organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorfluazuron

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: jekim@gnu.ac.kr, thkim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 3 December 2014; accepted 4 December 2014; online 1 January 2015)

The title compound (systematic name: 1-{3,5-di­chloro-4-[3-chloro-5-(tri­fluoro­meth­yl)pyridin-2-yl­oxy]phen­yl}-3-(2,6-difluoro­benzo­yl)urea), C20H9Cl3F5N3O3, is a benzoyl­phenyl­urea insecticide. The dihedral angles between the planes of the central di­chloro­phenyl and the terminal di­fluoro­phenyl and chloro­pyridyl rings are 79.51 (6) and 78.84 6)°, respectively. In the crystal, pairs of N—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(8) inversion dimers. In addition, the dimers are linked by short F⋯Cl [3.1060 (16) Å] and Cl⋯Cl [3.2837 (7) Å] contacts, as well as weak inter­molecular ππ inter­actions [ring centroid separation = 3.6100 (11) and 3.7764 (13) Å], resulting in a two-dimensional architecture parallel to (111).

1. Related literature

For information on the insecticidal properties of the title compound, see: Choi et al. (2011[Choi, J. H., Mamun, M. I. R., Park, J. H., Shin, E. H. & Shim, J. H. (2011). Bull. Environ. Contam. Toxicol. 86, 331-335.]); Lee et al. (2013[Lee, C. C., Man, C. N., Noor, N. M., Lajis, R. & Lee, C. Y. (2013). J. Pestic. Sci. 38, 208-213.]). For a related crystal structure, see: Jeon et al. (2014[Jeon, Y., Kang, G., Lee, S. & Kim, T. H. (2014). Acta Cryst. E70, o1110.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H9Cl3F5N3O3

  • Mr = 540.65

  • Triclinic, [P \overline 1]

  • a = 8.5805 (3) Å

  • b = 10.1281 (4) Å

  • c = 12.5883 (4) Å

  • α = 79.498 (2)°

  • β = 82.930 (2)°

  • γ = 83.485 (2)°

  • V = 1062.82 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 173 K

  • 0.28 × 0.12 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.975

  • 19710 measured reflections

  • 5259 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.06

  • 5259 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 1.96 2.837 (2) 175
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chlorfluazuron, C20H9Cl3F5N3O3, is a benzoylphenylurea which has been recognized as one of the promising insecticides with great potential for use in controlling insect attack on a broad range of fruits and vegetables (Lee et al., 2013; Choi et al., 2011). Its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angles between the central dichlorophenyl and the terminal difluorophenyland chloropyridyl rings are 79.51 (6) and 78.84 (6)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Jeon et al., 2014).

The crystal structure, (Fig. 2), is stabilized by N—H···O hydrogen bonds (Table 1), forming R22(8) inversion dimers. In addition, the dimers are linked by short F2···Cl3ii [3.1060 (16) Å] and Cl1···Cl1iii [3.2837 (7) Å] contacts as well as two weak intermolecular offset ππ stacking interactions [Cg1···Cg3iv = 3.7764 (13)Å. Cg1 and Cg3 are the centroids of the C1—C2—C3—C4—C5—C6 and C15—C16—C17—C18—C19—N3 rings, respectively. Cg2···Cg2ii = 3.6100 (11) Å. Cg2 is the centroid of the C9—C10—C11—C12—C13—C14 ring. (Symmetry codes: (ii), -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1 and (iv) x, y + 1, z - 1)], resulting in a two-dimensional architecture parallel to the (111) plane.

Related literature top

For information on the insecticidal properties of the title compound, see: Choi et al. (2011); Lee et al. (2013). For a related crystal structure, see: Jeon et al. (2014).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CHCl3 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H and d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for urea group.

Structure description top

Chlorfluazuron, C20H9Cl3F5N3O3, is a benzoylphenylurea which has been recognized as one of the promising insecticides with great potential for use in controlling insect attack on a broad range of fruits and vegetables (Lee et al., 2013; Choi et al., 2011). Its crystal structure is reported herein. In this compound (Scheme 1, Fig. 1), the dihedral angles between the central dichlorophenyl and the terminal difluorophenyland chloropyridyl rings are 79.51 (6) and 78.84 (6)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Jeon et al., 2014).

The crystal structure, (Fig. 2), is stabilized by N—H···O hydrogen bonds (Table 1), forming R22(8) inversion dimers. In addition, the dimers are linked by short F2···Cl3ii [3.1060 (16) Å] and Cl1···Cl1iii [3.2837 (7) Å] contacts as well as two weak intermolecular offset ππ stacking interactions [Cg1···Cg3iv = 3.7764 (13)Å. Cg1 and Cg3 are the centroids of the C1—C2—C3—C4—C5—C6 and C15—C16—C17—C18—C19—N3 rings, respectively. Cg2···Cg2ii = 3.6100 (11) Å. Cg2 is the centroid of the C9—C10—C11—C12—C13—C14 ring. (Symmetry codes: (ii), -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1 and (iv) x, y + 1, z - 1)], resulting in a two-dimensional architecture parallel to the (111) plane.

For information on the insecticidal properties of the title compound, see: Choi et al. (2011); Lee et al. (2013). For a related crystal structure, see: Jeon et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The intermolecular N—H···O hydrogen bonds, short F···Cl, Cl···Cl contacts and ππ interactions are shown as dashed lines.
1-{3,5-Dichloro-4-[3-chloro-5-(trifluoromethyl)pyridin-2-yloxy]phenyl}-3-(2,6-difluorobenzoyl)urea top
Crystal data top
C20H9Cl3F5N3O3Z = 2
Mr = 540.65F(000) = 540
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5805 (3) ÅCell parameters from 6417 reflections
b = 10.1281 (4) Åθ = 2.4–28.1°
c = 12.5883 (4) ŵ = 0.51 mm1
α = 79.498 (2)°T = 173 K
β = 82.930 (2)°Plate, colourless
γ = 83.485 (2)°0.28 × 0.12 × 0.05 mm
V = 1062.82 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5259 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1110
Tmin = 0.872, Tmax = 0.975k = 1313
19710 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.4257P]
where P = (Fo2 + 2Fc2)/3
5259 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C20H9Cl3F5N3O3γ = 83.485 (2)°
Mr = 540.65V = 1062.82 (7) Å3
Triclinic, P1Z = 2
a = 8.5805 (3) ÅMo Kα radiation
b = 10.1281 (4) ŵ = 0.51 mm1
c = 12.5883 (4) ÅT = 173 K
α = 79.498 (2)°0.28 × 0.12 × 0.05 mm
β = 82.930 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4090 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.975Rint = 0.040
19710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
5259 reflectionsΔρmin = 0.54 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51049 (7)0.65788 (5)0.51055 (4)0.03275 (16)
Cl20.82607 (7)1.05194 (6)0.59008 (4)0.03172 (15)
Cl30.64381 (7)0.71391 (8)0.88086 (5)0.0459 (2)
F11.05653 (18)1.14118 (18)0.13423 (14)0.0590 (5)
F20.54499 (16)1.35343 (16)0.10772 (12)0.0470 (4)
F31.33225 (17)0.60959 (17)0.78423 (15)0.0549 (5)
F41.28741 (18)0.43892 (17)0.72279 (14)0.0552 (5)
F51.2067 (2)0.4572 (2)0.88756 (14)0.0753 (7)
O10.86100 (19)1.20897 (17)0.06450 (12)0.0347 (4)
O20.51802 (19)0.94182 (16)0.13689 (12)0.0323 (4)
O30.66744 (16)0.79859 (14)0.64590 (11)0.0237 (3)
N10.6634 (2)1.09625 (17)0.02702 (13)0.0229 (4)
H10.61201.08590.02680.027*
N20.6858 (2)1.04878 (17)0.21206 (13)0.0218 (4)
H20.74691.11530.19630.026*
N30.9237 (2)0.70890 (17)0.60728 (14)0.0245 (4)
C10.9398 (3)1.2235 (2)0.1811 (2)0.0323 (5)
C20.9644 (3)1.2813 (3)0.2889 (2)0.0382 (6)
H2A1.06171.26330.33090.046*
C30.8436 (3)1.3662 (3)0.33402 (18)0.0382 (6)
H30.85891.40800.40800.046*
C40.7021 (3)1.3915 (2)0.27473 (18)0.0356 (6)
H40.61971.45020.30660.043*
C50.6822 (3)1.3296 (2)0.16762 (18)0.0275 (5)
C60.7993 (2)1.2441 (2)0.11733 (16)0.0220 (4)
C70.7787 (2)1.1828 (2)0.00044 (16)0.0228 (4)
C80.6163 (2)1.0217 (2)0.12916 (16)0.0222 (4)
C90.6721 (2)0.98326 (19)0.32049 (15)0.0190 (4)
C100.5976 (2)0.86569 (19)0.35643 (16)0.0207 (4)
H100.54640.82740.30810.025*
C110.5998 (2)0.80569 (19)0.46473 (16)0.0204 (4)
C120.6729 (2)0.85890 (19)0.53728 (15)0.0202 (4)
C130.7419 (2)0.9786 (2)0.50062 (16)0.0221 (4)
C140.7433 (2)1.0399 (2)0.39305 (16)0.0221 (4)
H140.79291.12080.36850.026*
C150.8040 (2)0.73051 (19)0.67978 (16)0.0192 (4)
C160.8070 (2)0.6866 (2)0.79131 (16)0.0237 (4)
C170.9430 (2)0.6189 (2)0.82825 (17)0.0258 (5)
H170.94920.58810.90370.031*
C181.0710 (2)0.5965 (2)0.75305 (17)0.0235 (4)
C191.0565 (3)0.6423 (2)0.64440 (17)0.0250 (4)
H191.14450.62620.59320.030*
C201.2233 (3)0.5247 (2)0.78821 (19)0.0321 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0441 (3)0.0284 (3)0.0261 (3)0.0152 (2)0.0103 (2)0.0063 (2)
Cl20.0376 (3)0.0384 (3)0.0237 (3)0.0096 (2)0.0131 (2)0.0067 (2)
Cl30.0296 (3)0.0784 (5)0.0193 (3)0.0167 (3)0.0006 (2)0.0036 (3)
F10.0343 (8)0.0660 (11)0.0626 (11)0.0190 (8)0.0036 (8)0.0059 (9)
F20.0289 (7)0.0586 (9)0.0402 (8)0.0124 (7)0.0018 (6)0.0122 (7)
F30.0285 (8)0.0604 (10)0.0824 (13)0.0001 (7)0.0263 (8)0.0180 (9)
F40.0402 (9)0.0576 (10)0.0721 (12)0.0233 (8)0.0194 (8)0.0305 (9)
F50.0415 (9)0.1138 (16)0.0434 (10)0.0300 (10)0.0047 (8)0.0351 (10)
O10.0393 (9)0.0434 (9)0.0243 (8)0.0195 (8)0.0120 (7)0.0024 (7)
O20.0392 (9)0.0394 (9)0.0200 (8)0.0185 (7)0.0128 (7)0.0059 (6)
O30.0189 (7)0.0334 (8)0.0160 (7)0.0013 (6)0.0054 (6)0.0030 (6)
N10.0234 (9)0.0305 (9)0.0154 (8)0.0070 (7)0.0089 (7)0.0019 (7)
N20.0266 (9)0.0222 (8)0.0167 (8)0.0069 (7)0.0071 (7)0.0022 (6)
N30.0261 (9)0.0269 (9)0.0188 (9)0.0010 (7)0.0039 (7)0.0006 (7)
C10.0271 (12)0.0321 (12)0.0354 (13)0.0008 (9)0.0004 (10)0.0039 (10)
C20.0398 (14)0.0443 (14)0.0311 (13)0.0145 (11)0.0123 (11)0.0124 (11)
C30.0571 (16)0.0417 (14)0.0184 (11)0.0247 (12)0.0026 (11)0.0002 (10)
C40.0447 (14)0.0369 (13)0.0243 (12)0.0093 (11)0.0131 (11)0.0071 (10)
C50.0247 (11)0.0326 (11)0.0233 (11)0.0045 (9)0.0030 (9)0.0016 (9)
C60.0250 (11)0.0219 (10)0.0196 (10)0.0056 (8)0.0039 (8)0.0017 (8)
C70.0223 (10)0.0246 (10)0.0208 (10)0.0009 (8)0.0049 (8)0.0011 (8)
C80.0226 (10)0.0248 (10)0.0185 (10)0.0024 (8)0.0058 (8)0.0006 (8)
C90.0181 (9)0.0221 (9)0.0159 (9)0.0020 (7)0.0060 (7)0.0007 (7)
C100.0226 (10)0.0225 (10)0.0176 (10)0.0019 (8)0.0085 (8)0.0013 (8)
C110.0214 (10)0.0177 (9)0.0210 (10)0.0013 (7)0.0043 (8)0.0008 (7)
C120.0202 (10)0.0246 (10)0.0142 (9)0.0028 (8)0.0068 (8)0.0015 (8)
C130.0219 (10)0.0266 (10)0.0200 (10)0.0006 (8)0.0090 (8)0.0063 (8)
C140.0229 (10)0.0236 (10)0.0201 (10)0.0052 (8)0.0056 (8)0.0009 (8)
C150.0180 (9)0.0213 (9)0.0185 (10)0.0019 (7)0.0065 (8)0.0007 (7)
C160.0231 (10)0.0298 (11)0.0168 (10)0.0009 (8)0.0020 (8)0.0021 (8)
C170.0272 (11)0.0321 (11)0.0178 (10)0.0016 (9)0.0079 (9)0.0004 (8)
C180.0218 (10)0.0251 (10)0.0233 (10)0.0007 (8)0.0067 (8)0.0015 (8)
C190.0230 (10)0.0295 (11)0.0216 (10)0.0006 (8)0.0018 (8)0.0035 (8)
C200.0264 (11)0.0389 (13)0.0287 (12)0.0045 (10)0.0069 (9)0.0020 (10)
Geometric parameters (Å, º) top
Cl1—C111.7315 (19)C2—H2A0.9500
Cl2—C131.723 (2)C3—C41.368 (4)
Cl3—C161.716 (2)C3—H30.9500
F1—C11.350 (3)C4—C51.378 (3)
F2—C51.340 (3)C4—H40.9500
F3—C201.331 (3)C5—C61.385 (3)
F4—C201.333 (3)C6—C71.497 (3)
F5—C201.311 (3)C9—C101.392 (3)
O1—C71.217 (2)C9—C141.394 (3)
O2—C81.217 (2)C10—C111.389 (3)
O3—C151.365 (2)C10—H100.9500
O3—C121.390 (2)C11—C121.384 (3)
N1—C71.366 (3)C12—C131.387 (3)
N1—C81.405 (2)C13—C141.382 (3)
N1—H10.8800C14—H140.9500
N2—C81.347 (3)C15—C161.396 (3)
N2—C91.402 (2)C16—C171.373 (3)
N2—H20.8800C17—C181.386 (3)
N3—C151.314 (3)C17—H170.9500
N3—C191.347 (3)C18—C191.378 (3)
C1—C21.377 (3)C18—C201.497 (3)
C1—C61.381 (3)C19—H190.9500
C2—C31.379 (4)
C15—O3—C12116.53 (15)C11—C10—H10120.8
C7—N1—C8128.40 (17)C9—C10—H10120.8
C7—N1—H1115.8C12—C11—C10122.32 (18)
C8—N1—H1115.8C12—C11—Cl1118.64 (15)
C8—N2—C9127.54 (17)C10—C11—Cl1119.03 (15)
C8—N2—H2116.2C11—C12—C13118.40 (17)
C9—N2—H2116.2C11—C12—O3120.52 (17)
C15—N3—C19117.22 (17)C13—C12—O3120.94 (17)
F1—C1—C2119.5 (2)C14—C13—C12120.64 (18)
F1—C1—C6117.4 (2)C14—C13—Cl2119.64 (15)
C2—C1—C6123.2 (2)C12—C13—Cl2119.72 (15)
C1—C2—C3118.0 (2)C13—C14—C9120.16 (18)
C1—C2—H2A121.0C13—C14—H14119.9
C3—C2—H2A121.0C9—C14—H14119.9
C4—C3—C2121.5 (2)N3—C15—O3119.22 (17)
C4—C3—H3119.2N3—C15—C16123.69 (18)
C2—C3—H3119.2O3—C15—C16117.09 (18)
C3—C4—C5118.4 (2)C17—C16—C15118.60 (19)
C3—C4—H4120.8C17—C16—Cl3120.33 (16)
C5—C4—H4120.8C15—C16—Cl3121.07 (16)
F2—C5—C4119.4 (2)C16—C17—C18118.51 (19)
F2—C5—C6117.64 (18)C16—C17—H17120.7
C4—C5—C6122.9 (2)C18—C17—H17120.7
C1—C6—C5116.01 (19)C19—C18—C17118.80 (19)
C1—C6—C7121.58 (19)C19—C18—C20120.08 (19)
C5—C6—C7122.35 (19)C17—C18—C20121.11 (19)
O1—C7—N1124.57 (19)N3—C19—C18123.18 (19)
O1—C7—C6121.15 (18)N3—C19—H19118.4
N1—C7—C6114.27 (17)C18—C19—H19118.4
O2—C8—N2125.62 (18)F5—C20—F3107.5 (2)
O2—C8—N1119.61 (18)F5—C20—F4108.0 (2)
N2—C8—N1114.76 (17)F3—C20—F4104.67 (19)
C10—C9—C14120.10 (18)F5—C20—C18112.37 (19)
C10—C9—N2123.68 (18)F3—C20—C18111.92 (19)
C14—C9—N2116.18 (17)F4—C20—C18112.02 (19)
C11—C10—C9118.32 (18)
F1—C1—C2—C3179.2 (2)Cl1—C11—C12—O33.3 (3)
C6—C1—C2—C31.5 (4)C15—O3—C12—C11107.5 (2)
C1—C2—C3—C40.9 (4)C15—O3—C12—C1377.0 (2)
C2—C3—C4—C50.1 (4)C11—C12—C13—C142.7 (3)
C3—C4—C5—F2179.6 (2)O3—C12—C13—C14178.30 (18)
C3—C4—C5—C60.6 (4)C11—C12—C13—Cl2177.03 (16)
F1—C1—C6—C5179.7 (2)O3—C12—C13—Cl21.5 (3)
C2—C1—C6—C51.0 (3)C12—C13—C14—C91.4 (3)
F1—C1—C6—C72.6 (3)Cl2—C13—C14—C9178.39 (15)
C2—C1—C6—C7178.1 (2)C10—C9—C14—C130.8 (3)
F2—C5—C6—C1179.1 (2)N2—C9—C14—C13177.08 (18)
C4—C5—C6—C10.1 (3)C19—N3—C15—O3179.44 (17)
F2—C5—C6—C72.0 (3)C19—N3—C15—C161.0 (3)
C4—C5—C6—C7177.0 (2)C12—O3—C15—N39.7 (3)
C8—N1—C7—O10.0 (4)C12—O3—C15—C16170.78 (18)
C8—N1—C7—C6179.18 (19)N3—C15—C16—C171.1 (3)
C1—C6—C7—O160.5 (3)O3—C15—C16—C17179.40 (18)
C5—C6—C7—O1116.5 (2)N3—C15—C16—Cl3177.88 (16)
C1—C6—C7—N1118.8 (2)O3—C15—C16—Cl31.6 (3)
C5—C6—C7—N164.3 (3)C15—C16—C17—C180.4 (3)
C9—N2—C8—O26.7 (4)Cl3—C16—C17—C18178.62 (16)
C9—N2—C8—N1174.42 (18)C16—C17—C18—C190.3 (3)
C7—N1—C8—O2175.0 (2)C16—C17—C18—C20179.3 (2)
C7—N1—C8—N26.1 (3)C15—N3—C19—C180.3 (3)
C8—N2—C9—C108.7 (3)C17—C18—C19—N30.3 (3)
C8—N2—C9—C14173.53 (19)C20—C18—C19—N3179.2 (2)
C14—C9—C10—C111.6 (3)C19—C18—C20—F5163.0 (2)
N2—C9—C10—C11176.18 (18)C17—C18—C20—F517.4 (3)
C9—C10—C11—C120.1 (3)C19—C18—C20—F376.0 (3)
C9—C10—C11—Cl1178.97 (15)C17—C18—C20—F3103.6 (2)
C10—C11—C12—C132.0 (3)C19—C18—C20—F441.2 (3)
Cl1—C11—C12—C13178.89 (16)C17—C18—C20—F4139.2 (2)
C10—C11—C12—O3177.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.962.837 (2)175
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.881.962.837 (2)174.9
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, J. H., Mamun, M. I. R., Park, J. H., Shin, E. H. & Shim, J. H. (2011). Bull. Environ. Contam. Toxicol. 86, 331–335.  CrossRef CAS PubMed Google Scholar
First citationJeon, Y., Kang, G., Lee, S. & Kim, T. H. (2014). Acta Cryst. E70, o1110.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. C., Man, C. N., Noor, N. M., Lajis, R. & Lee, C. Y. (2013). J. Pestic. Sci. 38, 208–213.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds