0.0061 (10)0.0017 (8)
C280.0576 (14)0.0441 (12)0.0398 (12)0.0206 (10)0.0071 (10)0.0147 (9)
N10.0197 (6)0.0220 (6)0.0277 (7)0.0012 (5)0.0034 (5)0.0034 (5)
N20.0195 (6)0.0186 (6)0.0225 (6)0.0013 (5)0.0040 (5)0.0002 (5)
O10.0291 (6)0.0371 (7)0.0207 (6)0.0061 (5)0.0041 (5)0.0004 (5)
O20.0275 (6)0.0245 (6)0.0188 (5)0.0021 (4)0.0013 (4)0.0011 (4)
O30.0307 (7)0.0207 (6)0.0533 (9)0.0033 (5)0.0136 (6)0.0011 (6)
O40.0268 (6)0.0272 (6)0.0218 (6)0.0015 (5)0.0047 (5)0.0056 (5)
O50.0203 (5)0.0220 (6)0.0223 (6)0.0013 (4)0.0032 (4)0.0001 (5)
O60.0328 (7)0.0229 (6)0.0478 (8)0.0077 (5)0.0124 (6)0.0082 (6)
Geometric parameters (Å, º) top
C1—O11.4308 (19)C15—C211.541 (2)
C1—C61.529 (2)C15—C161.543 (2)
C1—C21.540 (2)C16—O51.4321 (18)
C1—C71.541 (2)C16—C171.518 (2)
C2—O21.4355 (19)C16—H161.0000
C2—C31.520 (2)C17—C181.537 (2)
C2—H2B1.0000C17—H17A0.9900
C3—C41.543 (2)C17—H17B0.9900
C3—H3A0.9900C18—C261.518 (2)
C3—H3B0.9900C18—C191.534 (2)
C4—C121.520 (2)C18—H181.0000
C4—C51.529 (2)C19—C201.529 (2)
C4—H4B1.0000C19—H19A0.9900
C5—C61.528 (2)C19—H19B0.9900
C5—H5B0.9900C20—H20A0.9900
C5—H5C0.9900C20—H20B0.9900
C6—H6A0.9900C21—N21.472 (2)
C6—H6B0.9900C21—H21A0.9900
C7—N11.476 (2)C21—H21B0.9900
C7—H7A0.9900C22—N21.470 (2)
C7—H7B0.9900C22—C231.515 (3)
C8—N11.472 (2)C22—H22A0.9900
C8—C91.509 (3)C22—H22B0.9900
C8—H8A0.9900C23—O61.428 (2)
C8—H8B0.9900C23—H23A0.9900
C9—O31.428 (2)C23—H23B0.9900
C9—H9A0.9900C24—O61.424 (2)
C9—H9B0.9900C24—C251.506 (2)
C10—O31.424 (2)C24—H24A0.9900
C10—C111.511 (3)C24—H24B0.9900
C10—H10A0.9900C25—N21.470 (2)
C10—H10B0.9900C25—H25A0.9900
C11—N11.476 (2)C25—H25B0.9900
C11—H11A0.9900C26—C281.320 (3)
C11—H11B0.9900C26—C271.498 (3)
C12—C141.329 (3)C27—H27A0.9800
C12—C131.493 (3)C27—H27B0.9800
C13—H13A0.9800C27—H27C0.9800
C13—H13B0.9800C28—H28A0.9500
C13—H13C0.9800C28—H28B0.9500
C14—H14A0.9500O1—H1A0.84 (3)
C14—H14B0.9500O2—H2A0.86 (2)
C15—O41.4354 (18)O4—H4A0.84 (3)
C15—C201.531 (2)O5—H5A0.83 (3)
O1—C1—C6110.33 (13)O5—C16—C17108.46 (12)
O1—C1—C2104.34 (13)O5—C16—C15110.28 (12)
C6—C1—C2110.06 (13)C17—C16—C15111.69 (12)
O1—C1—C7105.45 (13)O5—C16—H16108.8
C6—C1—C7115.08 (14)C17—C16—H16108.8
C2—C1—C7110.94 (13)C15—C16—H16108.8
O2—C2—C3109.03 (13)C16—C17—C18112.70 (13)
O2—C2—C1110.74 (13)C16—C17—H17A109.1
C3—C2—C1111.89 (13)C18—C17—H17A109.1
O2—C2—H2B108.4C16—C17—H17B109.1
C3—C2—H2B108.4C18—C17—H17B109.1
C1—C2—H2B108.4H17A—C17—H17B107.8
C2—C3—C4113.24 (13)C26—C18—C19113.25 (13)
C2—C3—H3A108.9C26—C18—C17111.25 (14)
C4—C3—H3A108.9C19—C18—C17109.22 (13)
C2—C3—H3B108.9C26—C18—H18107.6
C4—C3—H3B108.9C19—C18—H18107.6
H3A—C3—H3B107.7C17—C18—H18107.6
C12—C4—C5114.17 (14)C20—C19—C18110.82 (12)
C12—C4—C3110.14 (13)C20—C19—H19A109.5
C5—C4—C3109.58 (14)C18—C19—H19A109.5
C12—C4—H4B107.6C20—C19—H19B109.5
C5—C4—H4B107.6C18—C19—H19B109.5
C3—C4—H4B107.6H19A—C19—H19B108.1
C6—C5—C4110.19 (13)C19—C20—C15111.65 (13)
C6—C5—H5B109.6C19—C20—H20A109.3
C4—C5—H5B109.6C15—C20—H20A109.3
C6—C5—H5C109.6C19—C20—H20B109.3
C4—C5—H5C109.6C15—C20—H20B109.3
H5B—C5—H5C108.1H20A—C20—H20B108.0
C5—C6—C1111.87 (13)N2—C21—C15115.84 (13)
C5—C6—H6A109.2N2—C21—H21A108.3
C1—C6—H6A109.2C15—C21—H21A108.3
C5—C6—H6B109.2N2—C21—H21B108.3
C1—C6—H6B109.2C15—C21—H21B108.3
H6A—C6—H6B107.9H21A—C21—H21B107.4
N1—C7—C1116.42 (13)N2—C22—C23109.96 (14)
N1—C7—H7A108.2N2—C22—H22A109.7
C1—C7—H7A108.2C23—C22—H22A109.7
N1—C7—H7B108.2N2—C22—H22B109.7
C1—C7—H7B108.2C23—C22—H22B109.7
H7A—C7—H7B107.3H22A—C22—H22B108.2
N1—C8—C9110.15 (16)O6—C23—C22110.94 (15)
N1—C8—H8A109.6O6—C23—H23A109.5
C9—C8—H8A109.6C22—C23—H23A109.5
N1—C8—H8B109.6O6—C23—H23B109.5
C9—C8—H8B109.6C22—C23—H23B109.5
H8A—C8—H8B108.1H23A—C23—H23B108.0
O3—C9—C8111.02 (16)O6—C24—C25111.56 (14)
O3—C9—H9A109.4O6—C24—H24A109.3
C8—C9—H9A109.4C25—C24—H24A109.3
O3—C9—H9B109.4O6—C24—H24B109.3
C8—C9—H9B109.4C25—C24—H24B109.3
H9A—C9—H9B108.0H24A—C24—H24B108.0
O3—C10—C11112.01 (15)N2—C25—C24109.51 (14)
O3—C10—H10A109.2N2—C25—H25A109.8
C11—C10—H10A109.2C24—C25—H25A109.8
O3—C10—H10B109.2N2—C25—H25B109.8
C11—C10—H10B109.2C24—C25—H25B109.8
H10A—C10—H10B107.9H25A—C25—H25B108.2
N1—C11—C10110.28 (14)C28—C26—C27121.16 (18)
N1—C11—H11A109.6C28—C26—C18120.70 (18)
C10—C11—H11A109.6C27—C26—C18118.13 (16)
N1—C11—H11B109.6C26—C27—H27A109.5
C10—C11—H11B109.6C26—C27—H27B109.5
H11A—C11—H11B108.1H27A—C27—H27B109.5
C14—C12—C13120.99 (18)C26—C27—H27C109.5
C14—C12—C4122.92 (18)H27A—C27—H27C109.5
C13—C12—C4116.03 (16)H27B—C27—H27C109.5
C12—C13—H13A109.5C26—C28—H28A120.0
C12—C13—H13B109.5C26—C28—H28B120.0
H13A—C13—H13B109.5H28A—C28—H28B120.0
C12—C13—H13C109.5C8—N1—C11108.20 (14)
H13A—C13—H13C109.5C8—N1—C7112.39 (14)
H13B—C13—H13C109.5C11—N1—C7110.78 (13)
C12—C14—H14A120.0C22—N2—C25108.76 (13)
C12—C14—H14B120.0C22—N2—C21113.35 (13)
H14A—C14—H14B120.0C25—N2—C21111.93 (13)
O4—C15—C20110.29 (12)C1—O1—H1A109.2 (18)
O4—C15—C21105.41 (12)C2—O2—H2A104.9 (15)
C20—C15—C21114.16 (13)C10—O3—C9109.32 (13)
O4—C15—C16105.01 (12)C15—O4—H4A104.7 (17)
C20—C15—C16110.28 (13)C16—O5—H5A105.3 (19)
C21—C15—C16111.20 (13)C24—O6—C23110.02 (13)
O1—C1—C2—O2172.39 (12)C16—C17—C18—C26178.24 (13)
C6—C1—C2—O269.23 (17)C16—C17—C18—C1956.02 (17)
C7—C1—C2—O259.30 (17)C26—C18—C19—C20178.30 (14)
O1—C1—C2—C365.74 (16)C17—C18—C19—C2057.12 (17)
C6—C1—C2—C352.63 (17)C18—C19—C20—C1558.41 (17)
C7—C1—C2—C3178.83 (12)O4—C15—C20—C1960.07 (16)
O2—C2—C3—C469.99 (16)C21—C15—C20—C19178.51 (13)
C1—C2—C3—C452.85 (18)C16—C15—C20—C1955.46 (16)
C2—C3—C4—C12179.02 (13)O4—C15—C21—N2166.67 (13)
C2—C3—C4—C554.58 (17)C20—C15—C21—N272.14 (18)
C12—C4—C5—C6179.04 (14)C16—C15—C21—N253.40 (18)
C3—C4—C5—C656.89 (17)N2—C22—C23—O658.5 (2)
C4—C5—C6—C159.77 (18)O6—C24—C25—N259.16 (19)
O1—C1—C6—C557.93 (18)C19—C18—C26—C28120.7 (2)
C2—C1—C6—C556.68 (18)C17—C18—C26—C28115.8 (2)
C7—C1—C6—C5177.09 (14)C19—C18—C26—C2760.1 (2)
O1—C1—C7—N1170.17 (14)C17—C18—C26—C2763.4 (2)
C6—C1—C7—N167.99 (18)C9—C8—N1—C1157.64 (19)
C2—C1—C7—N157.78 (18)C9—C8—N1—C7179.71 (14)
N1—C8—C9—O360.3 (2)C10—C11—N1—C856.23 (18)
O3—C10—C11—N157.89 (18)C10—C11—N1—C7179.86 (14)
C5—C4—C12—C1440.6 (2)C1—C7—N1—C889.85 (18)
C3—C4—C12—C1483.2 (2)C1—C7—N1—C11148.98 (14)
C5—C4—C12—C13142.11 (19)C23—C22—N2—C2557.74 (18)
C3—C4—C12—C1394.1 (2)C23—C22—N2—C21177.07 (14)
O4—C15—C16—O5173.83 (12)C24—C25—N2—C2257.80 (17)
C20—C15—C16—O567.37 (16)C24—C25—N2—C21176.19 (13)
C21—C15—C16—O560.32 (16)C15—C21—N2—C2297.33 (17)
O4—C15—C16—C1765.49 (16)C15—C21—N2—C25139.20 (14)
C20—C15—C16—C1753.31 (17)C11—C10—O3—C958.3 (2)
C21—C15—C16—C17179.00 (13)C8—C9—O3—C1059.2 (2)
O5—C16—C17—C1866.97 (15)C25—C24—O6—C2358.9 (2)
C15—C16—C17—C1854.76 (17)C22—C23—O6—C2458.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.86 (2)1.91 (2)2.7118 (19)154 (2)
O5—H5A···N20.83 (3)1.90 (3)2.6697 (18)155 (3)
O1—H1A···O5i0.84 (3)1.95 (3)2.7595 (18)164 (3)
O4—H4A···O20.84 (3)2.00 (3)2.8249 (17)167 (2)
C9—H9B···O6ii0.992.353.269 (2)155
C24—H24A···O3iii0.992.453.344 (2)150
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1; (iii) x, y1/2, z+1.
 

References

First citationBlair, M., Andrews, P. C., Fraser, B. H., Forsyth, C. M., Junk, P. C., Massi, M. & Tuck, K. L. (2007). Synthesis, pp. 1523–1527.  Google Scholar
First citationBlair, M., Forsyth, C. M. & Tuck, K. L. (2010). Tetrahedron Lett. 51, 4808–4811.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrne, C. M., Allen, S. D., Lobkovsky, E. B. & Coates, G. W. (2004). J. Am. Chem. Soc. 126, 11404–11405.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDams, I., Bialonska, A., Ciunik, Z. & Wawrzencyk, C. (2004). Eur. J. Org. Chem. pp. 2662–2668.  Web of Science CSD CrossRef Google Scholar
First citationHarrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.  Web of Science CrossRef CAS Google Scholar
First citationMöller, F. (1957). Methoden der Organischen Chemie (Houben-Weyl), Vol. XI/1, edited by E. Müller, pp. 311–326. Stuttgart: Georg Thieme.  Google Scholar
First citationOutouch, R., Boualy, B., Ali, M. A., Firdoussi, L. E. & Rizzoli, C. (2011). Acta Cryst. E67, o195–o196.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOutouch, R., Boualy, B., El Firdoussi, L., Ait Ali, M., Rizzoli, C. & Spannenberg, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 279–280.  CAS Google Scholar
First citationOutouch, R., Rauchdi, M., Boualy, B., El Firdoussi, L., Roucoux, A. & Ait Ali, M. (2014). Acta Chim. Slov. 61, 67–72.  Web of Science CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSello, G., Orsini, F., Bernasconi, S. & Di Gennaro, P. (2006). Tetrahedron Asymmetry, 17, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurendra, K., Krishnaveni, N. S. & Rao, K. R. (2005). Synlett, 3, 506–510.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds